1
|
Horváth B, Hegyi B, Kistamás K, Váczi K, Bányász T, Magyar J, Szentandrássy N, Nánási PP. Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes. Can J Physiol Pharmacol 2015; 93:527-34. [PMID: 25928391 DOI: 10.1139/cjpp-2014-0511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study was designed to investigate the influence of cytosolic Ca(2+) levels ([Ca(2+)]i) on action potential duration (APD) and on the incidence of early afterdepolarizations (EADs) in canine ventricular cardiomyocytes. Action potentials (AP) of isolated cells were recorded using conventional sharp microelectrodes, and the concomitant [Ca(2+)]i was monitored with the fluorescent dye Fura-2. EADs were evoked at a 0.2 Hz pacing rate by inhibiting the rapid delayed rectifier K(+) current with dofetilide, by activating the late sodium current with veratridine, or by activating the L-type calcium current with BAY K8644. These interventions progressively prolonged the AP and resulted in initiation of EADs. Reducing [Ca(2+)]i by application of the cell-permeant Ca(2+) chelator BAPTA-AM lengthened the AP at 1.0 Hz if it was applied alone, in the presence of veratridine, or in the presence of BAY K8644. However, BAPTA-AM shortened the AP if the cells were pretreated with dofetilide. The incidence of the evoked EADs was strongly reduced by BAPTA-AM in dofetilide, moderately reduced in veratridine, whereas EAD incidence was increased by BAPTA-AM in the presence of BAY K8644. Based on these experimental data, changes in [Ca(2+)]i have marked effects on APD as well as on the incidence of EADs; however, the underlying mechanisms may be different, depending on the mechanism of EAD generation. As a consequence, reduction of [Ca(2+)]i may eliminate EADs under some, but not all, experimental conditions.
Collapse
Affiliation(s)
- Balázs Horváth
- a Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Nagyerdei krt 98, Hungary.,b Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Bence Hegyi
- a Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Nagyerdei krt 98, Hungary
| | - Kornél Kistamás
- a Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Nagyerdei krt 98, Hungary
| | - Krisztina Váczi
- a Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Nagyerdei krt 98, Hungary
| | - Tamás Bányász
- a Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Nagyerdei krt 98, Hungary
| | - János Magyar
- a Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Nagyerdei krt 98, Hungary.,c Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Szentandrássy
- a Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Nagyerdei krt 98, Hungary.,d Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Hungary
| | - Péter P Nánási
- a Department of Physiology, Faculty of Medicine, University of Debrecen, H-4012 Debrecen, Nagyerdei krt 98, Hungary.,d Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Hungary
| |
Collapse
|
2
|
Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes. J Mol Cell Cardiol 2010; 48:781-8. [DOI: 10.1016/j.yjmcc.2009.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/11/2009] [Indexed: 11/18/2022]
|
3
|
Klose MK, Boulianne GL, Robertson RM, Atwood HL. Role of ATP-dependent calcium regulation in modulation of Drosophila synaptic thermotolerance. J Neurophysiol 2009; 102:901-13. [PMID: 19474168 DOI: 10.1152/jn.91209.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maintenance of synaptic transmission requires regulation of intracellular Ca(2+) in presynaptic nerve terminals; loss of this regulation at elevated temperatures may cause synaptic failure. Accordingly, we examined the thermosensitivity of presynaptic calcium regulation in Drosophila larval neuromuscular junctions, testing for effects of disrupting calcium clearance. Motor neurons were loaded with the ratiometric Ca(2+) indicator Fura-dextran to monitor calcium regulation as temperature increased. Block of the Na(+)/Ca(2+) exchanger or removal of extracellular Ca(2+) prevented the normal temperature-induced increase in resting calcium. Conversely, two treatments that interfered with Ca(2+) clearance-inactivation of the endoplasmic reticulum Ca(2+)-ATPase with thapsigargin and inhibition of the plasma membrane Ca(2+)-ATPase with high pH-significantly accelerated the temperature-induced rise in resting Ca(2+) concentration and reduced the thermotolerance of synaptic transmission. Disrupting Ca(2+)-ATPase function by interfering with energy production also facilitated the temperature-induced rise in resting [Ca(2+)] and reduced thermotolerance of synaptic transmission. Conversely, fortifying energy levels with extra intracellular ATP extended the operating temperature range of both synaptic transmission and Ca(2+) regulation. In each of these cases, Ca(2+) elevations evoked by an electrical stimulation of the nerve (evoked Ca(2+) responses) failed when resting Ca(2+) remained >e 200 nM for several minutes. Failure of synaptic function was correlated with the release of intracellular calcium stores, and we provide evidence suggesting that release from the mitochondria disrupts evoked calcium responses and synaptic transmission. Thus the thermal limit of synaptic transmission may be directly linked to the stability of ATP-dependent mechanisms that regulate intracellular ion concentrations in the nerve terminal.
