1
|
Zhang X, Zhang X, Luo H, Shu R, Guo L, Zhou J, Tan B, Guo X, Wang Y, Tian Y. Platelet-To-Lymphocyte and Neutrophil-To-Lymphocyte Ratios Predict Intestinal Injury in Male Heroin Addicts. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2195330. [PMID: 35880090 PMCID: PMC9308521 DOI: 10.1155/2022/2195330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022]
Abstract
Objective To explore the potential link between gut damage and proinflammatory cytokines in heroin-dependent patients. Methods We retrospectively analyzed and compared partial blood counts and biomarkers of intestinal injury and their potential correlations in 38 male heroin abuse patients and 29 healthy male participants. In addition, we compared and assessed proinflammatory cytokines and immune cells in 10 heroin abuse patients and 10 healthy participants. Results Neutrophil counts, platelets/lymphocytes (PLR), neutrophils/lymphocytes (NLR), gut injury biomarkers, and proinflammatory cytokines, CD19+B in patients compared with healthy subjects' cells increased significantly. The number of lymphocytes, CD3 CD4 T cells, and CD3 CD8 T cells decreased in patients compared to healthy individuals. When distinguishing between heroin addicts and healthy people, ROC/AUC analysis showed that a cutoff of 142.42 for PLR and 2.18 for NLR yielded a sensitivity of 65% and 85% and a specificity of 96.5% and 89.7%, respectively (p = 0.001, p < 0.001). For predicting intestinal injury, ROC/AUC analysis showed that a cutoff of 135.7 for PLR and 0.15 for NLR yielded a sensitivity of 52% and 60% and a specificity of 82% and 86.4%, respectively (p = 0.003, p = 0.009). Male heroin addicts are subject to intestinal injury and present with increased proinflammatory cytokine levels. Conclusion NLR and PLR are possible indirect biomarkers for heroin dependence based on intestinal injury.
Collapse
Affiliation(s)
- Xinfeng Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Xiaoli Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Li Guo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Jinghong Zhou
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Bowen Tan
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Xiao Guo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Yuhan Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, China Kunming, Yunnan 650032
| |
Collapse
|
2
|
A method optimization study for atomic absorption spectrophotometric determination of total zinc in insulin using direct aspiration technique. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
3
|
Vela G, Stark P, Socha M, Sauer AK, Hagmeyer S, Grabrucker AM. Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast 2015; 2015:972791. [PMID: 25878905 PMCID: PMC4386645 DOI: 10.1155/2015/972791] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life.
Collapse
Affiliation(s)
- Guillermo Vela
- Zinpro Corporation, Eden Prairie, MN 55344, USA
- Autismo ABP, 64639 Monterrey, NL, Mexico
| | - Peter Stark
- Zinpro Corporation, Eden Prairie, MN 55344, USA
| | | | - Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Andreas M. Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
4
|
Zhang C, Lu X, Tan Y, Li B, Miao X, Jin L, Shi X, Zhang X, Miao L, Li X, Cai L. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model. PLoS One 2012; 7:e49257. [PMID: 23251339 PMCID: PMC3520990 DOI: 10.1371/journal.pone.0049257] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022] Open
Abstract
Objectives Zinc (Zn) deficiency often occurs in the patients with diabetes. Effects of Zn deficiency on diabetes-induced hepatic injury were investigated. Methods Type 1 diabetes was induced in FVB mice with multiple low-dose streptozotocin. Hyperglycemic and age-matched control mice were treated with and without Zn chelator, N,N,N′,N′-tetrakis (2-pyridylemethyl) ethylenediamine (TPEN), at 5 mg/kg body-weight daily for 4 months. Hepatic injury was examined by serum alanine aminotransferase (ALT) level and liver histopathological and biochemical changes. Results Hepatic Zn deficiency (lower than control level, p<0.05) was seen in the mice with either diabetes or TPEN treatment and more evident in the mice with both diabetes and TPEN. Zn deficiency exacerbated hepatic injuries, shown by further increased serum ALT, hepatic lipid accumulation, inflammation, oxidative damage, and endoplasmic reticulum stress-related cell death in Diabetes/TPEN group compared to Diabetes alone. Diabetes/TPEN group also showed a significant decrease in nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and transcription action along with significant increases in Akt negative regulators, decrease in Akt and GSK-3β phosphorylation, and increase in nuclear accumulation of Fyn (a Nrf2 negative regulator). In vitro study with HepG2 cells showed that apoptotic effect of TPEN at 0.5–1.0 µM could be completely prevented by simultaneous Zn supplementation at the dose range of 30–50 µM. Conclusions Zn is required for maintaining Akt activation by inhibiting the expression of Akt negative regulators; Akt activation can inhibit Fyn nuclear translocation to export nuclear Nrf2 to cytoplasm for degradation. Zn deficiency significantly enhanced diabetes-induced hepatic injury likely through down-regulation of Nrf2 function.
