1
|
Han NR, Kim KC, Kim JS, Ko SG, Park HJ, Moon PD. A mixture of Panax ginseng and Scrophularia buergeriana improves immune function in an immunosuppressed murine model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153984. [PMID: 35189478 DOI: 10.1016/j.phymed.2022.153984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immunomodulatory drugs are currently used for immunosuppressed individuals, but adverse side effects have been reported. Although Panax ginseng and Scrophularia buergeriana are known to have respective pharmacological properties, the potential of a mixture of Panax ginseng and Scrophularia buergeriana (Isam-Tang, IST) as an immunomodulatory drug has not yet been studied. PURPOSE The present study was designed to assess the immunomodulatory activity of IST and p-coumaric acid (pCA), an active compound of IST, in the immune system. METHODS The levels of immunostimulatory cytokines, nitrite, inducible nitric oxide synthase (iNOS), NF-kB activation, and proliferation were examined in RAW264.7 cells, primary splenocytes and splenic NK cells isolated from normal mouse spleen, and in cyclophosphamide-induced immunosuppressed mice using ELISA, quantitative real-time PCR, Western blotting, and immunofluorescence staining. RESULTS IST or pCA treatment increased the production of immunostimulatory cytokines and nitrite and the expression of iNOS in RAW264.7 cells and splenocytes. IST or pCA also induced NF-κB signaling activation and promoted the phagocytic activity of RAW264.7 cells. In addition, the splenocyte proliferation and splenic NK activity were enhanced by IST or pCA. IST or pCA increased the levels of immunostimulatory cytokines in immunosuppressed mice and ameliorated splenic tissue damage. CONCLUSION These findings suggest that IST supplementation may be used to enhance immune function.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Kyeoung-Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, South Korea
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, South Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea; Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
2
|
Almeida Cardelli NJ, Elisa Lopes-Pires M, Bonfitto PHL, Ferreira HH, Antunes E, Marcondes S. Cross-talking between lymphocytes and platelets and its regulation by nitric oxide and peroxynitrite in physiological condition and endotoxemia. Life Sci 2016; 172:2-7. [PMID: 28017682 DOI: 10.1016/j.lfs.2016.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
AIMS Cross-talk between platelets and lymphocytes may play a role in different pathological conditions like sepsis. This study aimed to investigate the effect of lymphocytes on platelet aggregation in lipopolysaccharide (LPS)-stimulated and non-stimulated cells. MAIN METHODS Lymphocytes and platelet-rich plasma (PRP) were obtained from rat arterial blood. Platelets (1.2×108platelets/ml) were incubated with lymphocytes (0.8×106cells/ml) in the presence or not of LPS (100μg/ml), after which ADP (5μM)-induced platelet aggregation was carried out. KEY FINDINGS Lymphocytes inhibited by 51% the platelet aggregation, which was significantly prevented by the non-selective NO inhibitor l-NAME (300μM) or the selective iNOS inhibitor 1400W (100μM), as well as by the soluble guanylyl cyclase (sGC) inhibitor ODQ (10μM). The platelet inhibition by lymphocytes was accompanied by 2-fold increase of intraplatelet cGMP levels. Next, lymphocytes and platelets were co-incubated with LPS for 6h. In LPS-treated cells, lymphocytes produced a larger inhibition of platelet aggregation (62%), despite the same elevation of cGMP levels (2.2-fold increase). This inhibitory effect was prevented by l-NAME and 1400W, but rather unaffected by ODQ. The peroxynitrite (ONOO-) scavenger -(-)epigallocatechin gallate (ECG, 100μM) abolished the inhibition by lymphocytes on platelet aggregation in LPS-treated cells, but not in non-treated cells. SIGNIFICANCE Our results show that lymphocytes act to inhibit platelet aggregation via iNOS-derived NO release and cGMP generation. In presence of LPS, ONOO- production accounts for the platelet inhibition.