Collapse
Affiliation(s)
- M K Klose
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
4
|
Klose MK, Atwood HL, Robertson RM. Hyperthermic preconditioning of presynaptic calcium regulation in Drosophila. J Neurophysiol 2008; 99:2420-30. [PMID: 18272873 DOI: 10.1152/jn.01251.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the thermosensitivity of calcium regulation in Drosophila larval neuromuscular junctions, testing effects of prior heat shock and Hsp70 expression. Motor neurons were loaded with either the ratiometric indicator Fura-dextran or the nonratiometric indicator Oregon Green bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid to monitor parameters of calcium regulation as temperature increased. Nerve terminals treated to a prior heat shock, and those of transgenic flies expressing higher than normal levels of Hsp70, were better able to maintain near-normal resting calcium concentrations, calcium influx, and calcium clearance at higher temperatures. Synaptic transmission was also protected by prior heat shock and by higher than normal Hsp70 expression. Thus the thermal limit of synaptic transmission may be directly linked to the stability of calcium regulation.
Collapse
Affiliation(s)
- M K Klose
- Department of Physiology, University of Toronto, 1 King's College Circle, Ontario, Canada.
| | | | | |
Collapse
|
5
|
Bupha-Intr T, Wattanapermpool J. Cardioprotective effects of exercise training on myofilament calcium activation in ovariectomized rats. J Appl Physiol (1985) 2004; 96:1755-60. [PMID: 14672958 DOI: 10.1152/japplphysiol.01227.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The risks associated with hormone replacement therapy, especially cardiac diseases in postmenopausal women, have prompted extensive studies for other preventive or therapeutic alternatives. We investigated the cardioprotective effects of exercise training on the changes in cardiac myofilament Ca2+ activation in 10-wk-old ovariectomized rats. The exercise groups were subjected to a 9-wk running program on a motor-driven treadmill 1 wk after surgery. The relationship between pCa (-log molar free Ca2+ concentration) and myofibrillar MgATPase activity of exercise-sham myofibrils or exercise-ovariectomized myofibrils was the same and could not be distinguished from that of sedentary-sham control hearts. In contrast, a significant suppression in maximum MgATPase activity and a leftward shift of pCa50 (half-maximally activating pCa) in the pCa-ATPase activity relationship were detected in sedentary-ovariectomized rats. Exercise training also prevented the shift in myosin heavy chain (MHC) isoforms toward β-MHC in ovariectomized hearts. The upregulation of β1-adrenergic receptors in the left ventricular membranes of ovariectomized rat hearts, as measured by receptor binding and immunoblot analyses, was no longer observed in exercise-ovariectomized hearts. Immunoblot analyses of heat shock protein (HSP) 72, an inducible form of HSP70, demonstrated a significant downregulation in ovariectomized hearts. Exercise training in ovariectomized rats completely reversed the expression of HSP72 to the same level as sham controls. Our results clearly indicate the cardioprotective effects of exercise training on changes in cardiac myofilament Ca2+ activation in ovariectomized rats. Alterations in expression of β1-adrenergic receptors and HSP72 may, in part, play a mechanistic role in the cardioprotective effects.
Collapse
Affiliation(s)
- Tepmanas Bupha-Intr
- Department of Physiology, Faculty of Science, Mahidol Univ., Rama 6 Rd., Bangkok 10400, Thailand
| | | |
Collapse
|
6
|
Chen HW, Chien CT, Yu SL, Lee YT, Chen WJ. Cyclosporine A regulate oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via ROS generation, iNOS and Hsp70. Br J Pharmacol 2002; 137:771-81. [PMID: 12411407 PMCID: PMC1573548 DOI: 10.1038/sj.bjp.0704908] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Previous study suggested that cyclosporine A (CsA) could partially reduce ischaemia/reperfusion-induced injury in isolated heart, but the mechanism was still unclear. In this study, the possible mechanisms of cyclosporine A in regulating oxidative stress-induced cardiomyocyte apoptosis were examined. 2. Morphological (cell shrinkage, apoptotic body formation, and DNA fragmentation) and biochemical (annexin-V staining for exposed phosphatidylserine residues) evidences showed that both hydrogen peroxide (H(2)O(2)) and hypoxia/reoxygenation could induce apoptotic change in the embryonal rat heart myoblast-derived cells (H9c2). These effects were inhibited by pre-treatment with CsA at concentration of 0.01-1.0 micro M for 24 h, but were increased with 10.0 micro M CsA. 3. While examining the mechanisms of CsA in protecting cardiomyocyte apoptosis, we found that the collapse of mitochondria membrane potential (DeltaPsim) induced by oxidative stress was partially reversed by CsA (0.01-1.0 micro M). 4. Compared to the control, CSA at the concentration of 0.1 and 10.0 micro M significantly increased the level of intracellular reactive oxygen species (ROS) to 117.2+/-12.4% and 234.4+/-9.3%, respectively. Co-incubating with the antioxidant, ascorbic acid (10.0 micro M), could partially reduce the protective effect of CsA (0.01-1.0 micro M) and the toxic effect of 10.0 micro M CsA. 5. Pre-treatment with CsA at concentration of 0.01-1.0 micro M for 24 h produced up-regulation of heat shock protein 70 (Hsp 70), inducible nitric oxide synthase (iNOS) and also induced NO production, indicating that these factors might be associated with the cell protective effects of CsA. 6. These results suggest that CsA could protect the oxidative stress-induced cardiomyocyte apoptosis not only by preventing the loss of DeltaPsim in mitochondria, but also through ROS generation, Hsp70, and iNOS up-regulation.
