1
|
Milan A, Bruno G, Maffei I, Iannaccone A, Ravera A, Schiavone D, Veglio F. Arterial Hypertension and Multiple Myeloma: Physiopathology and Cardiovascular Risk and 'Practical' Indications in Patients Receiving Carfilzomib. Curr Hypertens Rev 2019; 15:47-53. [PMID: 29886833 DOI: 10.2174/1573402114666180611110547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
The introduction of carfilzomib in the treatment of relapsing and refractory multiple myeloma has allowed a significant increase in survival. The most frequent adverse effect of Carfilzomib treatment is arterial hypertension, even though the exact physiopathological mechanism are still unclear. MM patients, on the other hand, often present significant cardiovascular risk factors and comorbidities. Uncontrolled hypertension is frequently the cause of cardiovascular complications. It has been estimated that up to 50% of subjects in the general population are unaware of their hypertensive condition and only half of those who are aware of this risk factor present good control of blood pressure. Although the management of arterial hypertension is clearly important in reducing the risk of cardiovascular events, and is well described by the current guidelines, no clear indications are provided on how to approach and treat specifically MM patients undergoing treatment with proteasome inhibitors. The aim of our work is to summarize a practical approach to the stratification of cardiovascular risk of hypertensive in patients who are candidates for or actively treated with carfilzomib for refractory multiple myeloma (MMR). MM patients eligible for carfilzomib treatment should preliminary undergo a careful cardiovascular risk stratification. Perspective studies will help to better identify the specific risk factors that should be considered and treated in these patients.
Collapse
Affiliation(s)
- Alberto Milan
- Internal Medicine and Hypertension Division, Department of Medical Sciences, AOU Citta della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Giulia Bruno
- Internal Medicine and Hypertension Division, Department of Medical Sciences, AOU Citta della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Ilaria Maffei
- Internal Medicine and Hypertension Division, Department of Medical Sciences, AOU Citta della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Andrea Iannaccone
- Unit of Geriatrics and Metabolic Bone Diseases, AOU Citta della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Agnese Ravera
- Unit of Geriatrics and Metabolic Bone Diseases, AOU Citta della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Domenica Schiavone
- Internal Medicine and Hypertension Division, Department of Medical Sciences, AOU Citta della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Franco Veglio
- Internal Medicine and Hypertension Division, Department of Medical Sciences, AOU Citta della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Endothelial nitric oxide synthase dimerization is regulated by heat shock protein 90 rather than by phosphorylation. PLoS One 2014; 9:e105479. [PMID: 25153129 PMCID: PMC4143281 DOI: 10.1371/journal.pone.0105479] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/23/2014] [Indexed: 11/29/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS) is a multifunctional enzyme with roles in diverse cellular processes including angiogenesis, tissue remodeling, and the maintenance of vascular tone. Monomeric and dimeric forms of eNOS exist in various tissues. The dimeric form of eNOS is considered the active form and the monomeric form is considered inactive. The activity of eNOS is also regulated by many other mechanisms, including amino acid phosphorylation and interactions with other proteins. However, the precise mechanisms regulating eNOS dimerization, phosphorylation, and activity remain incompletely characterized. We utilized purified eNOS and bovine aorta endothelial cells (BAECs) to investigate the mechanisms regulating eNOS degradation. Both eNOS monomer and dimer existed in purified bovine eNOS. Incubation of purified bovine eNOS with protein phosphatase 2A (PP2A) resulted in dephosphorylation at Serine 1179 (Ser1179) in both dimer and monomer and decrease in eNOS activity. However, the eNOS dimer∶monomer ratio was unchanged. Similarly, protein phosphatase 1 (PP1) induced dephosphorylation of eNOS at Threonine 497 (Thr497), without altering the eNOS dimer∶monomer ratio. Different from purified eNOS, in cultured BAECs eNOS existed predominantly as dimers. However, eNOS monomers accumulated following treatment with the proteasome inhibitor lactacystin. Additionally, treatment of BAECs with vascular endothelial growth factor (VEGF) resulted in phosphorylation of Ser1179 in eNOS dimers without altering the phosphorylation status of Thr497 in either form. Inhibition of heat shock protein 90 (Hsp90) or Hsp90 silencing destabilized eNOS dimers and was accompanied by dephosphorylation both of Ser1179 and Thr497. In conclusion, our study demonstrates that eNOS monomers, but not eNOS dimers, are degraded by ubiquitination. Additionally, the dimeric eNOS structure is the predominant condition for eNOS amino acid modification and activity regulation. Finally, destabilization of eNOS dimers not only results in eNOS degradation, but also causes changes in eNOS amino acid modifications that further affect eNOS activity.
