1
|
Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology 2020; 8:903-914. [PMID: 31444950 PMCID: PMC7036326 DOI: 10.1111/andr.12703] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Testicular architecture and sperm production are supported by a complex network of communication between various cell types. These signals ensure fertility by: regulating spermatogonial stem/progenitor cells; promoting steroidogenesis; and driving male-specific differentiation of the gonad. Sertoli cells have long been assumed to be the major cellular player in testis organogenesis and spermatogenesis. However, cells in the interstitial compartment, such as Leydig, vascular, immune, and peritubular cells, also play prominent roles in the testis but are less well understood. OBJECTIVES Here, we aim to outline our current knowledge of the cellular and molecular mechanisms by which interstitial cell types contribute to spermatogenesis and testicular development, and how these diverse constituents of the testis play essential roles in ensuring male sexual differentiation and fertility. METHODS We surveyed scientific literature and summarized findings in the field that address how interstitial cells interact with other interstitial cell populations and seminiferous tubules (i.e., Sertoli and germ cells) to support spermatogenesis, male-specific differentiation, and testicular function. These studies focused on 4 major cell types: Leydig cells, vascular cells, immune cells, and peritubular cells. RESULTS AND DISCUSSION A growing number of studies have demonstrated that interstitial cells play a wide range of functions in the fetal and adult testis. Leydig cells, through secretion of hormones and growth factors, are responsible for steroidogenesis and progression of spermatogenesis. Vascular, immune, and peritubular cells, apart from their traditionally acknowledged physiological roles, have a broader importance than previously appreciated and are emerging as essential players in stem/progenitor cell biology. CONCLUSION Interstitial cells take part in complex signaling interactions with both interstitial and tubular cell populations, which are required for several biological processes, such as steroidogenesis, Sertoli cell function, spermatogenesis, and immune regulation. These various processes are essential for testicular function and demonstrate how interstitial cells are indispensable for male fertility.
Collapse
Affiliation(s)
- Anna Heinrich
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Suite E-870, Cincinnati, OH, 45267, USA
| |
Collapse
|
2
|
Welter H, Huber A, Lauf S, Einwang D, Mayer C, Schwarzer JU, Köhn FM, Mayerhofer A. Angiotensin II regulates testicular peritubular cell function via AT1 receptor: a specific situation in male infertility. Mol Cell Endocrinol 2014; 393:171-8. [PMID: 24970685 DOI: 10.1016/j.mce.2014.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/28/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
We observed that peritubular myoid cells in the human testis are immunoreactive for angiotensin II (AngII) receptors (AT1R) and explored AngII actions in cultured human testicular peritubular cells (HTPCs). In response to AngII they contracted within minutes. The AT1R-blocker losartan blocked contraction, implying involvement of AngII and AT1R in intratesticular sperm transport. AngII also significantly increased IL-6 mRNA levels and IL-6 secretion within hours and losartan again prevented this action. This suggests involvement in inflammatory processes, which may play a role in male infertility. AngII can be generated locally by mast cell (MC)-derived chymase (CHY), which cleaves AngI. In testicular biopsies from infertile men we found abundant MCs, which express CHY, within the wall of seminiferous tubules. In contrast, CHY-positive MCs are hardly found in normal human testis. Testicular inflammatory events may fuel processes resulting in impaired spermatogenesis. Therefore therapeutic interference with MCs, CHY or AT1R might be novel options in male infertility.
Collapse
Affiliation(s)
- H Welter
- Anatomy III - Cell Biology, Ludwig Maximilian University, Schillerstrasse 42, 80336 Munich, Germany.
| | - A Huber
- Anatomy III - Cell Biology, Ludwig Maximilian University, Schillerstrasse 42, 80336 Munich, Germany
| | - S Lauf
- Anatomy III - Cell Biology, Ludwig Maximilian University, Schillerstrasse 42, 80336 Munich, Germany
| | - D Einwang
- Anatomy III - Cell Biology, Ludwig Maximilian University, Schillerstrasse 42, 80336 Munich, Germany
| | - C Mayer
- Anatomy III - Cell Biology, Ludwig Maximilian University, Schillerstrasse 42, 80336 Munich, Germany
| | | | - F M Köhn
- Andrologicum, 80331 Munich, Germany
| | - A Mayerhofer
- Anatomy III - Cell Biology, Ludwig Maximilian University, Schillerstrasse 42, 80336 Munich, Germany.
| |
Collapse
|
3
|
Ruan YC, Zhou W, Chan HC. Regulation of smooth muscle contraction by the epithelium: role of prostaglandins. Physiology (Bethesda) 2011; 26:156-70. [PMID: 21670162 DOI: 10.1152/physiol.00036.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As an analog to the endothelium situated next to the vascular smooth muscle, the epithelium is emerging as an important regulator of smooth muscle contraction in many vital organs/tissues by interacting with other cell types and releasing epithelium-derived factors, among which prostaglandins have been demonstrated to play a versatile role in governing smooth muscle contraction essential to the physiological and pathophysiological processes in a wide range of organ systems.
