1
|
Abstract
Endotoxin is considered to be a systemic (immunological) stressor eliciting a prolonged activation of the hypothalamo-pituitary-adrenal (HPA) axis. The HPA-axis response after an endotoxin challenge is mainly due to released cytokines (IL-1, IL-6 and TNF-α) from stimulated peripheral immune cells, which in turn stimulate different levels of the HPA axis. Controversy exists regarding the main locus of action of endotoxin on glucocorticoid secretion, since the effect of endotoxin on this neuro-endocrine axis has been observed in intact animals and after ablation of the hypothalamus; however, a lack of LPS effect has been described at both pituitary and adrenocortical levels. The resulting increase in adrenal glucocorticoids has well-documented inhibitory effects on the inflammatory process and on inflammatory cytokine release. Therefore, immune activation of the adrenal gland by endotoxin is thought to occur by cytokine stimulation of corticosteroid-releasing hormone (CRH) production in the median eminence of the hypothalamus, which, in turn stimulates the secretion of ACTH from the pituitary. Acute administration of endotoxin stimulates ACTH and cortisol secretion and the release of CRH and vasopressin (AVP) in the hypophysial portal blood. During repeated endotoxemia, tolerance of both immune and HPA function develops, with a crucial role for glucocorticoids in the modulation of the HPA axis. A single exposure to a high dose of LPS can induce a long-lasting state of tolerance to a second exposure of LPS, affecting the response of plasma TNF-α and HPA hormones. Although there are gender differences in the HPA response to endotoxin and IL-1, these responses are enhanced by castration and attenuated by androgen and estrogen replacement. Estrogens attenuate the endotoxin-induced stimulation of IL-6, TNF-α and IL-1ra release and subsequent activation in postmenopausal women. There appears to be a temporal and functional relation between the HPA-axis response to endotoxin and nitric oxide formation in the neuro-endocrine hypothalamus, suggesting a stimulatory role for nitric oxide in modulating the HPA response to immune challenges.
Collapse
Affiliation(s)
- Albertus Beishuizen
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands,
| | - Lambertus G. Thijs
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Cortés-Puch I, Hicks CW, Sun J, Solomon SB, Eichacker PQ, Sweeney DA, Nieman LK, Whitley EM, Behrend EN, Natanson C, Danner RL. Hypothalamic-pituitary-adrenal axis in lethal canine Staphylococcus aureus pneumonia. Am J Physiol Endocrinol Metab 2014; 307:E994-E1008. [PMID: 25294215 PMCID: PMC4254987 DOI: 10.1152/ajpendo.00345.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical significance and even existence of critical illness-related corticosteroid insufficiency is controversial. Here, hypothalamic-pituitary-adrenal (HPA) function was characterized in severe canine Staphylococcus aureus pneumonia. Animals received antibiotics and titrated life-supportive measures. Treatment with dexamethasone, a glucocorticoid, but not desoxycorticosterone, a mineralocorticoid, improves outcome in this model. Total and free cortisol, adrenocorticotropic hormone (ACTH). and aldosterone levels, as well as responses to exogenous ACTH were measured serially. At 10 h after the onset of infection, the acute HPA axis stress response, as measured by cortisol levels, exceeded that seen with high-dose ACTH stimulation but was not predictive of outcome. In contrast to cortisol, aldosterone was largely autonomous from HPA axis control, elevated longer, and more closely associated with survival in early septic shock. Importantly, dexamethasone suppressed cortisol and ACTH levels and restored ACTH responsiveness in survivors. Differing strikingly, nonsurvivors, sepsis-induced hypercortisolemia, and high ACTH levels as well as ACTH hyporesponsiveness were not influenced by dexamethasone. During septic shock, only serial measurements and provocative testing over a well-defined timeline were able to demonstrate a strong relationship between HPA axis function and prognosis. HPA axis unresponsiveness and high aldosterone levels identify a septic shock subpopulation with poor outcomes that may have the greatest potential to benefit from new therapies.
