1
|
Schiekofer S, Kleber ME, Maerz W, Rasche FM, Schneider JG. The Proline 7 Substitution in the Preproneuropeptide Y Is Associated with Higher Hepatic Lipase Activity In Vivo. Int J Endocrinol 2017; 2017:2869090. [PMID: 28638407 PMCID: PMC5468775 DOI: 10.1155/2017/2869090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hepatic lipase (HL) functions as a lipolytic enzyme that hydrolyzes triglycerides and phospholipids present in circulating plasma lipoproteins. Plasma HL activity is known to be regulated by hormonal and metabolic factors, but HL responsiveness to insulin as well as its role in modulating atherosclerotic risk is still controversial. We investigated on the influence of a known polymorphism in the neurotransmitter neuropeptide Y (NPY) on HL activity in two different cohorts consisting of diabetic and nondiabetic patients. HL activity was 24% and 34% higher on nondiabetic and diabetic subjects in the presence of the 7Pro allele in NPY, respectively. The presence of the 7Pro allele was an independent predictor of HL activity in multivariate analyses in both cohorts. These data suggest a regulatory effect of NPY on HL activity. Among carriers of the 7Pro allele, we also found a statistically significant lower absolute number of infarctions compared to noncarriers (p < 0.05) and a nonsignificant trend towards less myocardial infarction in the 7Pro allele diabetic carriers (p = 0.085). In conclusion, the common 7Pro allele in NPY was associated with higher HL activity in nondiabetic and diabetic subjects and its presence seems to coincide with a lower frequency of certain cardiovascular events.
Collapse
Affiliation(s)
| | - Marcus E. Kleber
- Vth Department of Medicine, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Winfried Maerz
- Vth Department of Medicine, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
- Synlab Academy, Mannheim, Germany
- Synlab Holding Deutschland GmbH, Augsburg, Germany
| | - Franz M. Rasche
- Departments of Internal Medicine, Neurology, Dermatology, Clinic for Endocrinology, Diabetology, and Nephrology, Section of Nephrology, University Leipzig, Leipzig, Germany
| | - Jochen G. Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg and Centre Hospitalier Emile Mayrisch (CHEM), Esch-sur-Alzette, Luxembourg
- Department of Internal Medicine II, Saarland University Medical Center, Homburg, Saar, Germany
- *Jochen G. Schneider:
| |
Collapse
|
2
|
van Deursen D, Botma GJ, Jansen H, Verhoeven AJM. Down-regulation of hepatic lipase expression by elevation of cAMP in human hepatoma but not adrenocortical cells. Mol Cell Endocrinol 2008; 294:37-44. [PMID: 18675312 DOI: 10.1016/j.mce.2008.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 06/12/2008] [Accepted: 07/06/2008] [Indexed: 10/21/2022]
Abstract
Expression of hepatic lipase (HL) in the liver is reduced during prolonged fasting. This effect is mainly mediated via catecholamines, which signal through elevation of Ca(i)(2+) as well as cAMP. We have studied the effect of cAMP on HL expression in cell culture. Overnight incubation of HepG2 cells with 10-300microM 8-bromo-cyclic AMP resulted in a dose-dependent, up to 50% reduction in secretion of HL, but had no effect on secretion of alpha(1)-antitrypsin or overall protein synthesis. HL mRNA levels were decreased 1.5 fold, as determined by semi-quantitative and real-time RT-PCR. In HepG2 cells transiently transfected with human HL (-685/+13) or rat HL (-446/+9) promoter-reporter constructs, cAMP induced a similar dose-dependent suppression of HL promoter activity. cAMP responsiveness in HepG2 cells was mediated by a conserved 10-bp response element at -45/-36, that represents a potential binding site for CCAAT/enhancer-binding protein beta (C/EBPbeta). cAMP reduced expression of the 45kDa C/EBPbeta protein and binding of C/EBPbeta to the proximal promoter region of the human HL gene by 50%, as determined by immunoblotting and chromatin immunoprecipitation assay, respectively. In human H295R adrenocortical cells, cAMP failed to suppress HL promoter activity, and only slightly reduced C/EBPbeta expression. We conclude that the fall in HL expression during prolonged fasting may be mediated through elevation of cAMP and lowering of C/EBPbeta expression.