Collapse
Affiliation(s)
- Ye Chun Ruan
- School of Life Science, Sun Yat-sen University, China
| | | | | |
Collapse
|
4
|
Volkmann J, Muller D, Feuerstacke C, Kliesch S, Bergmann M, Muhlfeld C, Middendorff R. Disturbed spermatogenesis associated with thickened lamina propria of seminiferous tubules is not caused by dedifferentiation of myofibroblasts. Hum Reprod 2011; 26:1450-61. [DOI: 10.1093/humrep/der077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
5
|
Schell C, Albrecht M, Spillner S, Mayer C, Kunz L, Köhn FM, Schwarzer U, Mayerhofer A. 15-Deoxy-delta 12-14-prostaglandin-J2 induces hypertrophy and loss of contractility in human testicular peritubular cells: implications for human male fertility. Endocrinology 2010; 151:1257-68. [PMID: 20133451 DOI: 10.1210/en.2009-1325] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The wall of the seminiferous tubules contains contractile smooth-muscle-like peritubular cells, thought to be important for sperm transport. Impaired spermatogenesis in men typically involves remodeling of this wall, and we now found that smooth muscle cell (SMC) markers, namely myosin heavy chain (MYH11) and smooth muscle actin (SMA) are often lost or diminished in peritubular cells of testes of men with impaired spermatogenesis. This suggests reduced contractility of the peritubular wall, which may contribute to sub- or infertility. In these cases, testicular expression of cyclooxygenase-2 (COX-2) implies formation of prostaglandins (PGs). When screening different PGs for their ability to target human testicular peritubular cells (HTPCs), only a PG metabolite, 15-deoxy-Delta(12-14)-prostaglandin-J2 (15dPGJ2), was effective. In primary cultures of HTPCs, 15dPGJ2 increased cell size in a reversible manner. Importantly, 15dPGJ2 treatment resulted in a loss of typical differentiation markers for SMCs, namely MYH11, calponin, and SMA, whereas fibroblast markers were unchanged. Collagen gel contraction assays revealed that this loss correlates with a reduced ability to contract. Experiments with an antagonist (bisphenol A diglycidyl ether) and agonist (troglitazone) for a cognate 15dPGJ2 receptor (i.e. peroxisome proliferator-activated receptor-gamma) indicated that peroxisome proliferator-activated receptor-gamma is not directly involved. Rather, the mode of action of 15dPGJ2 involves reactive oxygen species. The antioxidant N-acetylcysteine not only blocked ROS formation but also prevented the increase in cell size and the loss of contractility in HTPCs challenged with 15dPGJ2. We conclude that 15dPGJ2, via reactive oxygen species, influences SMC phenotype and contractility of human peritubular cells and possibly is involved in the development of human male sub-/infertility.
Collapse
Affiliation(s)
- C Schell
- Institute for Cell Biology, Anatomy, and Center for Integrated Protein Science, Munich (CIPSM), Ludwig Maximilian University, Biedersteinerstrasse 29, D-80802 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Veronesi MC, Tosi U, Villani M, Govoni N, Faustini M, Kindahl H, Madej A, Carluccio A. Oxytocin, vasopressin, prostaglandin F(2alpha), luteinizing hormone, testosterone, estrone sulfate, and cortisol plasma concentrations after sexual stimulation in stallions. Theriogenology 2009; 73:460-7. [PMID: 20022362 DOI: 10.1016/j.theriogenology.2009.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/30/2009] [Accepted: 09/30/2009] [Indexed: 01/23/2023]
Abstract
This experiment was designed to determine the effects of sexual stimulation on plasma concentrations of oxytocin (OT), vasopressin (VP), 15-ketodihydro-PGF(2alpha) (PG-metabolite), luteinizing hormone (LH), testosterone (T), estrone sulfate (ES), and cortisol (C) in stallions. Semen samples were collected from 14 light horse stallions (Equus caballus) of proven fertility using a Missouri model artificial vagina. Blood samples were collected at 15, 12, 9, 6, and 3 min before estrous mare exposure, at erection, at ejaculation, and at 3, 6, and 9 min after ejaculation. Afterwards, blood sampling was performed every 10 min for the following 60 min. Sexual activity determined an increase in plasma concentrations of OT, VP, C, PG-metabolite, and ES and caused no changes in LH and T concentrations. The finding of a negative correlation between C and VP at erection, and between C and T before erection and at the time of erection, could be explained by a possible inhibitory role exerted by C in the mechanism of sexual arousal described for men.
