1
|
Takahashi M, Taniguchi N. Maillard reaction in vivo and its relevance to diseases: editorial and dedication. Glycoconj J 2021; 38:277-281. [PMID: 33893942 PMCID: PMC8116256 DOI: 10.1007/s10719-021-09996-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Motoko Takahashi
- Sapporo Medical University, South-1 West-17, Chuo-ku, Sapporo, 0608556, Japan.
| | - Naoyuki Taniguchi
- Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan
| |
Collapse
|
2
|
Changes in Plasma Metabolome Profiles Following Oral Glucose Challenge among Adult Chinese. Nutrients 2021; 13:nu13051474. [PMID: 33925473 PMCID: PMC8146292 DOI: 10.3390/nu13051474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/07/2023] Open
Abstract
Little is known about changes in plasma metabolome profiles during the oral glucose tolerance test (OGTT) in Chinese. We aimed to characterize plasma metabolomic profiles at 0 and 2 h of OGTT and their changes in individuals of different glycemic statuses. A total of 544 metabolites were detected at 0 and 2 h of OGTT by a nontarget strategy in subjects with normal glucose (n = 234), prediabetes (n = 281), and newly diagnosed type 2 diabetes (T2D) (n = 66). Regression model, mixed model, and partial least squares discrimination analysis were applied. Compared with subjects of normal glucose, T2D cases had significantly higher levels of glycerone at 0 h and 22 metabolites at 2 h of OGTT (false discovery rate (FDR) < 0.05, variable importance in projection (VIP) > 1). Seven of the twenty-two metabolites were also significantly higher in T2D than in prediabetes subjects at 2 h of OGTT (FDR < 0.05, VIP > 1). Two hours after glucose challenge, concentrations of 35 metabolites (normal: 18; prediabetes: 23; T2D: 13) significantly increased (FDR < 0.05, VIP > 1, fold change (FC) > 1.2), whereas those of 45 metabolites (normal: 36; prediabetes: 29; T2D: 18) significantly decreased (FDR < 0.05, VIP > 1, FC < 0.8). Distinct responses between cases and noncases were detected in metabolites including 4-imidazolone-5-acetate and 4-methylene-L-glutamine. More varieties of distinct metabolites across glycemic statuses were observed at 2 h of OGTT compared with fasting state. Whether the different patterns and responsiveness of certain metabolites in T2D reflect a poor resilience of specific metabolic pathways in regaining glucose homeostasis merits further study.
Collapse
|
3
|
Khordad E, Fazel A, Ebrahimzadeh Bideskan A. The effect of ascorbic acid and garlic administration on lead-induced apoptosis in rat offspring's eye retina. IRANIAN BIOMEDICAL JOURNAL 2014; 17:206-13. [PMID: 23999717 DOI: 10.6091/ibj.1229.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Lead toxicity induces retinal cell apoptosis. Vitamin C and garlic may decrease lead-induced apoptosis. This study was undertaken to investigate vitamin C and garlic protective effects on lead-induced apoptosis in eye retina. METHODS Pregnant Wistar rats (n = 72) were divided randomly into 9 groups: (L) treated rats with lead acetate in drinking water and (L+AA) with leaded water and vitamin C intraperitoneally;(L+G), the rats received leaded-water and garlic juice via gavage; (L+AA+G) treated rats with leaded water, ascorbic acid, and garlic juice, (AA) with ascorbic acid, and (G) with garlic juice; (AA+G) treated rats with vitamin C and garlic juice and (Sh) with tap water plus normal hydrogen chloride (HCl) and glucose; normal (N). After 21-day lactation, blood lead level (BLL) in rats was measured, and then their offspring and the rat offspring's eyes were removed and processed for using TUNEL method. TUNEL positive cells in the eye retina were counted and all groups were compared. RESULTS BLL increased in L group compared to the control groups and decreased significantly in L + G, L + AA, and L+ AA + G groups compared to L group (P<0.05). TUNELL positive cell number in eye retina significantly increased in L group compared to control groups (P<0.05) and decreased in L+ G, L+ AA, and L+AA + G groups compared to L group (P<0.05). CONCLUSION Garlic juice and ascorbic acid administration during pregnancy and lactation may protect lead-induced apoptosis in rat offspring's eye retina.
Collapse
Affiliation(s)
- Elnaz Khordad
- Dept. of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Fazel
- Dept. of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
4
|
May JM. The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol 2012; 164:1793-801. [PMID: 21418192 DOI: 10.1111/j.1476-5381.2011.01350.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ascorbate transporters SVCT1 and SVCT2 are crucial for maintaining intracellular ascorbate concentrations in most cell types. Although the two transporter isoforms are highly homologous, they have different physiologic functions. The SVCT1 is located primarily in epithelial cells and has its greatest effect in reabsorbing ascorbate in the renal tubules. The SVCT2 is located in most non-epithelial tissues, with the highest expression in brain and neuroendocrine tissues. These transporters are hydrophobic membrane proteins that have a high affinity and are highly selective for ascorbate. Their ability to concentrate ascorbate inside cells is driven by the sodium gradient across the plasma membrane as generated by Na+/K+ ATPase. They can concentrate ascorbate 20 to 60-fold over plasma ascorbate concentrations. Ascorbate transport on these proteins is regulated at the transcriptional, translational and post-translational levels. Available studies show that transporter function is acutely regulated by protein kinases A and C, whereas transporter expression is increased by low intracellular ascorbate and associated oxidative stress. The knockout of the SVCT2 in mice is lethal on day 1 of life, and almost half of SVCT1 knockout mice do not survive to weaning. These findings confirm the importance both of cellular ascorbate and of the two transport proteins as key to maintaining intracellular ascorbate. LINKED ARTICLES This article is part of a themed section on Transporters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2011.164.issue-7.