Collapse
Affiliation(s)
- Chi Zhang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of the Wenzhou Medical College, Wenzhou, Zhejiang, People's Republic of China
- The Chinese-American Research Institute for Diabetic Complications, The Wenzhou Medical College, Wenzhou, Zhejiang, People's Republic of China
- Kosair Children Hospital Research Institute, at the Department of Pediatrics of University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Xuemian Lu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of the Wenzhou Medical College, Wenzhou, Zhejiang, People's Republic of China
| | - Yi Tan
- The Chinese-American Research Institute for Diabetic Complications, The Wenzhou Medical College, Wenzhou, Zhejiang, People's Republic of China
- Kosair Children Hospital Research Institute, at the Department of Pediatrics of University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bing Li
- Kosair Children Hospital Research Institute, at the Department of Pediatrics of University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiao Miao
- Kosair Children Hospital Research Institute, at the Department of Pediatrics of University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Litai Jin
- The Chinese-American Research Institute for Diabetic Complications, The Wenzhou Medical College, Wenzhou, Zhejiang, People's Republic of China
| | - Xue Shi
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
| | - Lining Miao
- The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaokun Li
- The Chinese-American Research Institute for Diabetic Complications, The Wenzhou Medical College, Wenzhou, Zhejiang, People's Republic of China
- * E-mail: (XKL); (LC)
| | - Lu Cai
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of the Wenzhou Medical College, Wenzhou, Zhejiang, People's Republic of China
- The Chinese-American Research Institute for Diabetic Complications, The Wenzhou Medical College, Wenzhou, Zhejiang, People's Republic of China
- Kosair Children Hospital Research Institute, at the Department of Pediatrics of University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Departments of Pharmacology and Toxicology, and Radiation Oncology, the University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (XKL); (LC)
| |
Collapse
|
5
|
Horikawa Y, Uehara D, Matsuda K, F Sakata S, Tamaki N. Modulation of maltose preference by selection from dextrin, maltose and glucose diets in zinc-deficient rats. J Nutr Sci Vitaminol (Tokyo) 2008; 54:203-9. [PMID: 18635906 DOI: 10.3177/jnsv.54.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study examined whether the chain length of glucose in the diet could affect the selection of foods by Zn-adequate and Zn-deficient rats. Dextrin, maltose and glucose were used as sources of carbohydrate in the diet and the selection patterns of the rats were analyzed for 28 d by a 3-choice selection. Diets provided as a set of three either Zn-adequate or Zn-deficient diets were rotated daily. The Zn-adequate control rats selected widely from the three diets throughout the 28 d. In contrast, rats fed a Zn-deficient diet selected exclusively and continuously the dextrin diet or dextrin and glucose diets from the three diets over the experimental periods. The average daily total food intakes of rats fed a Zn-deficient diet were very significantly decreased. The selections of dextrin, maltose and glucose diets in the 3-choice methods of the control rats were 5.7+/-1.6(b), 5.8+/-2.0(b) and 2.7+/-0.9(a) g/d, respectively (p<0.05), and those of the Zn-deficient rats were 6.4+/-2.5(c), 0.8+/-1.3(a) and 2.6+/-1.4(b) g/d, respectively (p<0.05). The ratios of the selected maltose-diet in the Zn-adequate control and the Zn-deficient rats were 40.8+/-13.8 and 9.0+/-15.6%, respectively (p<0.01) and those of the dextrin-diet were 40.3+/-11.4 and 63.0+/-22.3%, respectively (p<0.05). The decreased preference for the maltose-diet in the Zn-deficient rats may reflect the increased selection of the dextrin-diet.