Collapse
|
3
|
Abstract
Multiple myeloma is a malignant plasma cell disorder that accounts for approximately 10% of all hematological cancers. It is characterized by accumulation of clonal plasma cells, predominantly in the bone marrow. The prevalence of type 2 diabetes is increasing; therefore, it is expected that there will be an increase in the diagnosis of multiple myeloma with concomitant diabetes mellitus. The treatment of multiple myeloma and diabetes mellitus is multifaceted. The coexistence of the two conditions in a patient forms a major challenge for physicians.
Collapse
Affiliation(s)
- Mohamed Ahmed Ali
- Department of Endocrinology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Yasar A Ahmed
- Princess Noorah Oncology Centre, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Abubaker Ibrahim
- Haematology, Princes Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Issa ZA, Zantout MS, Azar ST. Multiple myeloma and diabetes. ISRN ENDOCRINOLOGY 2011; 2011:815013. [PMID: 22363889 PMCID: PMC3262650 DOI: 10.5402/2011/815013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/23/2011] [Indexed: 12/24/2022]
Abstract
Multiple myeloma is a malignant plasma cell disorder that accounts for approximately 10% of all hematologic cancers. It is characterized by accumulation of clonal plasma cells, predominantly in the bone marrow. The prevalence of type 2 diabetes is increasing; therefore, it is expected that there will be an increase in the diagnosis of multiple myeloma with concomitant diabetes mellitus. The treatment of multiple myeloma and diabetes mellitus is multifaceted. The coexistence of the two conditions in a patient forms a major challenge for physicians.
Collapse
Affiliation(s)
- Zeinab A. Issa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, American University of Beirut-Medical Center, 3 Dag Hammarskjold Plaza, 8th floor, New York, NY 10017, USA
| | - Mira S. Zantout
- Division of Endocrinology and Metabolism, Department of Internal Medicine, American University of Beirut-Medical Center, 3 Dag Hammarskjold Plaza, 8th floor, New York, NY 10017, USA
| | - Sami T. Azar
- Division of Endocrinology and Metabolism, Department of Internal Medicine, American University of Beirut-Medical Center, 3 Dag Hammarskjold Plaza, 8th floor, New York, NY 10017, USA
| |
Collapse
|
5
|
Takamatsu H, Yamashita T, Kotani T, Sawazaki A, Okumura H, Nakao S. Ischemic heart disease associated with bortezomib treatment combined with dexamethasone in a patient with multiple myeloma. Int J Hematol 2010; 91:903-6. [PMID: 20458563 DOI: 10.1007/s12185-010-0586-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/11/2010] [Accepted: 04/22/2010] [Indexed: 11/30/2022]
Abstract
A 79-year-old female patient with multiple myeloma who had no prior cardiac disease history developed an acute myocardial infarction on day 5 after receiving bortezomib and dexamethasone (BD). After treatment of coronary stenoses by stents, she received another course of BD therapy and developed angina pectoris on day 5 after the therapy. Bortezomib's antitumor effect is due to the inhibition of proteasome activity. This inhibition may increase endothelial progenitor cell apoptosis and decrease endothelial nitric oxide synthase/nitric oxide (eNOS/NO), thus leading to coronary spasm. It is, therefore, important to carefully monitor patients being treated with bortezomib for the potential occurrence of ischemic heart disease.
Collapse
Affiliation(s)
- Hiroyuki Takamatsu
- Department of Internal Medicine, NTT WEST Kanazawa Hospital, 6-26 Shimoshinmachi, Kanazawa, Ishikawa, 920-0910, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Herrmann J, Ciechanover A, Lerman LO, Lerman A. The ubiquitin‐proteasome system—micro target for macro intervention? ACTA ACUST UNITED AC 2009; 7:5-13. [PMID: 16019609 DOI: 10.1080/14628840510011234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ubiquitin-proteasome system is the two sequential labeling and degradation system that accounts for the degradation of 80-90% of all intracellular proteins. Based on the diversity of its substrates, it is integrated in many different biological processes, especially inflammation and cell proliferation. Given the significance of these two processes for primary atherosclerosis and restenosis, the ubiquitin-proteasome system may be an amendable target in cardiovascular therapy. This review provides background information on the ubiquitin-proteasome system, currently available data on its involvement in cardiovascular diseases, and a future perspective on the targeted use proteasome inhibitors, including drug-eluting stents.
