1
|
Weng Y, Wu S, Fan Y, Han H, Wang H, Huang N. Chirality-mediated enhancement of nitric oxide release and regulation of endothelial cells behaviors by cystine immobilization on Ti–O films. RSC Adv 2017. [DOI: 10.1039/c7ra02815f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NO release inducing by regulated by surface chirality have significant effects on endothelial cells.
Collapse
Affiliation(s)
- Yajun Weng
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Sisi Wu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Yonghong Fan
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Honghong Han
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Hong Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- Southwest Jiaotong University
- China
- School of Materials Science and Engineering
| |
Collapse
|
2
|
Park HR, Im SE, Seo JJ, Kim BG, Yoon JA, Bark KM. Spectroscopic Properties of Morin in Various CH3OH-H2O and CH3CN-H2O Mixed Solvents. Photochem Photobiol 2015; 91:280-90. [DOI: 10.1111/php.12407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Hyoung-Ryun Park
- Department of Chemistry and Research Institute of Basic Science; Chonnam National University; Gwangju Korea
| | - Seo-Eun Im
- Department of Chemistry and Research Institute of Basic Science; Chonnam National University; Gwangju Korea
| | - Jung-Ja Seo
- Department of Chemistry and Research Institute of Basic Science; Chonnam National University; Gwangju Korea
| | - Bong-Gon Kim
- Department of Chemical Education; Gyeongsang National University; Chinju Korea
| | - Jin Ah Yoon
- Department of Chemical Education; Gyeongsang National University; Chinju Korea
| | - Ki-Min Bark
- Department of Chemical Education, and Research Institute of Life Science; Gyeongsang National University; Chinju Korea
| |
Collapse
|
3
|
Denev PN, Kratchanov CG, Ciz M, Lojek A, Kratchanova MG. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: in vitro and in vivo Evidences and Possible Mechanisms of Action: A Review. Compr Rev Food Sci Food Saf 2012. [DOI: 10.1111/j.1541-4337.2012.00198.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Naruszewicz M, Laniewska I, Millo B, Dłuzniewski M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 2007; 194:e179-84. [PMID: 17320090 DOI: 10.1016/j.atherosclerosis.2006.12.032] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/06/2006] [Accepted: 12/21/2006] [Indexed: 12/17/2022]
Abstract
UNLABELLED Recent studies have shown, that chronic flavonoids treatment improves vascular function and cardiovascular remodeling by decreasing superoxide anion production as well as by increasing NO realize from endothelial cells. A progressive decrease in systolic blood pressure and reduction of low-density lipoprotein oxidation (Ox-LDL) has also been reported. However, none of these studies were done in patient with coronary artery disease treated with statins. This was a double-blind, placebo-controlled, parallel trial. Forty-four patients (11 women and 33 men, mean age 66 years) who survived myocardial infraction and have received statin therapy for at least 6 months (80% dose of 40 mg/day simvastatin) were included in the study. The subjects were randomised to receive either 3 x 85 mg/day of chokeberry flavonoid extract (Aronia melanocarpa E) or placebo for a period of 6 weeks. The study extract was a commercially-available (OTC) product of the following declared composition: anthocyans (about 25%), polymeric procyanidines (about 50%) and phenolic acids (about 9%). Compared to placebo (ANOVA and Tukey's test), flavonoids significantly reduced serum 8-isoprostans (p<0.000) and Ox-LDL levels (p<0.000) (by 38 and 29%, respectively), as well as hsCRP (p<0.007) and MCP-1 (p<0.001) levels (by 23 and 29%, respectively). In addition, significant increase in adiponectin (p<0.03) levels and reduction in systolic and diastolic blood pressure by a mean average of 11 and 7.2 mmHg, respectively were found. CONCLUSION In view of the fact that chokeberry flavonoids reduce the severity of inflammation, regardless of statins, they can be used clinically for secondary prevention of ischaemic heart disease.