Collapse
Affiliation(s)
- Irene Cortés-Puch
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland;
| | - Caitlin W Hicks
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; Department of General Surgery, The Johns Hopkins Hospital, Baltimore, Maryland; National Institutes of Health Research Scholars Program, Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Steven B Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Daniel A Sweeney
- Medical Intensivist Program, Washington Hospital, Fremont, California
| | - Lynnette K Nieman
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth M Whitley
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa; and
| | - Ellen N Behrend
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Uchoa ET, Aguilera G, Herman JP, Fiedler JL, Deak T, Cordeiro de Sousa MB. Novel aspects of glucocorticoid actions. J Neuroendocrinol 2014; 26:557-72. [PMID: 24724595 PMCID: PMC4161987 DOI: 10.1111/jne.12157] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 12/20/2022]
Abstract
Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to the rhythmic and episodic release of adrenal glucocorticoids (GCs) is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, GCs regulate behaviour, as well as metabolic, cardiovascular, immune and neuroendocrine activities. By contrast to chronic elevated levels, circadian and acute stress-induced increases in GCs are necessary for hippocampal neuronal survival and memory acquisition and consolidation, as a result of the inhibition of apoptosis, the facilitation of glutamatergic neurotransmission and the formation of excitatory synapses, and the induction of immediate early genes and dendritic spine formation. In addition to metabolic actions leading to increased energy availability, GCs have profound effects on feeding behaviour, mainly via the modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that, in addition to the recognised immune suppressive actions of GCs by counteracting adrenergic pro-inflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative-feedback by GCs involves multiple mechanisms leading to limited HPA axis activation and prevention of the deleterious effects of excessive GC production. Adequate GC secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin-releasing hormone (CRH) and vasopressin secretion, which are the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving nongenomic actions of GCs, mediate the immediate inhibition of hypothalamic CRH and ACTH secretion, whereas intermediate and delayed mechanisms mediated by genomic actions involve the modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily conserved, being present in the earliest vertebrates. An understanding of these basic mechanisms may lead to novel approaches for the development of diagnostic and therapeutic tools for disorders related to stress and alterations of GC secretion.
Collapse
Affiliation(s)
- Ernane Torres Uchoa
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Greti Aguilera
- Section on Endocrine Physiology, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - James P. Herman
- Department of Psychiatry and Behavioural Neuroscience, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH, USA
| | - Jenny L. Fiedler
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Terrence Deak
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | |
Collapse
|
4
|
Hypothalamo-pituitary and immune-dependent adrenal regulation during systemic inflammation. Proc Natl Acad Sci U S A 2013; 110:14801-6. [PMID: 23959899 DOI: 10.1073/pnas.1313945110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation-related dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is central to the course of systemic inflammatory response syndrome or sepsis. The underlying mechanisms, however, are not well understood. Initial activation of adrenocortical hormone production during early sepsis depends on the stimulation of hypothalamus and pituitary mediated by cytokines; in late sepsis, there is a shift from neuroendocrine to local immune-adrenal regulation of glucocorticoid production. Therefore, the modulation of the local immune-adrenal cross talk, and not of the neuroendocrine circuits involved in adrenocorticotropic hormone production, may be more promising in the prevention of the adrenal insufficiency associated with prolonged sepsis. In the present work, we investigated the function of the crucial Toll-like receptor (TLR) adaptor protein myeloid differentiation factor 88 (MyD88) in systemic and local activation of adrenal gland inflammation and glucocorticoid production mediated by lipopolysachharides (LPSs). To this end, we used mice with a conditional MyD88 allele. These mice either were interbred with Mx1 Cre mice, resulting in systemic MyD88 deletion, predominantly in the liver and hematopoietic system, or were crossed with Akr1b7 Cre transgenic mice, resulting thereby in deletion of MyD88, which was adrenocortical-specific. Although reduced adrenal inflammation and HPA-axis activation mediated by LPS were found in Mx1(Cre+)-MyD88(fl/fl) mice, adrenocortical-specific MyD88 deletion did not alter the adrenal inflammation or HPA-axis activity under systemic inflammatory response syndrome conditions. Thus, our data suggest an important role of immune cell rather than adrenocortical MyD88 for adrenal inflammation and HPA-axis activation mediated by LPS.