Collapse
Affiliation(s)
- Yoko Horikawa
- Faculty of Nutrition, Kobe-Gakuin University, Kobe, Japan
| | | | | | | | | |
Collapse
|
6
|
Sreedhar B, Nair KM. Modulation of aconitase, metallothionein, and oxidative stress in zinc-deficient rat intestine during zinc and iron repletion. Free Radic Biol Med 2005; 39:999-1008. [PMID: 16198227 DOI: 10.1016/j.freeradbiomed.2005.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/29/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
Potential interactions between zinc and iron during absorption and its functional consequences on intestinal oxidative damage and antioxidant status were studied using the zinc-deficient rat as a model. Zinc depletion produced mild-moderate iron deficiency in addition to zinc deficiency, which could be corrected by repletion with iron and zinc. The localization and intensity of both iron and zinc in the intestinal mucosa showed a pronounced decrease in the presence of the other metal, indicating negative interactions. Zinc-deficient intestine exposed to iron alone exhibited elevated peroxidative damage and compromised functional integrity, despite increased expression of ferritin. Inclusion of zinc significantly reduced the damage and improved the functional integrity, accompanied by decreased expression of ferritin. Decreased expression of ferritin in the presence of zinc was consistent with reduced aconitase activity, suggesting its modulation by zinc. Further, inclusion of iron along with zinc was associated with induction of ferritin and metallothionein in tune with the amount of iron and zinc localized in the intestinal mucosa, respectively. These results suggest that zinc and iron interact negatively with cytosolic aconitase, but prove beneficial in reducing the oxidative stress, apart from improving functional integrity and iron/zinc status.
Collapse
Affiliation(s)
- Bodiga Sreedhar
- Department of Biophysics, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania (P.O.), Hyderabad 500 007, India
| | | |
Collapse
|
7
|
Pfaffl MW, Gerstmayer B, Bosio A, Windisch W. Effect of zinc deficiency on the mRNA expression pattern in liver and jejunum of adult rats: monitoring gene expression using cDNA microarrays combined with real-time RT-PCR. J Nutr Biochem 2004; 14:691-702. [PMID: 14690761 DOI: 10.1016/j.jnutbio.2003.08.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the study presented here, the effect of zinc deficiency on mRNA expression levels in liver and jejunum of adult rats was analyzed. Feed intake was restricted to 8 g/day. The semi-synthetic diet was fortified with pure phytate and contained either 2 microg Zn/g (Zn deficiency, n = 6) or 58 microg Zn/g (control, n = 7). After 29 days of Zn depletion feeding, entire jejunum and liver were retrieved and total RNA was extracted. Tissue specific expression pattern were screened and quantified by microarray analysis and verified individually via real-time RT-PCR. A relative quantification was performed with the newly developed Relative Expression Software Tool Copyright on numerous candidate genes which showed a differential expression. This study provides the first comparative view of gene expression regulation and fully quantitative expression analysis of 35 candidate genes in a non-growing Zn deficient adult rat model. The expression results indicate the existence of individual expression pattern in liver and jejunum and their tissue specific regulation under Zn deficiency. In addition, in jejunum a number of B-cell related genes could be demonstrated to be suppressed at Zn deficiency. In liver, metallothionein subtype 1 and 2 (MT-1 and MT-2) genes could be shown to be dramatically repressed and therefore represent putative markers for Zn deficiency. Expression results imply that some genes are expressed constitutively, whereas others are highly regulated in tissues responsible for Zn homeostasis.
Collapse
Affiliation(s)
- Michael W Pfaffl
- Institute of Physiology, Department of Animal Sciences, Centre of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany.
| | | | | | | |
Collapse
|
8
|
Carter JE, Truong-Tran AQ, Grosser D, Ho L, Ruffin RE, Zalewski PD. Involvement of redox events in caspase activation in zinc-depleted airway epithelial cells. Biochem Biophys Res Commun 2002; 297:1062-70. [PMID: 12359264 DOI: 10.1016/s0006-291x(02)02292-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Airway epithelial cells (AEC) contain both pro- and anti-apoptotic factors but little is known about mechanisms regulating apoptosis of these cells. In this study we have examined the localization of pro-caspase-3 and Zn(2+), a cellular regulator of pro-caspase-3, in primary sheep and human AEC. Zn(2+) was concentrated in both cytoplasmic vesicles and ciliary basal bodies, in the vicinity of both pro-caspase-3 and the antioxidant Cu/Zn superoxide dismutase (Cu/Zn SOD). Depletion of intracellular Zn(2+) in sheep AEC, using the membrane permeant Zn(2+) chelator TPEN, increased lipid peroxidation in the apical cell membranes (as assessed by immunofluorescence with anti-hydroxynonenal) as well as increasing activated pro-caspase-3 and apoptosis. There were smaller increases in caspase-2 and -6 but not other caspases. Activation of caspase-3 in TPEN-treated AEC was inhibited strongly by N-acetylcysteine and partially by vitamin C and vitamin E. These findings suggest that cytoplasmic pro-caspase-3 is positioned near the lumenal surface of AEC where it is under the influence of Zn(2+) and other anti-oxidants.