Collapse
Affiliation(s)
- Marek Naruszewicz
- Department of Pharmacognosy and Molecular Basis of Phythotherapy, Medical University of Warsaw, Ul. Banacha 1, Warszawa, Poland.
| | | | | | | |
Collapse
|
5
|
Woźnicka E, Kopacz M, Umbreit M, Kłos J. New complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) ions with morin. J Inorg Biochem 2007; 101:774-82. [PMID: 17368778 DOI: 10.1016/j.jinorgbio.2007.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 01/07/2007] [Accepted: 01/11/2007] [Indexed: 11/19/2022]
Abstract
New solid complex compounds of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) ions with morin were synthesized. The molecular formula of the complexes is Ln(C(15)H(9)O(7))(3).nH(2)O, where Ln is the cation of lanthanide and n=6 for La(III), Sm(III), Gd(III) or n=8 for Ce(III), Pr(III), Nd(III) and Eu(III). Thermogravimetric studies and the values of dehydration enthalpy indicate that water occurring in the compounds is not present in the inner coordination sphere of the complex. The structure of the complexes was determined on the basis of UV-visible, IR, MS, (1)H NMR and (13)C NMR analyses. It was found that in binding the lanthanide ions the following groups of morin take part: 3OH and 4CO in the case of complexes of La, Pr, Nd, Sm and Eu, or 5OH and 4CO in the case of complexes of Ce and Gd. The complexes are five- and six-membered chelate compounds.
Collapse
Affiliation(s)
- Elzbieta Woźnicka
- University of Technology, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, 35-959 Rzeszów, Poland.
| | | | | | | |
Collapse
|
6
|
Qu L, Yang T, Yuan Y, Zhong P, Li Y. Protein nitration increased by simulated weightlessness and decreased by melatonin and quercetin in PC12 cells. Nitric Oxide 2006; 15:58-63. [PMID: 16881142 DOI: 10.1016/j.niox.2005.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A variety of experiments suggest that space flight is associated with an increase in oxidative stress in organism. To explore the effects of oxidative stress on neuronal cells during microgravity, we used rat pheochromocytoma (PC12) cells as a neuronal cell model, cultured in a clinostat, which could simulate microgravity, to investigate the effects of reactive nitrogen species on protein nitration in PC12 cells during clinorotation. The effects of melatonin and quercetin on protein nitration in PC12 cells were also assayed to evaluate the possible protective role of melatonin or quercetin as an antioxidant. The results of immunological staining showed that after the 3 days' clinorotation the protein expressions of neuronal nitric oxide synthase and inducible nitric oxide synthesis were up-regulated. Our data also reflected that the concentrations of nitric oxide and nitrotyrosine were significantly increased after clinorotation, and they were reduced markedly in cells that were treated with 50 micromol/L melatonin or 0.5 micromol/L quercetin during simulated microgravity, when compared to those of control cells. These results suggest that clinorotation-induced weightlessness increases oxidative stress responses in PC12 cells, and melatonin or quercetin was shown to protect PC12 cells from oxidative damage during simulated weightlessness.
Collapse
Affiliation(s)
- Lina Qu
- Department of Space Cellular and Molecular Biology, Institute of Space Medico-Engineering, Beijing 100094, PR China.
| | | | | | | | | |
Collapse
|
7
|
Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 2004; 37:1683-93. [PMID: 15528027 DOI: 10.1016/j.freeradbiomed.2004.08.002] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 07/22/2004] [Accepted: 08/05/2004] [Indexed: 11/26/2022]
Abstract
Over the past few years there has been an exponential growth in the number of reports describing the effects of nutritional modulation on aging and age-related diseases. Specific attention has been directed toward the beneficial effects afforded by dietary antioxidants, in particular those from fruit and vegetables, in ameliorating age-related deficits in brain performance. The rationale for studying the effects of dietary intervention stems from evidence implicating free radicals in aspects related to the aging process. Age-dependent neuropathology is a cumulative response to alterations induced by reactive oxygen species. Therefore cognitive aging, according to this hypothesis, should be slowed, and possibly even reversed, by appropriately increasing levels of antioxidants or decreasing overproduction of free radicals in the body.