Collapse
Affiliation(s)
- Diederik van Deursen
- Department of Biochemistry, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | | | | | | |
Collapse
|
3
|
Hosaka Y, Ozoe S, Kirisawa R, Ueda H, Takehana K, Yamaguchi M. Effect of heat on synthesis of gelatinases and pro-inflammatory cytokines in equine tendinocytes. Biomed Res 2006; 27:233-41. [PMID: 17099288 DOI: 10.2220/biomedres.27.233] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to clarify whether matrix metalloproteinases (MMP-2 and -9: gelatinases) and pro-inflammatory cytokines [tumor necrosis factor (TNF) alpha and interleukin (IL)-1beta] are induced by heat in tendon tissue in vitro and to test the hypothesis that heat exposure causes tendinocytes to synthesize pro-inflammatory cytokines and that synthesis of these cytokines, in turn, leads to up-regulation of synthesis of gelatinases. Isolated tendinocytes from equine superficial digital flexor tendons were cultured and all experiments were performed on cells passaged 3 or 4 times. In the cells exposed to heat (37 to 45 degrees C, 0 to 60 min), the survival rate decreased sharply in a temperature- and time-dependent manner, especially at 42 and 45 degrees C. Cells exposed at 40 degrees C, however, showed little change in survival rate and morphology. Gelatin zymograms revealed that proMMP-2 and -9 were the only two MMPs remaining in the supernatant of the cultured tendinocytes, including that of untreated cells. Addition of TNFalpha and IL-1beta to the culture medium of tendinocytes accelerated proMMP-9 synthesis considerably. Heating the tendinocytes (40 degrees C) led to a three-fold increase in proMMP-9 synthesis in a short time. Only TNFalpha was detected in tendinocytes after heat exposure for 30 and 60 min. In contrast, IL-1beta was under the detectable level in ELISA. Cooling of heat-exposed cells from 40 degrees C to 37 degrees C considerably down-regulated cellular proMMP-9 synthesis. Furthermore, proMMP-9 level was greatly reduced in cells treated at lower temperatures, 20 degrees C and 5 degrees C. These findings support our hypothesis that hyperthermia in the horse tendon induces tendinocytes to synthesize pro-inflammatory cytokines and that the synthesis of these cytokines results in the up-regulation of gelatinases.
Collapse
Affiliation(s)
- Yoshinao Hosaka
- Laboratory of Veterinary Anatomy, Department of Biosciences, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Botma GJ, van Deursen D, Vieira D, van Hoek M, Jansen H, Verhoeven AJM. Sterol-regulatory-element binding protein inhibits upstream stimulatory factor-stimulated hepatic lipase gene expression. Atherosclerosis 2004; 179:61-7. [PMID: 15721010 DOI: 10.1016/j.atherosclerosis.2004.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 10/15/2004] [Indexed: 10/26/2022]
Abstract
Hepatic lipase (HL) not only plays an important role in plasma lipoprotein transport, but may also affect intracellular lipid metabolism. We hypothesize that HL expression is regulated as an integral part of intracellular lipid homeostasis. Addition of oleate (1 mM) to HepG2 cells increased HL secretion to 134+/-14% of control (p<0.02), and increased the transcriptional activity of a 698-bp HL promoter-reporter construct two-fold. Atorvastatin (10 microM) abolished the oleate stimulation. The transcriptional activity of a sterol-regulatory-element binding protein (SREBP)-sensitive HMG-CoA synthase promoter construct was reduced 50% by oleate, and increased 2-3-fold by atorvastatin. Co-transfection with an SREBP-2 expression vector reduced HL promoter activity and increased HMG-CoA synthase promoter activity. Upstream stimulatory factors (USF) are also implicated in maintenance of lipid homeostasis. Co-transfection with a USF-1 expression vector stimulated HL promoter activity 4-6-fold. The USF-stimulated HL promoter activity was not further enhanced by oleate, but almost completely prevented by atorvastatin or co-transfection with the SREBP-2 vector. Opposite regulation by USF-1 and SREBP-2 was also observed with a 318-bp HL promoter construct that lacks potential SRE-like and E-box binding motifs. We conclude that the opposite regulation of HL expression by fatty acids and statins is mediated via SREBP, possibly through interaction with USF.
Collapse
Affiliation(s)
- Gert-Jan Botma
- COEUR Cardiovascular Research School, Department of Biochemistry, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Galan X, Peinado-Onsurbe J, Robert MQ, Soley M, Llobera M, Ramírez I. Acute regulation of hepatic lipase secretion by rat hepatocytes. Biochem Cell Biol 2003; 80:467-74. [PMID: 12234100 DOI: 10.1139/o02-136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatic lipase is involved in cholesterol uptake by the liver. Although it is known that catecholamines are responsible for the daily variation of enzyme activity, the mechanisms involved are poorly understood. Rat hepatocytes incubated with adrenaline or other Ca(2+)-mobilizing hormones were used as an experimental model. Adrenaline reduced in a similar proportion the secretion of both hepatic lipase and albumin. The effect of adrenaline disappeared completely in cells exposed to cycloheximide. Adrenaline decreased incorporation of [35S]Met into cellular and secreted proteins, but it affected neither degradation of [35S]Met-prelabeled proteins nor the abundance of total and specific (albumin, hepatic lipase, beta-actin) mRNA. Other Ca(2+)-mobilizing agents had the opposite effect on hepatic lipase secretion: it was decreased by vasopressin but was increased by epidermal growth factor. Vasopressin and epidermal growth factor had the opposite effect on [35S]Met incorporation into cellular and secreted proteins, but neither affected hepatic lipase mRNA. The acute effect of adrenaline, vasopressin, and epidermal growth factor on hepatic lipase secretion is the consequence of the effect of these hormones on protein synthesis and is therefore nonspecific.