Collapse
Affiliation(s)
- Nádia J Almeida Cardelli
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - M Elisa Lopes-Pires
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Pedro H L Bonfitto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Heloisa H Ferreira
- Laboratory of Inflammation Research, São Leopoldo Mandic Institute and Research Center, Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sisi Marcondes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
3
|
Saeedi Saravi SS, Amirkhanloo R, Arefidoust A, Yaftian R, Saeedi Saravi SS, Shokrzadeh M, Dehpour AR. On the effect of minocycline on the depressive-like behavior of mice repeatedly exposed to malathion: interaction between nitric oxide and cholinergic system. Metab Brain Dis 2016; 31:549-61. [PMID: 26581675 DOI: 10.1007/s11011-015-9764-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/09/2015] [Indexed: 01/06/2023]
Abstract
This study was performed to investigate the antidepressant-like effect of minocycline in mice exposed to organophosphate pesticide malathion and possible involvement of nitric oxide/cGMP pathway in this paradigm. Mice were administered specific doses of malathion once daily for 7 consecutive days. After induction of depression, different doses of minocycline were daily injected alone or combined with non-specific NOS inhibitor, L-NAME, specific inducible NOS inhibitor, AG, NO precursor, L-arginine, and PDE5I, sildenafil. After locomotion assessment in open-field test, immobility times were recorded in the FST and TST. Moreover, hippocampal nitrite concentrations and acetylcholinesterase activity were measured. The results showed that repeated exposure to malathion induces depressive-like behavior at dose of 250 mg/kg. Minocycline (160 mg/kg) significantly reduced immobility times in FST and TST (P < 0.001). Combination of sub-effective doses of minocycline (80 mg/kg) with either L-NAME (3 mg/kg) or AG (25 mg/kg) significantly exerted a robust antidepressant-like effect in FST and TST (P < 0.001). Furthermore, minocycline at the same dose which has antidepressant-like effect, significantly reduced hippocampal nitrite concentration. The investigation indicates the essential role for NO/cGMP pathway in malathion-induced depressive-like behavior and antidepressant-like effect of minocycline. Moreover, the interaction between nitrergic and cholinergic systems are suggested to be involved in malathion-induced depression.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Roya Amirkhanloo
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Arefidoust
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahele Yaftian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Sobhan Saeedi Saravi
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Lautert C, Ferreiro L, Wolkmer P, Paim FC, da Silva CB, Jaques JAS, Lopes STA, Santurio JM. Individual in vitro effects of ochratoxin A, deoxynivalenol and zearalenone on oxidative stress and acetylcholinesterase in lymphocytes of broiler chickens. SPRINGERPLUS 2014; 3:506. [PMID: 25279298 PMCID: PMC4169786 DOI: 10.1186/2193-1801-3-506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/03/2014] [Indexed: 02/01/2023]
Abstract
The contamination of consumer food and animal feed with toxigenic fungi has resulted in economic losses worldwide in animal industries. Mycotoxins are highly biologically reactive secondary metabolites and can inhibit protein synthesis and cell multiplication. Considering the cytotoxicity of mycotoxins, this experiment was performed to determine the in vitro influence of ochratoxin A, deoxynivalenol and zearalenone on lipid peroxidation in lymphocytes of broiler chickens at different concentrations. This study has also evaluated whether the presence of these mycotoxins changes the acetylcholinesterase activity in lymphocytes, which is involved in the regulation of immune and inflammatory responses. Blood lymphocytes of broiler chickens were isolated through density gradient centrifugation and incubated with the respective mycotoxins at concentrations of 0.001, 0.01, 0.1 and 1 μg/mL. Lipid peroxidation, which was evaluated through the amount of malondialdehyde measured in a thiobarbituric acid-reactive species test, and the enzymatic activity were analyzed at 24, 48 and 72 h. Results of the lipid peroxidation evaluation showed an increasing cytotoxicity relation: ochratoxin A > deoxynivalenol > zearalenone. Conversely, cytotoxicity was valued as zearalenone > deoxynivalenol > ochratoxin A in relation to the acetylcholinesterase enzymatic activity. At a concentration of 1 μg/mL, ochratoxin A and deoxynivalenol induced the highest cellular oxidative stress levels and the highest enzymatic activity at the majority of time points. However, the same mycotoxins, except at 1 μg/mL concentration, induced a reduction of lymphocytic lipid peroxidation 72 h after incubation, suggesting the action of a compensatory mechanism in these cells.