Collapse
Affiliation(s)
- M C Veronesi
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Jeremy JY, Mikhailidis DP. Prostaglandins and the penis: Possible role in the pathogenesis and treatment of impotence. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/02674659008408013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Suzuki-Yamamoto T, Sugimoto Y, Ichikawa A, Ishimura K. Co-localization of prostaglandin F synthase, cyclooxygenase-1 and prostaglandin F receptor in mouse Leydig cells. Histochem Cell Biol 2007; 128:317-22. [PMID: 17674023 DOI: 10.1007/s00418-007-0316-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
In order to promote better understanding of the physiological roles of prostaglandin F(2alpha) in the mouse testis, we investigated the protein expression and the cellular localization of the enzymes cyclooxygenase and prostaglandin F synthase that are essential for the production of prostaglandin F(2alpha), and the binding site, which is the prostaglandin F(2alpha )receptor (FP). Western blot exhibited the expression of FP protein in wild type mouse testis, and that of prostaglandin F synthase and cyclooxygenase-1 proteins in the both of wild type mouse and FP-deficient mouse testes. The expression of prostaglandin F synthase and cyclooxygenase-1 were detected intensely in Leydig cell-rich fraction, and that of FP was detected equally in Leydig cell-rich fraction and the other fraction. Immunohistochemistry for cyclooxygenase-1 and prostaglandin F synthase demonstrated their co-localization in mouse Leydig cells. Histochemistry for FP demonstrated the localization in Leydig cells and in spermatids of seminiferous tubules. Double histochemical staining confirmed the co-localization of cyclooxygenase-1, prostaglandin F synthase and FP in the Leydig cells. These findings indicate that prostaglandin F(2alpha) may have an effect on the functions of Leyding cells in an autocrine fashion. It implies that prostaglandin F synthase and FP are involved in the control of testosterone release from Leydig cells and in spermatogenesis via the local pathway and the hypothalamo-hypophysial-testis pathway, and affect the testicular function.
Collapse
Affiliation(s)
- Toshiko Suzuki-Yamamoto
- Department of Anatomy and Cell Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| | | | | | | |
Collapse
|
9
|
Villani M, Cairoli F, Kindahl H, Galeati G, Faustini M, Carluccio A, Veronesi MC. Effects of Mating on Plasma Concentrations of Testosterone, Cortisol, Oestrone Sulphate and 15-Ketodihydro-PGF2? in Stallions. Reprod Domest Anim 2006; 41:544-8. [PMID: 17107515 DOI: 10.1111/j.1439-0531.2006.00711.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Very little information is available regarding the physiological mechanisms involved in the normal sexual activity in the stallion and, in particular, the endocrine control of reproduction is still not clearly understood. This experiment was designed to determine the short-term effect of sexual stimulation on plasma concentrations of testosterone, cortisol, oestrone sulphate and 15-ketodihydro-PGF(2alpha) in stallions. Semen samples were collected from 10 lighthorse stallions of proven fertility using a Missouri model artificial vagina. At the same time, blood samples were collected from the jugular vein with heparinized tubes, 20 and 10 min before oestrous mare exposure, at exposure and 10, 20, 30 min after dismounting. Testosterone concentrations showed a sharp rise 10 min after mating (p < 0.001), reached a plateau, and then showed a further increase 30 min after mating (p < 0.001). Cortisol concentrations increased 10 min after mating (p < 0.001) and remained at high levels in the subsequent samples taken. A peak of oestrone sulphate was observed 10 min after mating (p < 0.001). 15-Ketodihydro-PGF(2alpha) concentrations decreased rapidly at the moment of the exposure of the stallions to an oestrous mare (p < 0.05), returned to pre-mating concentrations and then decreased again 30 min after mating (p < 0.05).