Collapse
Affiliation(s)
- Kuresh A Youdim
- Antioxidant Research Group, Wolfson Centre for Age-Related Diseases, Guy's King's and St. Thomas's School of Biomedical Sciences, King's College, London SE1 9RT, UK
| | | | | |
Collapse
|
8
|
Aldini G, Carini M, Piccoli A, Rossoni G, Facino RM. Procyanidins from grape seeds protect endothelial cells from peroxynitrite damage and enhance endothelium-dependent relaxation in human artery: new evidences for cardio-protection. Life Sci 2003; 73:2883-98. [PMID: 14511773 DOI: 10.1016/s0024-3205(03)00697-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The peroxynitrite scavenging ability of Procyanidins from Vitis vinifera L. seeds was studied in homogeneous solution and in human umbilical endothelial cells (EA.hy926 cell line) using 3-morpholinosydnonimine (SIN-1) as peroxynitrite generator. In homogeneous phase procyanidins dose-dependently inhibited 2',7'-dichloro-dihydrofluorescein (DCFH) oxidation induced by SIN-1 with an IC50 value of 0.28 microM. When endothelial cells (EC) were exposed to 5 mM SIN-1, marked morphological alterations indicating a necrotic cell death (cell viability reduced to 16 +/- 2.5%) were observed. Cell damage was suppressed by procyanidins, with a minimal effective concentration of 1 microM (cell morphology and integrity completely recovered at 20 microM). Cellular localization of procyanidins in EC was confirmed using a new staining procedure and site-specific peroxyl radical inducers: AAPH and cumene hydroperoxide (CuOOH). Endothelial cells (EC) pre-incubated with procyanidins (20 microM) and exposed to FeCl3/K3Fe(CN)6 showed a characteristic blue staining, index of a site-specific binding of procyanidins to EC. Procyanidins dose-dependently inhibit the AAPH induced lipid oxidation and reverse the consequent loss of cell viability, but were ineffective when oxidation was driven at intracellular level (CuOOH). This demonstrates that the protective effect is due to their specific binding to the outer surface of EC thus to quench exogenous harmful radicals. Procyanidins dose-dependently relaxed human internal mammary aortic (IMA) rings (with intact endothelium) pre-contracted with norepinephrine (NE), showing a maximal vasorelaxant effect (85 +/- 9%) at 50 microM (catechin: 18 +/- 2% relaxation at 50 microM). This effect was completely abolished when IMA-rings were de-endothelized and when IMA-rings with intact endothelium were pretreated with L-NMMA or with the soluble guanylate cyclase inhibitor, ODQ. Pre-incubation with indomethacin reduces (by almost 50%) the vasodilating effect of procyanidins, indicating the involvement also of a COX-dependent mechanism. This was confirmed in another set of experiments, where procyanidins dose-dependently stimulate the prostacyclin (PGI2) release, reaching a plateau between 25 and 50 microM. Finally, pre-incubation of IMA-rings with procyanidins (from 6.25 to 25 microM) resulted in a dose-dependent prevention of the endothelin-1 (ET-1) vasoconstriction. The ability of procyanidins to prevent peroxynitrite attack to vascular cells, by layering on the surface of coronary EC, and to enhance endothelial NO-synthase-mediated relaxation in IMA rings provide further insight into the molecular mechanisms through which they exert cardioprotective activity in ischemia/reperfusion injury in vivo.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Istituto Chimico Farmaceutico Tossicologico, University of Milan, Viale Abruzzi 42-20131 Milan, Italy.