Collapse
Affiliation(s)
- Claudia Lautert
- />Setor de Micologia, Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090, 91540-000 Porto Alegre, RS Brasil
| | - Laerte Ferreiro
- />Setor de Micologia, Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9090, 91540-000 Porto Alegre, RS Brasil
| | - Patrícia Wolkmer
- />Curso de Medicina Veterinária, Universidade de Cruz Alta (UNICRUZ), Campus Universitário Dr. Ulysses Guimarães - Rodovia Municipal Jacob Della Méa, Km 5.6, 98020-290 Cruz Alta, RS Brasil
| | - Francine C Paim
- />Laboratório de Análises Clínicas Veterinário (LACVET), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS Brasil
| | - Cássia B da Silva
- />Laboratório de Análises Clínicas Veterinário (LACVET), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS Brasil
| | - Jeandre AS Jaques
- />Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, 79070-900 Campo Grande, MS Brasil
| | - Sônia TA Lopes
- />Laboratório de Análises Clínicas Veterinário (LACVET), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS Brasil
| | - Janio M Santurio
- />Departamento de Microbiologia e Parasitologia, Laboratório de Pesquisas Micológicas (LAPEMI), Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS Brasil
| |
Collapse
|
5
|
Shafran Y, Zurgil N, Afrimzon E, Tauber Y, Sobolev M, Shainberg A, Deutsch M. Correlative Analyses of Nitric Oxide Generation Rates and Nitric Oxide Synthase Levels in Individual Cells Using a Modular Cell-Retaining Device. Anal Chem 2012; 84:7315-22. [DOI: 10.1021/ac202741z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yana Shafran
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Naomi Zurgil
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Elena Afrimzon
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Yishay Tauber
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Maria Sobolev
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Asher Shainberg
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| | - Mordechai Deutsch
- The
Biophysical Interdisciplinary Schottenstein Center for the Research
and Technology of the Cellome, and ‡The Mina and Everard Goodman Faculty of Life
Sciences, Bar Ilan University, Ramat Gan, 52900 Israel
| |
Collapse
|
6
|
Saluja R, Jyoti A, Chatterjee M, Habib S, Verma A, Mitra K, Barthwal MK, Bajpai VK, Dikshit M. Molecular and biochemical characterization of nitric oxide synthase isoforms and their intracellular distribution in human peripheral blood mononuclear cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1700-7. [PMID: 21722677 DOI: 10.1016/j.bbamcr.2011.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Nitric oxide synthase (NOS) expression and catalytic status in human peripheral blood mononuclear cells (PBMCs) is debatable, while its sub-cellular distribution remains unascertained. The present study characterizes NOS transcripts by real time PCR, NOS protein by immunoprecipitation (IP)/Western blot (WB), nitric oxide (NO) generation by DAF-2DA and NOS sub-cellular distribution by immunogold electron microscopy in resting PBMCs, monocytes and lymphocytes obtained from healthy donors. We observed constitutive expression of full length NOS isoforms (nNOS, iNOS and eNOS) in PBMCs: with the highest expression of iNOS in comparison to nNOS and eNOS. Isolated monocytes expressed more eNOS transcript and protein as compared to nNOS and iNOS. Lymphocytes however had more iNOS transcripts and protein than nNOS and eNOS. NOS was catalytically active in PBMCs, monocytes as well as in lymphocytes as evident by NO generation in the presence of substrate and cofactors, which was significantly reduced in the presence of NOS inhibitor. Immunogold electron microscopy and morphometric analysis revealed the distinct pattern of NOS distribution in monocytes and lymphocytes and also exhibited differences in the nuclear-cytoplasmic ratio. nNOS localization was much more in the cytosol than in the nucleus among both monocytes and lymphocytes. Interestingly, iNOS distribution was comparable in both cytosol and nucleus among monocytes, but in lymphocytes iNOS was predominantly localized to the cytosol. The present study exhibits constitutive presence of all the NOS isoforms in PBMCs and reports the distinct pattern of NOS distribution among monocytes and lymphocytes.