Collapse
|
5
|
Engström L, Rosén K, Angel A, Fyrberg A, Mackerlova L, Konsman JP, Engblom D, Blomqvist A. Systemic immune challenge activates an intrinsically regulated local inflammatory circuit in the adrenal gland. Endocrinology 2008; 149:1436-50. [PMID: 18174279 DOI: 10.1210/en.2007-1456] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is evidence from in vitro studies that inflammatory messengers influence the release of stress hormone via direct effects on the adrenal gland; however, the mechanisms underlying these effects in the intact organism are unknown. Here we demonstrate that systemic inflammation in rats elicited by iv injection of lipopolysaccharide results in dynamic changes in the adrenal immune cell population, implying a rapid depletion of dendritic cells in the inner cortical layer and the recruitment of immature cells to the outer layers. These changes are accompanied by an induced production of IL-1beta and IL-1 receptor type 1 as well as cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in these cells, implying local cytokine-mediated prostaglandin E(2) production in the adrenals, which also displayed prostaglandin E(2) receptors of subtypes 1 and 3 in the cortex and medulla. The IL-1beta expression was also induced by systemically administrated IL-1beta and was in both cases attenuated by IL-1 receptor antagonist, consistent with an autocrine signaling loop. IL-1beta similarly induced expression of cyclooxygenase-2, but the cyclooxygenase-2 expression was, in contrast, further enhanced by IL-1 receptor antagonist. These data demonstrate a mechanism by which systemic inflammatory agents activate an intrinsically regulated local signaling circuit that may influence the adrenals' response to immune stress and may help explain the dissociation between plasma levels of ACTH and corticosteroids during chronic immune perturbations.
Collapse
Affiliation(s)
- Linda Engström
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Deak T. Immune cells and cytokine circuits: toward a working model for understanding direct immune-to-adrenal communication pathways. Endocrinology 2008; 149:1433-5. [PMID: 18359749 PMCID: PMC2276715 DOI: 10.1210/en.2008-0170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Terrence Deak
- Department of Psychology, SUNY Binghamton, Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
7
|
Roche M, Diamond M, Kelly JP, Finn DP. In vivo modulation of LPS-induced alterations in brain and peripheral cytokines and HPA axis activity by cannabinoids. J Neuroimmunol 2006; 181:57-67. [PMID: 17011047 DOI: 10.1016/j.jneuroim.2006.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/02/2006] [Accepted: 08/02/2006] [Indexed: 12/26/2022]
Abstract
This study investigated cannabinoid receptor-mediated regulation of brain and peripheral cytokines in vivo. The cannabinoid receptor agonist, HU210 attenuated lipopolysaccharide (LPS)-induced increases in IL-1beta and TNFalpha in rat brain and IL-1beta, TNFalpha, IL-6 and IFNgamma in plasma. The CB(1) receptor antagonist, SR141716A, attenuated the immunosupressive effects of HU210 on IL-1beta, but not TNFalpha. SR141716A or the CB(2) receptor antagonist, SR144528, alone attenuated LPS-induced cytokine increases. LPS and/or cannabinoids also reduced circulating lymphocyte numbers and increased corticosterone levels. These data provide evidence for modulation of pro-inflammatory cytokines in vivo by cannabinoid receptors and inform the development of cannabinoids for neuroinflammatory disorders.
Collapse
Affiliation(s)
- Michelle Roche
- Department of Physiology, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | | | |
Collapse
|