Collapse
Affiliation(s)
- M Villani
- Dipartimento di Scienze Cliniche Veterinarie, Sez. Clinica Ostetrica e Ginecologica Veterinaria, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Yang G, Chen L, Zhang Y, Zhang X, Wu J, Li S, Wei M, Zhang Z, Breyer MD, Guan Y. Expression of mouse membrane-associated prostaglandin E2 synthase-2 (mPGES-2) along the urogenital tract. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1459-68. [PMID: 17064959 DOI: 10.1016/j.bbalip.2006.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/19/2022]
Abstract
Prostaglandin E(2) (PGE(2)) is the most common prostanoid and has a variety of bioactivities including a crucial role in urogenital function. Multiple enzymes are involved in its biosynthesis. Among 3 PGE(2) terminal synthetic enzymes, membrane-associated PGE(2) synthase-2 (mPGES-2) is the most recently identified, and its role remains uncharacterized. In previous studies, membrane-associated PGE(2) synthase-1 (mPGES-1) and cytosolic PGE(2) synthase (cPGES) were reported to be expressed along the urogenital tracts. Here we report the genomic structure and tissue distribution of mPGES-2 in the urogenital system. Analysis of several bioinformatic databases demonstrated that mouse mPGES-2 spans 7 kb and consists of 7 exons. The mPGES-2 promoter contains multiple Sp1 sites and a GC box without a TATA box motif. Real-time quantitative PCR revealed that constitutive mPGES-2 mRNA was most abundant in the heart, brain, kidney and small intestine. In the urogenital system, mPGES-2 was highly expressed in the renal cortex, followed by the renal medulla and ovary, with lower levels in the ureter, bladder and uterus. Immunohistochemistry studies indicated that mPGES-2 was ubiquitously expressed along the nephron, with much lower levels in the glomeruli. In the ureter and bladder, mPGES-2 was mainly localized to the urothelium. In the reproductive system, mPGES-2 was restricted to the epithelial cells of the testis, epididymis, vas deferens and seminal vesicle in males, and oocytes, stroma cells and corpus luteum of the ovary and epithelial cells of the oviduct and uterus in females. This expression pattern is consistent with an important role for mPGES-2-mediated PGE(2) in urogenital function.
Collapse
Affiliation(s)
- Guangrui Yang
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mikhailidis DP, Jeremy JY, Shoukry K, Virag R. Eicosanoids, impotence and pharmacologically induced erection. Prostaglandins Leukot Essent Fatty Acids 1990; 40:239-42. [PMID: 1980365 DOI: 10.1016/0952-3278(90)90043-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- D P Mikhailidis
- Dept. of Chemical Pathology & Human Metabolism, Royal Free Hospital, London, UK
| | | | | | | |
Collapse
|
12
|
Gottlieb C, Bremme K, Svanborg K, Eneroth P, Bygdeman M. The effects of oral administration of prostaglandin E2 on the human ejaculate. Fertil Steril 1988; 50:789-94. [PMID: 3181489 DOI: 10.1016/s0015-0282(16)60317-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A single 1 mg dose of prostaglandin (PG) E2 was given orally to 19 men. Ejaculates were obtained 90 minutes and 24 and 48 hours thereafter. Before treatment, each man delivered another three semen samples with the same time intervals as during the study period. PGE2 was also administered to seven men during naproxen treatment and ejaculates were sampled as above. PGE2 did not influence the 90 minutes' posttreatment ejaculates, but after 24 hours there was a significant (P less than 0.05) decrease in sperm counts as compared to the control samples. The change in sperm count was suggested to be due to an effect of PG on the contractile elements in the deferent duct. Sperm motility, viability, and morphology as well as semen volume and adenosine triphosphate (ATP) content remained unchanged. The total semen PGE content was increased 24 hours after treatment from 169 micrograms/ejaculate to 213 micrograms/ejaculate (P = 0.02). In the combined PGE2/naproxen treatment the PGE levels were significantly (P less than 0.05) elevated in the ejaculate 48 hours after treatment. The increase may indicate an increased de novo synthesis of prostaglandins. Based on the results from the analysis of the composition of the 19-hydroxy PGF-isomers with and without naproxen treatment, it is speculated that oral PGE2 influences the cyclo-oxygenase activity.
Collapse
Affiliation(s)
- C Gottlieb
- Department of Obstetrics and Gynecology, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|