Collapse
Affiliation(s)
- Joerg Herrmann
- Division of Cardiovascular Diseases Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
8
|
Averna M, Stifanese R, De Tullio R, Beccaria F, Salamino F, Pontremoli S, Melloni E. Calpain-mediated activation of NO synthase in human neuroblastoma SK-N-BE cells. J Neurochem 2009; 110:412-21. [DOI: 10.1111/j.1471-4159.2009.06149.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Averna M, Stifanese R, De Tullio R, Salamino F, Pontremoli S, Melloni E. In vivo degradation of nitric oxide synthase (NOS) and heat shock protein 90 (HSP90) by calpain is modulated by the formation of a NOS-HSP90 heterocomplex. FEBS J 2008; 275:2501-11. [PMID: 18400029 DOI: 10.1111/j.1742-4658.2008.06394.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have shown previously that isolated heat shock protein 90 (HSP90) and nitric oxide synthase (NOS), once associated in a heterocomplex, become completely resistant to calpain digestion. In this study, it is shown that, in vivo, under conditions of calpain activation, the protection of NOS degradation occurs. In addition, the extent of NOS degradation is a function of the level of HSP90 expression. Thus, in rat brain, which contains a large excess of HSP90, almost all neuronal NOS is associated with the chaperone protein. In this condition, neuronal NOS retains its full catalytic activity, although limited proteolytic conversion to still active low-molecular-mass (130 kDa) products takes place. In contrast, in aorta, which contains much smaller amounts of HSP90, endothelial NOS is not completely associated with the chaperone, and undergoes extensive degradation with a loss of protein and catalytic activity. On the basis of these findings, we propose a novel role of the HSP90-NOS heterocomplex in protecting in vivo NOS from proteolytic degradation by calpain. The efficiency of this effect is directly related to the level of intracellular HSP90 expression, generating a high HSP90 to NOS ratio, which favours both the formation and stabilization of the HSP90-NOS heterocomplex. This condition seems to occur in rat brain, but not in aorta, thus explaining the higher vulnerability to proteolytic degradation of endothelial NOS relative to neuronal NOS.
Collapse
Affiliation(s)
- Monica Averna
- Department of Experimental Medicine (DIMES)-Biochemistry Section, and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Marfella R, D' Amico M, Di Filippo C, Siniscalchi M, Sasso FC, Ferraraccio F, Rossi F, Paolisso G. The possible role of the ubiquitin proteasome system in the development of atherosclerosis in diabetes. Cardiovasc Diabetol 2007; 6:35. [PMID: 17971205 PMCID: PMC2169213 DOI: 10.1186/1475-2840-6-35] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 10/30/2007] [Indexed: 12/17/2022] Open
Abstract
We have reviewed the impact of the ubiquitin proteasome system (UPS) on atherosclerosis progression of diabetic patients. A puzzle of many pieces of evidence suggests that UPS, in addition to its role in the removal of damaged proteins, is involved in a number of biological processes including inflammation, proliferation and apoptosis, all of which constitute important characteristics of atherosclerosis. From what can be gathered from the very few studies on the UPS in diabetic cardiovascular diseases published so far, the system seems to be functionally active to a different extent in the initiation, progression, and complication stage of atherosclerosis in the diabetic people. Further evidence for this theory, however, has to be given, for instance by specifically targeted antagonism of the UPS. Nonetheless, this hypothesis may help us understand why diverse therapeutic interventions, which have in common the ability to reduce ubiquitin-proteasome activity, can impede or delay the onset of diabetes and cardiovascular diseases (CVD). People with type 2 diabetes are disproportionately affected by CVD, compared with those without diabetes [1]. The prevalence, incidence, and mortality from all forms of CVD (myocardial infarction, cerebro-vascular disease and congestive heart failure) are strikingly increased in persons with diabetes compared with those withoutdiabetes [2]. Furthermore, diabetic patients have not benefited by the advances in the management of obesity, dyslipidemia, and hypertension that have resulted in a decrease in mortality for coronary heart disease (CHD) patients without diabetes [3]. Nevertheless, these risk factors do not fully explain the excess risk for CHD associated with diabetes [4,5]. Thus, the determinants of progression of atherosclerosis in persons with diabetes must be elucidated. Beyond the major risk factors, several studies have demonstrated that such factors, strictly related to diabetes, as insulin-resistance, post-prandial hyperglycemia and chronic hyperglycemia play a role in the atherosclerotic process and may require intervention [6,7]. Moreover, it is important to recognize that these risk factors frequently "cluster" inindividual patients and possibly interact with each other, favouring the atherosclerosis progression toward plaque instability. Thus, a fundamental question is, "which is the common soil hypothesis that may unifying the burden of all these factors on atherosclerosis of diabetic patients? Because evidences suggest that insulin-resistance, diabetes and CHD share in common a deregulation of ubiquitin-proteasome system (UPS), the major pathway for nonlysosomal intracellular protein degradation in eucaryotic cells [8,9], in this review ubiquitin-proteasome deregulation is proposed as the common persistent pathogenic factor mediating the initial stage of the atherosclerosis as well as the progression to complicated plaque in diabetic patients.