Collapse
|
7
|
Abstract
Shortly after the identification of nitric oxide (NO) as a product of macrophages, it was discovered that NO generated by inducible NO synthase (iNOS) inhibits the proliferation of T lymphocytes. Since then, it has become clear that iNOS activity also regulates the development, differentiation, and/or function of various types of T cells and B cells and also affects NK cells. The three key mechanisms underlying the iNOS-dependent immunoregulation are (a) the modulation of signaling processes by NO, (b) the depletion of arginine, and (c) the alteration of accessory cell functions. This chapter highlights important principles of iNOS-dependent immunoregulation of lymphocytes and also reviews more recent evidence for an effect of endothelial or neuronal NO synthase in lymphocytes.
Collapse
Affiliation(s)
- Christian Bogdan
- Medical Microbiology and Immunology of Infectious Diseases, Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg and University Clinic of Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
The M5 muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:813-25. [DOI: 10.1016/j.bbamcr.2010.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/15/2022]
|
9
|
Harada N. Role of nitric oxide on purinergic signalling in the cochlea. Purinergic Signal 2010; 6:211-20. [PMID: 20806013 DOI: 10.1007/s11302-010-9186-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 05/17/2010] [Indexed: 11/30/2022] Open
Abstract
In the inner ear, there is considerable evidence that extracellular adenosine 5'-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca(2+)](i) in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca(2+) response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca(2+) signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca(2+) signalling in SGNs and supporting cells.
Collapse
Affiliation(s)
- Narinobu Harada
- Harada Ear Institute, Tomoi 2-34-27, Higashiosaka, Osaka, 577-0816 Japan
| |
Collapse
|
10
|
Zhou L, Bai R, Tian J, Liu X, Lu D, Zhu P, Liu Y, Zeng L, Luo W, Zhang Y, Wang A. Bioinformatic comparisons and tissue expression of the neuronal nitric oxide synthase (nNOS) gene from the red drum (Sciaenops ocellatus). FISH & SHELLFISH IMMUNOLOGY 2009; 27:577-584. [PMID: 19647082 DOI: 10.1016/j.fsi.2009.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 07/19/2009] [Accepted: 07/22/2009] [Indexed: 05/28/2023]
Abstract
The full length cDNA sequence for neuronal nitric oxide synthase (nNOS) gene from red drum (Sciaenops ocellatus) has been cloned, subjected to bioinformatic analysis, and examined for expression in different tissues. Red drum nNOS showed high identity to nNOS of mammals and other fish species. Notably, a unique 7-aa insertion was found in the important catalytic sites of the NO synthase domain, possibly affecting the function of red drum nNOS. Furthermore, this nNOS was expressed not only in brain but also in most of the internal organs including liver, intestine, spleen, head kidney and thymus.
Collapse
Affiliation(s)
- Libin Zhou
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou 510631, China; Department of Life Science, Huizhou University, Huizhou 516007, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Myasthenia gravis (MG) is an autoimmune disorder usually caused by antibodies against either the acetylcholine receptor (AChR) or muscle-specific tyrosine kinase (MuSK) at the neuromuscular junction. Neuromuscular transmission failure results in muscle fatigue and weakness that can be treated symptomatically with acetylcholinesterase inhibitors (AChEIs). Long-term treatment with nonselective AChEIs may have considerable drawbacks; thus, this medication is ideally tapered when strength improves. Patients with AChR antibodies respond beneficially to treatment, whereas patients with MuSK antibodies generally do not. Recently, the selective AChEI EN101, which specifically targets the isoform of "read-through" AChE (AChE-R), has been developed and may be of importance for symptomatic relief in AChR-antibody seropositive MG. This article is a review of the mechanisms, therapeutic effects, and drawbacks, with both old and new AChEIs in MG.
Collapse
Affiliation(s)
- Anna Rostedt Punga
- Department of Clinical Neurophysiology, Uppsala University Hospital, 75185 Uppsala, Sweden.