Collapse
|
6
|
Perret B, Mabile L, Martinez L, Tercé F, Barbaras R, Collet X. Hepatic lipase:structure/function relationship, synthesis,and regulation. J Lipid Res 2002. [DOI: 10.1194/jlr.r100020-jlr200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Le Fur C, Romon M, Lebel P, Devos P, Lancry A, Guédon-Moreau L, Fruchart JC, Dallongeville J. Influence of mental stress and circadian cycle on postprandial lipemia. Am J Clin Nutr 1999; 70:213-20. [PMID: 10426697 DOI: 10.1093/ajcn.70.2.213] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mental stress produces alterations in serum lipids and lipoproteins. OBJECTIVE The objective was to assess the effect of mental stress during the day and night on postprandial lipoproteins. DESIGN Fourteen healthy subjects aged 26.6 +/- 5.0 y were given randomly the same meal either at night (0100) or during the day (1300), with or without (control session) a mental stress challenge. The meal contained 40% of estimated daily energy needs. The mental task was performed on a computer and consisted of a task of choice reaction. Blood samples were drawn at baseline and hourly for 7 h after the meal. RESULTS Urinary epinephrine concentrations were higher (P < 0.012) during the mental task than during the control sessions. Repeated-measures analysis of variance showed that mean postprandial triacylglycerol concentrations were significantly higher (P < 0.02) and total cholesterol (P < 0.0001) and HDL-cholesterol concentrations were significantly lower (P < 0.0001) at night than during the day. The mean postprandial VLDL-triacylglycerol concentration was significantly higher (P < 0.04) during the mental task than during the control sessions. Similarly, the VLDL-cholesterol response, calculated as the area under the postprandial curve, was significantly greater (P < 0.02) during the mental task than during the control sessions. There was no interaction between mental stress and nyctohemeral cycle on postprandial lipoprotein responses, suggesting that both indexes act independently on postprandial lipid metabolism. CONCLUSIONS Mental stress is associated with increased concentrations of postprandial triacylglycerol-rich lipoprotein fractions. Therefore, postprandial hyperlipidemia is one possible mechanism contributing to the higher risk of ischemic heart disease in stressed people.
Collapse
Affiliation(s)
- C Le Fur
- CERESTE, Service de Nutrition, and Service de Pharmacologie Hospitalière, CHR et U de Lille, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Neve BP, Verhoeven AJ, Kalkman I, Jansen H. Maturation and secretion of rat hepatic lipase is inhibited by alpha1B-adrenergic stimulation through changes in Ca2+ homoeostasis: thapsigargin and EGTA both mimic the effect of adrenaline. Biochem J 1998; 330 ( Pt 2):701-6. [PMID: 9480878 PMCID: PMC1219193 DOI: 10.1042/bj3300701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In rats, the daily changes in hepatic lipase (HL) activity in the liver follow the diurnal rhythm of the catecholamines. To study the underlying mechanism, the effect of adrenaline on maturation and secretion of HL was determined in freshly isolated rat hepatocytes. Adrenaline (10 microM) acutely inhibited the secretion of HL. This effect was abolished by 0.1 microM prazosin, but not by 1 microM propranolol, indicating the involvement of the alpha1-adrenergic pathway. Prazosin was at least 1000-fold more potent than WB4101, a selective alpha1A-antagonist. Adrenaline had no effect on HL secretion in hepatocytes pretreated with chloroethylclonidine, an irreversible alpha1B-selective antagonist. Inhibition of HL was not induced by 10 microM methoxamine, a alpha1A-selective agonist. Thus, adrenaline inhibited HL secretion through activation of the alpha1-adrenoceptors subtype B, which have been shown to signal through Ca2+ as well as cAMP. A similar reduction in HL secretion was induced by the Ca2+-mobilizing hormones angiotensin II (100 nM) and vasopressin (12 nM), the Ca2+ ionophore A23187 (2 microM), and by thapsigargin (1 microM), which inhibits the ER Ca2+-ATPase pump. HL secretion was unaffected by elevating cAMP with 10 microM forskolin or 1 microM 8-Br-cAMP. These results suggest that the alpha1B-adrenergic effects on HL expression are mainly mediated through elevation of intracellular Ca2+. Chelation of extracellular Ca2+ and subsequent lowering of intracellular Ca2+ with EGTA also inhibited HL secretion. In pulse-chase experiments, adrenaline was shown to inhibit the maturation of HL from the 53 kDa, Endo H-sensitive precursor to the Endo H-resistant, catalytically active protein of 58 kDa. In addition, adrenaline induced intracellular degradation of newly synthesized HL. Similar post-translational effects, both qualitatively and quantitatively, were observed with A23187, thapsigargin and EGTA. We conclude that the inhibition of HL maturation and increase in intracellular degradation induced by catecholamines, A23187, thapsigargin and EGTA is evoked by changes in Ca2+ homoeostasis, possibly through lowering ER Ca2+.
Collapse
Affiliation(s)
- B P Neve
- Department of Biochemistry, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|