Collapse
Affiliation(s)
- James M May
- Departments of Medicine and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA.
| |
Collapse
|
5
|
May JM. The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol 2011. [PMID: 21418192 DOI: 10.1111/bph.2011.164.issue-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The ascorbate transporters SVCT1 and SVCT2 are crucial for maintaining intracellular ascorbate concentrations in most cell types. Although the two transporter isoforms are highly homologous, they have different physiologic functions. The SVCT1 is located primarily in epithelial cells and has its greatest effect in reabsorbing ascorbate in the renal tubules. The SVCT2 is located in most non-epithelial tissues, with the highest expression in brain and neuroendocrine tissues. These transporters are hydrophobic membrane proteins that have a high affinity and are highly selective for ascorbate. Their ability to concentrate ascorbate inside cells is driven by the sodium gradient across the plasma membrane as generated by Na+/K+ ATPase. They can concentrate ascorbate 20 to 60-fold over plasma ascorbate concentrations. Ascorbate transport on these proteins is regulated at the transcriptional, translational and post-translational levels. Available studies show that transporter function is acutely regulated by protein kinases A and C, whereas transporter expression is increased by low intracellular ascorbate and associated oxidative stress. The knockout of the SVCT2 in mice is lethal on day 1 of life, and almost half of SVCT1 knockout mice do not survive to weaning. These findings confirm the importance both of cellular ascorbate and of the two transport proteins as key to maintaining intracellular ascorbate. LINKED ARTICLES This article is part of a themed section on Transporters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2011.164.issue-7.
Collapse
Affiliation(s)
- James M May
- Departments of Medicine and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA.
| |
Collapse
|
6
|
Giovane A, Balestrieri A, Napoli C. New insights into cardiovascular and lipid metabolomics. J Cell Biochem 2008; 105:648-54. [DOI: 10.1002/jcb.21875] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Yang MS, Yu LC, Gupta RC. Analysis of Multiple Metabolomic Subsets In Vitro: Methodological Considerations. Toxicol Mech Methods 2008; 15:29-32. [DOI: 10.1080/15376520490446383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Obrenovich ME, Fan X, Satake M, Jarvis SM, Reneker L, Reddan JR, Monnier VM. Relative suppression of the sodium-dependent Vitamin C transport in mouse versus human lens epithelial cells. Mol Cell Biochem 2006; 293:53-62. [PMID: 16933033 DOI: 10.1007/s11010-006-2678-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Accepted: 09/01/2005] [Indexed: 01/18/2023]
Abstract
Vitamin C is a major antioxidant and UV absorbent in the human lens. In the rodent lens, the levels are very low for unknown reasons. Searching for clues to explain this suppression, we investigated the comparative uptake of Vitamin C in cultured human and mouse lens epithelial cells. When compared to human HLE-B3 lens epithelial cells, (14)C-ASA uptake was 4- to 10-fold impaired in confluent mouse lens 17EM15 (p < 0.0001) and 21EM15 (p < 0.001) cells, respectively. High glucose concentrations reduced the uptake by 30-50% in all cells (p < 0.005). Incubation of cells with 6-deoxy-6-fluoro-ascorbic (F-ASA), i.e. a probe specific for the sodium-dependent Vitamin C uptake (SVCT2), revealed a 10-fold uptake suppression into mouse 17EM15 relative to human HLE-B3 and JAR choriocarcinoma cells (a control), that could be overcome by overexpressing hSVCT2 using two different promoter constructs. The relative Vitamin C uptake differences suggest either low expression of SVCT2, molecular differences between the transporters themselves or their biological regulation, since a recent study has shown that exogenous feeding of ascorbic acid to rats increased only modestly lenticular uptake (Mody et al., Acta Ophthalmol Scand 83: 228-223, 2005). Elucidation of the mechanism by which SCVT2 activity is suppressed in mouse lens may help unravel a major question of evolutionary significance for night vision in nocturnal animals.