| | | |
Collapse
|
12
|
Cabadak H, Küçükibrahimoğlu E, Aydın B, Kan B, Zafer Gören M. Muscarinic receptor-mediated nitric oxide release in a K562 erythroleukaemia cell line. ACTA ACUST UNITED AC 2009; 29:109-15. [DOI: 10.1111/j.1474-8673.2009.00431.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T. Anti-inflammatory properties of cholinergic up-regulation: A new role for acetylcholinesterase inhibitors. Neuropharmacology 2005; 50:540-7. [PMID: 16336980 DOI: 10.1016/j.neuropharm.2005.10.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/19/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
We investigated the anti-inflammatory effects of acetylcholinesterase inhibitors (AChEI) at the cellular and molecular levels. AChEI suppressed lymphocyte proliferation and pro-inflammatory cytokine production, as well as extracellular esterase activity. Anti-inflammatory activity was mediated by the alpha7 nicotinic acetylcholine receptor (neuronal); the muscarinic receptor had the opposite effect. Treatment of the central nervous system (CNS) inflammatory disease, experimental autoimmune encephalomyelitis (EAE), with EN101, an anti-sense oligodeoxynucleotide, targeted to AChE mRNA, reduced the clinical severity of the disease and CNS inflammation intensity. The results of our experiments suggest that AChEI increase the concentration of extracellular acetylcholine (ACh), rendering it available for interaction with a nicotinic receptor expressed on lymphocytes. Our findings point to a novel role for AChEI which may be relevant in CNS inflammatory diseases such as EAE and multiple sclerosis. They also emphasize the importance of cholinergic balance in neurological disorders, such as Alzheimer's disease and myasthenia gravis, in which these drugs are used.
Collapse
Affiliation(s)
- Eran Nizri
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
14
|
Staines DR. Is fibromyalgia an autoimmune disorder of endogenous vasoactive neuropeptides? Med Hypotheses 2004; 62:665-9. [PMID: 15082086 DOI: 10.1016/j.mehy.2004.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 01/19/2004] [Indexed: 12/21/2022]
Abstract
Fibromyalgia (FM) is a disorder characterised by soft tissue pain, disturbance of function an often prolonged course and variable fatigue and debility. A clearly defined aetiology has not been described. This paper proposes that immunological aberration is likely and this may prove to be associated with an expanding group of novel vasoactive neuropeptides. Vasoactive neuropeptides act as hormones, neurotransmitters, immune modulators and neurotrophes. They are readily catalysed to small peptide fragments. They and their binding sites are immunogenic and are known to be associated with a range of autoimmune conditions. They have a vital role in maintaining vascular flow in organs, and in thermoregulation, memory and concentration. They are co-transmitters for acetylcholine, are potent immune regulators with primarily anti-inflammatory activity, and have a significant role in protection of the nervous system to toxic assault and the maintenance of homeostasis. Failure of these substances has adverse consequences for homeostasis. This paper describes a biologically plausible mechanism for the development of FM based on loss of immunological tolerance to the vasoactive neuropeptides. The proposed mechanism of action is that inflammatory cytokines are provoked by tissue injury from unaccustomed exercise or physical injury. This may trigger a response by certain vasoactive neuropeptides which then undergo autoimmune dysfunction as well as affecting their receptor binding sites. The condition may potentially arise de novo perhaps in genetically susceptible individuals. FM is postulated to be an autoimmune disorder and may include dysfunction of purine nucleotide metabolism and nociception.
Collapse
Affiliation(s)
- Donald R Staines
- Gold Coast Public Health Unit, 10-12 Young Street, Southport, Qld 4215, Australia.