| | | | | | | | | |
Collapse
|
9
|
Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C. Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 2003; 85:180-92. [PMID: 12641740 DOI: 10.1046/j.1471-4159.2003.01652.x] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is considerable current interest in the neuroprotective effects of flavonoids. This study focuses on the potential for dietary flavonoids, and their known physiologically relevant metabolites, to enter the brain endothelium and cross the blood-brain barrier (BBB) using well-established in vitro models (brain endothelial cell lines and ECV304 monolayers co-cultured with C6 glioma cells). We report that the citrus flavonoids, hesperetin, naringenin and their relevant in vivo metabolites, as well as the dietary anthocyanins and in vivo forms, cyanidin-3-rutinoside and pelargonidin-3-glucoside, are taken up by two brain endothelial cell lines from mouse (b.END5) and rat (RBE4). In both cell types, uptake of hesperetin and naringenin was greatest, increasing significantly with time and as a function of concentration. In support of these observations we report for the first time high apparent permeability (Papp) of the citrus flavonoids, hesperetin and naringenin, across the in vitro BBB model (apical to basolateral) relative to their more polar glucuronidated conjugates, as well as those of epicatechin and its in vivo metabolites, the dietary anthocyanins and to specific phenolic acids derived from colonic biotransformation of flavonoids. The results demonstrate that flavonoids and some metabolites are able to traverse the BBB, and that the potential for permeation is consistent with compound lipophilicity.
Collapse
Affiliation(s)
- Kuresh A Youdim
- Antioxidant Research Group, Wolfson Center for Age-Related Diseases, Centre for Neuroscience Research, Guy's, King's and St Thomas's School of Biomedical Sciences, King's College, London, UK
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells. The flavonoids are used by botanists for taxonomical classification. They regulate plant growth by inhibition of the exocytosis of the auxin indolyl acetic acid, as well as by induction of gene expression, and they influence other biological cells in numerous ways. Flavonoids inhibit or kill many bacterial strains, inhibit important viral enzymes, such as reverse transcriptase and protease, and destroy some pathogenic protozoans. Yet, their toxicity to animal cells is low. Flavonoids are major functional components of many herbal and insect preparations for medical use, e.g., propolis (bee's glue) and honey, which have been used since ancient times. The daily intake of flavonoids with normal food, especially fruit and vegetables, is 1-2 g. Modern authorised physicians are increasing their use of pure flavonoids to treat many important common diseases, due to their proven ability to inhibit specific enzymes, to simulate some hormones and neurotransmitters, and to scavenge free radicals.
Collapse
Affiliation(s)
- Bent H Havsteen
- Department of Biochemistry, University of Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany.
| |
Collapse
|
11
|
Youdim KA, McDonald J, Kalt W, Joseph JA. Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults ( small star, filled). J Nutr Biochem 2002; 13:282-288. [PMID: 12015158 DOI: 10.1016/s0955-2863(01)00221-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although antioxidant systems help control the level of reactive oxygen species they may be overwhelmed during periods of oxidative stress. Evidence suggests that oxidative stress components as well as inflammatory mediators may be involved in the pathogenesis of vascular disorders, where localized markers of oxidative damage have been found. In this regard we investigated the putative antioxidant and anti-inflammatory effects of blueberry and cranberry anthocyanins and hydroxycinnamic acids against H(2)O(2) and TNFalpha induced damage to human microvascular endothelial cells. Polyphenols from both berries were able to localize into endothelial cells subsequently reducing endothelial cells vulnerability to increased oxidative stress at both the membrane and cytosol level. Furthermore, berry polyphenols also reduced TNFalpha induced up-regulation of various inflammatory mediators (IL-8, MCP-1 and ICAM-1) involved in the recruitment of leukocytes to sites of damage or inflammation along the endothelium. In conclusion, polyphenols isolated from both blueberry and cranberry were able to afford protection to endothelial cells against stressor induced up-regulation of oxidative and inflammatory insults. This may have beneficial actions against the initiation and development of vascular diseases and be a contributing factor in the reduction of age-related deficits in neurological impairments previously reported by us.