Collapse
Affiliation(s)
- Huei-Wen Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiang-Ting Chien
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Teh Lee
- Department of Internal Medicine (Cardiology), National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Jone Chen
- Department of Internal Medicine (Cardiology), National Taiwan University Hospital, Taipei, Taiwan
- Department of Emergency Medicine, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan
- Author for correspondence:
| |
Collapse
|
7
|
Nánási PP, Jednákovits A. Multilateral in vivo and in vitro protective effects of the novel heat shock protein coinducer, bimoclomol: results of preclinical studies. CARDIOVASCULAR DRUG REVIEWS 2002; 19:133-51. [PMID: 11484067 DOI: 10.1111/j.1527-3466.2001.tb00060.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bimoclomol, the recently developed non-toxic heat shock protein (HSP) coinducer, was shown to display multilateral protective activities against various forms of stress or injuries at the level of the cell, tissue or organism. The compound enhanced the transcription, translation and expression of the 70 kD heat shock protein (HSP-70) in myogenic and HeLa cell lines exposed to heat stress, and increased cell survival on exposure to otherwise lethal thermal injury. Bimoclomol increased contractility of the working mammalian heart, this effect was associated with the increased intracellular calcium transients due to increased probability of opening of ryanodine receptors in the sarcoplasmic reticulum (SR). In healthy tissues these cardiac effects were evident only at relatively high concentrations of the drug, while in the ischemic myocardium bimoclomol exerted significant cardioprotective and antiarrhythmic effects at submicromolar concentrations. It decreased ischemia-induced reduction of contractility and of cardiac output, and dramatically decreased the elevation of the ST-segment during ischemia as well as the occurrence of ventricular fibrillation upon reperfusion. Bimoclomol was also active in various pathological animal models subjected to acute or chronic stress. In the spontaneously hypertensive rats chronic pretreatment with bimoclomol restored sensitivity of aortic rings to acetylcholine; this effect was accompanied by accumulation of HSP-70 in the tissues. Bimoclomol pretreatment significantly diminished the consequences of vascular disorders associated with diabetes mellitus. Diabetic neuropathy, retinopathy, and nephropathy were prevented or diminished, while wound healing was enhanced by bimoclomol. Enhancement of wound healing by bimoclomol was observed after thermal injury as well as following ultraviolet (UV) irradiation. In addition to the beneficial effects on peripheral angiopathies, bimoclomol antagonized the increase in permeability of blood-brain barrier induced by subarachnoid hemorrhager or arachidonic acid. A general and very important feature of the above effects of bimoclomol was that the drug failed to cause alterations under physiological conditions (except the enhanced calcium release from cardiac sarcoplasmic reticulum). Bimoclomol was effective only under conditions of stress. Consistent with its HSP-coinducer property, bimoclomol alone had very little effect on HSP production. Its protective activity became apparent only in the presence of cell damage. Currently, bimoclomol reached the end of the Phase II clinical trial in a group of 410 patients with diabetic complications. Results of this trial will answer the question, whether a compound with promising in vitro and in vivo preclinical findings will produce the anticipated beneficial effects in humans. In the event of a positive outcome of this trial, the indications for bimoclomol will be substantially extended.
Collapse
Affiliation(s)
- P P Nánási
- Department of Physiology, University Medical School of Debrecen, P.O. Box 22, H-4012 Debrecen, Hungary.
| | | |
Collapse
|
8
|
Jednákovits A, Ferdinándy P, Jaszlits L, Bányász T, Magyar J, Szigligeti P, Körtvély A, Szentmiklósi JA, Nánási PP. In vivo and in vitro acute cardiovascular effects of bimoclomol. ACTA ACUST UNITED AC 2000; 34:363-9. [PMID: 11368893 DOI: 10.1016/s0306-3623(01)00074-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effects of bimoclomol, the novel heat shock protein (HSP) coinducer, was studied in various mammalian cardiac and rabbit aortic preparations. Bimoclomol decreased the ST-segment elevation induced by coronary occlusion in anesthetized dogs (56% and 80% reduction with 1 and 5 mg/kg, respectively). In isolated working rat hearts, bimoclomol increased coronary flow (CF), decreased the reduction of cardiac output (CO) and left ventricular developed pressure (LVDP) developing after coronary occlusion, and prevented ventricular fibrillation (VF) during reperfusion. In rabbit aortic preparations, precontracted with phenylephrine, bimoclomol induced relaxation (EC(50)=214 microM). Bimoclomol produced partial relaxation against 20 mM KCl, however, bimoclomol failed to relax preparations precontracted with serotonin, PGF(2) or angiotensin II. All these effects were evident within a few minutes after application of bimoclomol. A rapid bimoclomol-induced compartmental translocation of the already preformed HSPs may explain the protective action of the compound.
Collapse
Affiliation(s)
- A Jednákovits
- Biorex Research and Development Co., PO Box 348, H-8201, Veszprém-Szabadságpuszta, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|