| |
Collapse
|
15
|
Staines DR. Is chronic fatigue syndrome an autoimmune disorder of endogenous neuropeptides, exogenous infection and molecular mimicry? Med Hypotheses 2004; 62:646-52. [PMID: 15082083 DOI: 10.1016/j.mehy.2004.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 01/07/2004] [Indexed: 11/30/2022]
Abstract
Chronic fatigue syndrome is a disorder characterised by prolonged fatigue and debility and is mostly associated with post-infection sequelae although ongoing infection is unproven. Immunological aberration is likely and this may prove to be associated with an expanding group of vasoactive neuropeptides in the context of molecular mimicry and inappropriate immunological memory. Vasoactive neuropeptides including vasoactive intestinal peptide (VIP) and pituitary adenylate activating polypeptide (PACAP) belong to the secretin/glucagon superfamily and act as hormones, neurotransmitters, immune modulators and neurotrophes. They are readily catalysed to smaller peptide fragments by antibody hydrolysis. They and their binding sites are immunogenic and are known to be associated with a range of autoimmune conditions. Vasoactive neuropeptides are widely distributed in the body particularly in the central, autonomic and peripheral nervous systems and have been identified in the gut, adrenal gland, reproductive organs, vasculature, blood cells and other tissues. They have a vital role in maintaining vascular flow in organs, and in thermoregulation, memory and concentration. They are co-transmitters for acetylcholine, nitric oxide, endogenous opioids and insulin, are potent immune regulators with primarily anti-inflammatory activity, and have a significant role in protection of the nervous system to toxic assault, promotion of neural development and the maintenance of homeostasis. This paper describes a biologically plausible mechanism for the development of CFS based on loss of immunological tolerance to the vasoactive neuropeptides following infection, significant physical exercise or de novo. It is proposed that release of these substances is accompanied by a loss of tolerance either to them or their receptor binding sites in CFS. Such an occurrence would have predictably serious consequences resulting from compromised function of the key roles these substances perform. All documented symptoms of CFS are explained by vasoactive neuropeptide compromise, namely fatigue and nervous system dysfunction through impaired acetylcholine activity, myalgia through nitric oxide and endogenous opioid dysfunction, chemical sensitivity through peroxynitrite and adenosine dysfunction, and immunological disturbance through changes in immune modulation. Perverse immunological memory established against these substances or their receptors may be the reason for the protracted nature of this condition. The novel status of these substances together with their extremely small concentrations in blood and tissues means that clinical research into them is still in its infancy. A biologically plausible theory of CFS causation associated with vasoactive neuropeptide dysfunction would promote a coherent and systematic approach to research into this and other possibly associated disabling conditions.
Collapse
Affiliation(s)
- Donald R Staines
- Gold Coast Public Health Unit, 10-12 Young Street, Southport 4215, Qld, Australia.
| |
Collapse
|
16
|
Staines DR. Is gulf war syndrome an autoimmune disorder of endogenous neuropeptides, exogenous sandfly maxadilan and molecular mimicry? Med Hypotheses 2004; 62:658-64. [PMID: 15082085 DOI: 10.1016/j.mehy.2004.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 01/11/2004] [Indexed: 12/21/2022]
Abstract
Gulf War Syndrome (GWS) remains a contentious diagnosis with conflicting laboratory investigation and lack of a biologically plausible aetiology. This paper discusses the potential role of maxadilan, a potent sandfly vasoactive peptide, in causing autoimmune responses in susceptible individuals through possible molecular mimicry with pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1R receptor. Gulf War Syndrome may share some causative pathology with Chronic Fatigue Syndrome (CFS), a disorder characterised by prolonged fatigue and debility mostly associated with post-infection sequelae although ongoing infection is unproven. Immunological aberration associated with an expanding group of vasoactive neuropeptides in the context of molecular mimicry and inappropriate immunological memory has been recently raised as possible cause of CFS. Vasoactive neuropeptides act as hormones, neurotransmitters, immune modulators and neurotrophes. They are readily catalysed to small peptide fragments. They and their binding sites are immunogenic and are known to be associated with a range of autoimmune conditions. Maxadilan, while not sharing substantial sequence homology with PACAP is a known agonist of the PACAP specific receptor (PAC1R) and therefore emulates these functions. Moreover a specific amino acid sequence peptide deletion within maxadilan converts it to a PACAP receptor antagonist raising the possibility of this substance provoking a CFS like response in humans exposed to it. This paper describes a biologically plausible mechanism for the development of a GWS-like chronic fatigue state based on loss of immunological tolerance to the vasoactive neuropeptide PACAP or its receptor following bites of the sandfly Phlebotomus papatasi and injection of the vasodilator peptide maxadilan. Exacerbation of this autoimmune response as a consequence of recent or simultaneous multiple vaccination exposures deserves further investigation. While the possible association between the relatively recently discovered vasoactive neuropeptides and chronic fatigue conditions has only recently been reported in the literature, this paper explores links for further research into GWS and CFS.