Collapse
Affiliation(s)
- Raffaele Marfella
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Averna M, Stifanese R, De Tullio R, Salamino F, Bertuccio M, Pontremoli S, Melloni E. Proteolytic degradation of nitric oxide synthase isoforms by calpain is modulated by the expression levels of HSP90. FEBS J 2007; 274:6116-27. [PMID: 17970747 DOI: 10.1111/j.1742-4658.2007.06133.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ loading of Jurkat and bovine aorta endothelium cells induces the degradation of the neuronal and endothelial nitric oxide synthases that are selectively expressed in these cell lines. For neuronal nitric oxide synthase, this process involves a conservative limited proteolysis without appreciable loss of catalytic activity. By contrast, endothelial nitic oxide synthase digestion proceeds through a parallel loss of protein and catalytic activity. The chaperone heat shock protein 90 (HSP90) is present in a large amount in Jurkat cells and at significantly lower levels in bovine aorta endothelium cells. The differing ratios of HSP90/nitric oxide synthase (NOS) occurring in the two cell types are responsible for the conservative or nonconservative digestion of NOS isozymes. Consistently, we demonstrate that, in the absence of Ca2+, HSP90 forms binary complexes with NOS isozymes or with calpain. When Ca2+ is present, a ternary complex containing the three proteins is produced. In this associated state, HSP90 and NOS forms are almost completely resistant to calpain digestion, probably due to a structural hindrance and a reduction in the catalytic efficiency of the protease. Thus, the recruitment of calpain in the HSP90-NOS complexes reduces the extent of the proteolysis of these two proteins. We have also observed that calpastatin competes with HSP90 for the binding of calpain in reconstructed systems. Digestion of the proteins present in the complexes can occur only when free active calpain is present in the system. This process can be visualized as a novel mechanism involving the association of NOS with HSP90 and the concomitant recruitment of active calpain in ternary complexes in which the proteolysis of both NOS isozymes and HSP90 is significantly reduced.
Collapse
Affiliation(s)
- Monica Averna
- Department of Experimental Medicine (DIMES)-Biochemistry Section and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Gambillara V, Chambaz C, Montorzi G, Roy S, Stergiopulos N, Silacci P. Plaque-prone hemodynamics impair endothelial function in pig carotid arteries. Am J Physiol Heart Circ Physiol 2006; 290:H2320-8. [PMID: 16415081 DOI: 10.1152/ajpheart.00486.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic forces play an active role in vascular pathologies, particularly in relation to the localization of atherosclerotic lesions. It has been established that low shear stress combined with cyclic reversal of flow direction (oscillatory shear stress) affects the endothelial cells and may lead to an initiation of plaque development. The aim of the study was to analyze the effect of hemodynamic conditions in arterial segments perfused in vitro in the absence of other stimuli. Left common porcine carotid segments were mounted into an ex vivo arterial support system and perfused for 3 days under unidirectional high and low shear stress (6 ± 3 and 0.3 ± 0.1 dyn/cm2) and oscillatory shear stress (0.3 ± 3 dyn/cm2). Bradykinin-induced vasorelaxation was drastically decreased in arteries exposed to oscillatory shear stress compared with unidirectional shear stress. Impaired nitric oxide-mediated vasodilation was correlated to changes in both endothelial nitric oxide synthase (eNOS) gene expression and activation in response to bradykinin treatment. This study determined the flow-mediated effects on native tissue perfused with physiologically relevant flows and supports the hypothesis that oscillatory shear stress is a determinant factor in early stages of atherosclerosis. Indeed, oscillatory shear stress induces an endothelial dysfunction, whereas unidirectional shear stress preserves the function of endothelial cells. Endothelial dysfunction is directly mediated by a downregulation of eNOS gene expression and activation; consequently, a decrease of nitric oxide production and/or bioavailability occurs.