Collapse
Affiliation(s)
- Mark E Obrenovich
- Department of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Kussmann M, Raymond F, Affolter M. OMICS-driven biomarker discovery in nutrition and health. J Biotechnol 2006; 124:758-87. [PMID: 16600411 DOI: 10.1016/j.jbiotec.2006.02.014] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/22/2005] [Accepted: 02/17/2006] [Indexed: 01/21/2023]
Abstract
While traditional nutrition research has dealt with providing nutrients to nourish populations, it nowadays focuses on improving health of individuals through diet. Modern nutritional research is aiming at health promotion and disease prevention and on performance improvement. As a consequence of these ambitious objectives, the disciplines "nutrigenetics" and "nutrigenomics" have evolved. Nutrigenetics asks the question how individual genetic disposition, manifesting as single nucleotide polymorphisms, copy-number polymorphisms and epigenetic phenomena, affects susceptibility to diet. Nutrigenomics addresses the inverse relationship, that is how diet influences gene transcription, protein expression and metabolism. A major methodological challenge and first pre-requisite of nutrigenomics is integrating genomics (gene analysis), transcriptomics (gene expression analysis), proteomics (protein expression analysis) and metabonomics (metabolite profiling) to define a "healthy" phenotype. The long-term deliverable of nutrigenomics is personalised nutrition for maintenance of individual health and prevention of disease. Transcriptomics serves to put proteomic and metabolomic markers into a larger biological perspective and is suitable for a first "round of discovery" in regulatory networks. Metabonomics is a diagnostic tool for metabolic classification of individuals. The great asset of this platform is the quantitative, non-invasive analysis of easily accessible human body fluids like urine, blood and saliva. This feature also holds true to some extent for proteomics, with the constraint that proteomics is more complex in terms of absolute number, chemical properties and dynamic range of compounds present. Apart from addressing the most complex "-ome", proteomics represents the only platform that delivers not only markers for disposition and efficacy but also targets of intervention. The Omics disciplines applied in the context of nutrition and health have the potential to deliver biomarkers for health and comfort, reveal early indicators for disease disposition, assist in differentiating dietary responders from non-responders, and, last but not least, discover bioactive, beneficial food components. This paper reviews the state-of-the-art of the three Omics platforms, discusses their implication in nutrigenomics and elaborates on applications in nutrition and health such as digestive health, allergy, diabetes and obesity, nutritional intervention and nutrient bioavailability. Proteomic developments, applications and potential in the field of nutrition have been specifically addressed in another review issued by our group.
Collapse
Affiliation(s)
- Martin Kussmann
- Bioanalytical Science Department, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland.
| | | | | |
Collapse
|
10
|
Yamamoto F, Kaneshiro T, Kato H, Mukai T, Kuwabara Y, Honda H, Maeda M. Decreased Tissue Accumulation of 6-Deoxy-6-[18F]fluoro-L-ascorbic Acid in Glutathione-Deficient Rats Induced by Administration of Diethyl Maleate. Biol Pharm Bull 2005; 28:1943-7. [PMID: 16204951 DOI: 10.1248/bpb.28.1943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relationship between in vivo biodistribution of 6-deoxy-6-[18F]fluoro-L-ascorbic acid (18F-DFA) and the content of tissue glutathione (GSH) was investigated in Wistar male rats. Following intravenous administration of 18F-DFA, the accumulation of radioactivity in most tissues, including the adrenal glands, liver and brain, was significantly reduced together with a decrease in the content of GSH by preloading of diethyl maleate (DEM) which depletes cellular GSH. Similar decreased uptake was also observed in the distribution of L-[1-14C]ascorbic acid (14C-AA) after DEM treatment. The possible biological mechanisms, including competition with endogenous AA and ascorbate recycling, that modulate the uptake and accumulation into tissues of 18F-DFA and 14C-AA in GSH-deficient rats are discussed.
Collapse
Affiliation(s)
- Fumihiko Yamamoto
- Faculty of Pharmaceutical Sciences, Kyushu University; Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Passage E, Norreel JC, Noack-Fraissignes P, Sanguedolce V, Pizant J, Thirion X, Robaglia-Schlupp A, Pellissier JF, Fontés M. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat Med 2004; 10:396-401. [PMID: 15034573 DOI: 10.1038/nm1023] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 03/05/2004] [Indexed: 11/08/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common hereditary peripheral neuropathy, affecting 1 in 2,500 people. The only treatment currently available is rehabilitation or corrective surgery. The most frequent form of the disease, CMT-1A, involves abnormal myelination of the peripheral nerves. Here we used a mouse model of CMT-1A to test the ability of ascorbic acid, a known promoter of myelination, to correct the CMT-1A phenotype. Ascorbic acid treatment resulted in substantial amelioration of the CMT-1A phenotype, and reduced the expression of PMP22 to a level below what is necessary to induce the disease phenotype. As ascorbic acid has already been approved by the FDA for other clinical indications, it offers an immediate therapeutic possibility for patients with the disease.
Collapse
Affiliation(s)
- Edith Passage
- Institut National de la Santé et de la Recherche Médicale UMR491, IPHM, Faculté de Médecine de la Timone, 27 Bd. J. Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The field of Maillard/glycation reactions in vivo has grown enormously during the past 20 years, going from 25 to 500 publications per year. It is now well recognized that many of the "advanced" products form oxidatively or anaerobically and can have deleterious effects on macromolecular and biological function. The feasibility of developing pharmacological agents with beneficial in vivo properties, based on in vitro inhibition of glycation, has been surprisingly successful. This Editorial sets the stage for a series of articles by experts in the field, who have made key contributions to our understanding of the Maillard reaction in vivo.
Collapse
|