Collapse
Affiliation(s)
- Joanne E Carter
- Department of Medicine, Adelaide University, The Queen Elizabeth Hospital, Woodville 5011, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Mengheri E, Nobili F, Vignolini F, Pesenti M, Brandi G, Biavati B. Bifidobacterium animalis protects intestine from damage induced by zinc deficiency in rats. J Nutr 1999; 129:2251-7. [PMID: 10573559 DOI: 10.1093/jn/129.12.2251] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the potential beneficial effects of Bifidobacterium animalis on intestinal damage using zinc-deficient (ZD) rats as a model for intestinal alterations. The ZD rats were fed diets containing 1 mg Zn/kg for 20 (ZD(20)) or 40 (ZD(40)) d to induce damage that differed in severity. Subgroups of these rats, the ZD(20) + B and ZD(40) + B groups, received a suspension of B. animalis (3.5 x 10(8) colony forming units) daily for the last 10 d. Another subgroup, the ZD(40) + B + 7 d group, was fed the ZD diet for 7 d after the B. animalis treatment period. Zinc deficiency induced ulcerations, edema, inflammatory cell infiltration and dilatation of blood vessels in duodenum, jejunum and ileum, with increasing severity between 20 and 40 d of zinc deficiency. The mucosa of the ZD(20) + B group was well preserved, and most of the morphologic alterations induced by zinc deficiency were normalized in the ZD(40) + B group. The high fecal concentrations of B. animalis in the ZD(40) + B and ZD(40) + B + 7 d groups indicate that these bifidobacteria survived passage through the gastrointestinal tract and proliferated. Electron microscopy confirmed the elevated numbers of bifidobacteria in cecum. Treatment with B. animalis resulted in greater epithelial cell proliferation and disaccharidase activities in the ZD(40) + B group compared with the ZD(40) group. These findings indicate that B. animalis can protect the intestine from alterations induced by zinc deficiency, suggesting that this bacterium may play a role in intestinal mucosal defense.
Collapse
Affiliation(s)
- E Mengheri
- Istituto Nazionale della Nutrizione, 00178 Rome, Italy Istituto di Microbiologia Agraria e Tecnica, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Virgili F, Canali R, Figus E, Vignolini F, Nobili F, Mengheri E. Intestinal damage induced by zinc deficiency is associated with enhanced CuZn superoxide dismutase activity in rats: effect of dexamethasone or thyroxine treatment. Free Radic Biol Med 1999; 26:1194-201. [PMID: 10381190 DOI: 10.1016/s0891-5849(98)00307-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zinc has a wide spectrum of biological activities and its deficiency has been related to various tissue dysfunctions and alterations of normal cell metabolism. Zinc also plays an important role in the antioxidant cellular defenses being a structural element of the non-mitochondrial form of the enzyme superoxide dismutase (CuZnSOD). We have already reported that Zn deficiency induces severe alterations in the rat intestine, that are reverted by treatment with dexamethasone (Dex) or thyroxine (T4). Here we report a paradoxical increase of CuZnSOD activity in rat intestine after 20 and 40 days of zinc deficiency. The increase of CuZnSOD activity is not due to an upregulation of gene expression because both Northern and Western blot analysis indicate that CuZnSOD mRNA and protein levels are not affected by zinc deficiency. A significant increase of lipid peroxidation was also observed in duodenum and jejunum associated with zinc deficiency. Treatment with either Dex or T4 to zinc-deficient rats protects against intestinal oxidative damage and results in SOD activity similar to control rats. Because glutathione peroxidase and catalase activities decreased in zinc deficiency, we speculate that the increase in SOD activity may be associated with an accumulation of hydrogen peroxide that may activate inflammatory molecules, further worsening tissue damage.
Collapse
Affiliation(s)
- F Virgili
- Istituto Nazionale della Nutrizione, Rome, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Trace elements are involved in enzymatic activities, immunological reactions, physiological mechanisms and carcinogenesis. Deficiency in some trace elements, such as iron and iodine, is still an important health problem, especially in developing countries. Some groups of individuals are more likely to develop trace element deficiency. The role of trace elements deficiency is suspected in various clinical situations and is now confirmed by well designed supplementation studies. Although toxicity of trace elements with clinical manifestations is rare, it has been observed that manganese toxicity may occur in patients receiving parenteral nutrition. Recent data about trace elements deficiency and toxicity are indicated in this review.
Collapse
Affiliation(s)
- A Van Gossum
- Department of Hepato-Gastroenterology and Pancreatology, Erasme Hospital, Brussels, Belgium.
| | | |
Collapse
|