Collapse
Affiliation(s)
- Veronica Gambillara
- Laboratory of Hemodynamics and Cardiovascular Technology, Federal Institute of Technology, 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
13
|
Wei Q, Xia Y. Proteasome inhibition down-regulates endothelial nitric-oxide synthase phosphorylation and function. J Biol Chem 2006; 281:21652-21659. [PMID: 16737962 DOI: 10.1074/jbc.m602105200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) function is fundamentally modulated by protein phosphorylation. In particular, phosphorylation of serine 1179 (bovine)/1177 (human) by Akt has been shown to be the central mechanism of eNOS regulation. Here we revealed a novel role of proteasome in controlling eNOS serine 1179 phosphorylation and function. Rather than affecting eNOS turnover, proteasomal inhibition specifically dephosphorylated eNOS serine 1179, leading to decreased enzymatic activity. Blocking protein phosphatase 2A (PP2A) by okadaic acid or PP2A knockdown restored eNOS serine 1179 phosphorylation and activity in proteasome-inhibited cells. Although total PP2A expression and activity in cells were not affected by proteasome inhibitors, proteasomal inhibition induced PP2A ubiquitination and ubiquitinated PP2A translocated from cytosol to membrane. Further biochemical analyses demonstrated that eNOS associated with PP2A on cell membranes. Proteasomal inhibition markedly enhanced PP2A association to eNOS, and this increase of PP2A dephosphorylated eNOS and its upstream kinase Akt. Taken together, these studies identified a novel pathway in which proteasome modulates eNOS phosphorylation by inducing intracellular PP2A translocation.
Collapse
Affiliation(s)
- Qin Wei
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular and Cellular Biochemistry, Ohio State University Medical Center, Columbus, Ohio 43210
| | - Yong Xia
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular and Cellular Biochemistry, Ohio State University Medical Center, Columbus, Ohio 43210.
| |
Collapse
|
14
|
Inhibition of microvascular endothelial cell apoptosis by angiopoietin-1 and the involvement of cytochrome C. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200605010-00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Lee CS, Han ES, Park ES, Bang H. Inhibition of MG132-induced mitochondrial dysfunction and cell death in PC12 cells by 3-morpholinosydnonimine. Brain Res 2005; 1036:18-26. [PMID: 15725397 DOI: 10.1016/j.brainres.2004.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 12/02/2004] [Accepted: 12/04/2004] [Indexed: 11/29/2022]
Abstract
The effect of 3-morpholinosydnonimine (SIN-1) against the cytotoxicity of MG132, a proteasome inhibitor, in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with MG132 resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS), and depletion of GSH. Addition of SIN-1, a producer of nitric oxide (NO) and superoxide, differentially reduced the MG132-induced cell death and GSH depletion concentration dependently with a maximal inhibitory effect at 150 microM. Carboxy-PTIO, superoxide dismutase, Mn-TBAP, and ascorbate prevented the inhibitory effect of SIN-1 on the cytotoxicity of MG132. SIN-1 inhibited the MG132-induced change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents in PC12 cells. S-nitroso-N-acetyl-DL-penicillamine reduced the MG132-induced cell death in PC12 cells, whereas peroxynitrite and H2O2 did not affect the cytotoxicity of MG132. The results suggest that NO and superoxide liberated from SIN-1 exert an inhibitory effect against the cytotoxicity of MG132. SIN-1 may inhibit the MG132-induced viability loss in PC12 cells by suppressing change in the mitochondrial membrane permeability that is associated with oxidative damage.
Collapse
Affiliation(s)
- Chung Soo Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea.
| | | | | | | |
Collapse
|