Collapse
Affiliation(s)
- Kuresh A. Youdim
- Human Nutrition Research Center on Aging at Tufts University, United States Department of Agriculture, 711 Washington Street, 02111, Boston, MA, USA
| | | | | | | |
Collapse
|
12
|
Peh KH, Moulson A, Wan BY, Assem EK, Pearce FL. Role of nitric oxide in histamine release from human basophils and rat peritoneal mast cells. Eur J Pharmacol 2001; 425:229-38. [PMID: 11513842 DOI: 10.1016/s0014-2999(01)01205-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of a range of nitric oxide (NO)-related compounds on histamine release from human basophils and rat peritoneal mast cells were studied. Basal and immunologic histamine releases from human basophils were not affected by N(omega)-nitro-L-arginine, N(omega)-nitro-L-arginine methyl ester, aminoguanidine or methylene blue (all inhibitors of NO production), sodium nitroprusside (an NO donor), L-arginine (a substrate for NO synthase) or D-arginine (the inactive enantiomer of L-arginine). In rat peritoneal mast cells, NO donors such as sodium nitroprusside, sodium nitrite and sodium nitrate, and lipopolysaccharide (an inducer of NO synthase) had little effect on basal histamine release, while 3-morpholino-sydnonimine (SIN-1, an NO donor), L-arginine and D-arginine increased this release by up to threefold. None of the inhibitors of NO production had any striking effect on histamine release induced by anti-rat immunoglobulin E (IgE), compound 48/80, sodium fluoride, phospholipase C, 1,2-dioctanoyl-sn-glycerol or ionophore A23187. However, haemoglobin was found to inhibit histamine release by anti-rat IgE or A23187 by ca. 40%. Alone of the NO donors, low concentrations of L-arginine produced a mild inhibition of histamine release induced by anti-IgE, compound 48/80 and A23187, but not other ligands, while sodium nitroprusside dose-dependently inhibited (by a maximum of ca. 30%) histamine release by anti-rat IgE, sodium fluoride or A23187. Stimulation with a variety of secretagogues or treatment with L-arginine, D-arginine, lipopolysaccharide, SIN-1 or sodium nitroprusside had no effect on NO production. Similarly, L-arginine, D-arginine or sodium nitroprusside did not change intracellular cGMP levels. On the basis of these results, it is suggested that NO does not play a significant role in the modulation of histamine release from human basophils or rat peritoneal mast cells. The effects of L-arginine, D-arginine and sodium nitroprusside may involve mechanisms unrelated to NO.
Collapse
Affiliation(s)
- K H Peh
- Department of Pharmacology, University College London, Gower Street, WC1E 6BT, London, UK
| | | | | | | | | |
Collapse
|
13
|
Babich H, Reisbaum AG, Zuckerbraun HL. In vitro response of human gingival epithelial S-G cells to resveratrol. Toxicol Lett 2000; 114:143-53. [PMID: 10713479 DOI: 10.1016/s0378-4274(99)00288-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
WST-1 (mitochondrial dehydrogenase activities). Arrest of cell growth, due to inhibition of DNA synthesis, may explain the leveling of toxicity between day 2 and 3 for a 3-day continuous exposure to resveratrol. Irreversible damage to cell proliferation was noted in S-G cells exposed to 75-150 microM resveratrol for 2 days and then subsequently maintained for another 3 days in resveratrol-free medium. The cytotoxicity of resveratrol was neither potentiated nor ameliorated in the presence of an hepatic S9 microsomal fraction. The cytotoxicity of hydrogen peroxide to S-G cells was lessened by N-acetyl-L-cysteine and quercetin, but not by resveratrol. For nitric oxide, only N-acetyl-L-cysteine reduced toxicity. The ability of resveratrol to function as an antioxidant was, therefore, not noted under these test conditions.
Collapse
Affiliation(s)
- H Babich
- Stern College for Women, Yeshiva University, Department of Biology, 245 Lexington Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|