Collapse
Affiliation(s)
- Donald R Staines
- Gold Coast Public Health Unit, 10-12 Young Street, Southport, Qld. 4215, Australia.
| |
Collapse
|
17
|
Horiuchi Y, Fujii T, Kamimura Y, Kawashima K. The endogenous, immunologically active peptide apelin inhibits lymphocytic cholinergic activity during immunological responses. J Neuroimmunol 2004; 144:46-52. [PMID: 14597097 DOI: 10.1016/j.jneuroim.2003.08.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the effects of apelin, an immunologically active peptide ligand for orphan receptor APJ, on acetylcholine (ACh) synthesis in MOLT-3 human leukemic T cells. We initially confirmed expression of APJ mRNA in several human T- and B-cell lines by reverse transcription-polymerase chain reaction (RT-PCR). We also found that in phytohemagglutinin (PHA)-stimulated MOLT-3 cells, an active apelin fragment, apelin-13, down-regulates expression of choline acetyltransferase (ChAT) mRNA and significantly reduces ChAT activity and cellular ACh content and release. It thus appears that apelin inhibits lymphocytic cholinergic activity via APJ during immunological responses.
Collapse
Affiliation(s)
- Yoko Horiuchi
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | | | | | | |
Collapse
|
18
|
Fujii T. [An independent, non-neuronal cholinergic system in lymphocytes and its roles in regulation of immune function]. Nihon Yakurigaku Zasshi 2004; 123:179-88. [PMID: 14993730 DOI: 10.1254/fpj.123.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Acetylcholine (ACh) is classically thought of as a neurotransmitter in mammalian species. However, lymphocytes express most of the cholinergic components found in the nervous system, including ACh, choline acetyltransferase (ChAT), high-affinity choline transporter, and acetylcholinesterase as well as both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Activation of T cells via the T cell receptor/CD3 complex, contact of T cells with antigen presenting cells, or activation of the adenylyl cyclase pathway in T cells modulates cholinergic activity, as evidenced by up-regulation of ChAT and M(5) mAChR mRNA expression. Stimulation of mAChRs on T and B cells with ACh or another mAChR agonists elicits intracellular Ca(2+) signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and interleukin-2-induced signal transduction via M(3) and M(5) mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca(2+) signaling in T and B cells, probably via alpha7 nAChRs subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Abnormalities in lymphocytic cholinergic system have been seen in animal models of immune deficiency and immune acceleration. Collectively, these data provided a compelling picture in which immune function is, at least partly, under the control of an independent, non-neuronal cholinergic system in lymphocytes.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Tokyo, Japan.
| |
Collapse
|
19
|
Kawashima K, Fujii T. The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 2003; 74:675-96. [PMID: 14654162 DOI: 10.1016/j.lfs.2003.09.037] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lymphocytes express most of the cholinergic components found in the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase. Stimulation of T and B cells with ACh or another mAChR agonist elicits intracellular Ca2+ signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and IL-2-induced signal transduction, probably via M3 and M5 mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca2+ signaling in T and B cells, probably via alpha7 nAChR subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Activation of T cells with phytohemagglutinin or antibodies against cell surface molecules enhances lymphocytic cholinergic transmission by activating expression of ChAT and M5 mAChR, which is suggestive of local cholinergic regulation of immune system activity. This idea is supported by the facts that lymphocytic cholinergic activity reflects well the changes in immune system function seen in animal models of immune deficiency and immune acceleration. Collectively, these data provide a compelling picture in which lymphocytes constitute a cholinergic system that is independent of cholinergic nerves, and which is involved in the regulation of immune function.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | | |
Collapse
|
20
|
Abstract
Lymphocytes are now known to possess the essential components for a non-neuronal cholinergic system. These include acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Stimulating lymphocytes with phytohemagglutinin, a T-cell activator; Staphylococcus aureus Cowan I, a B-cell activator; or cell surface molecules enhances the synthesis and release of ACh and up-regulates expression of ChAT and M(5) mAChR mRNAs. Activation of mAChRs and nAChRs on lymphocytes elicits increases in the intracellular Ca(2+) concentration and stimulates c-fos gene expression and nitric oxide synthesis. On the other hand, long-term exposure to nicotine down-regulates expression of nAChR mRNA. Abnormalities in the lymphocytic cholinergic system have been detected in spontaneously hypertensive rats and MRL-lpr mice, two animal models of immune disorders. Taken together, these data present a compelling picture in which immune function is, at least in part, under the control of an independent non-neuronal lymphocytic cholinergic system.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | | |
Collapse
|