1
|
Martínez E, Vieira Júnior WG, Álvarez-Ortí M, Rabadán A, Pardo JE. Use of Different O/W or W/O Emulsions as Functional Ingredients to Reduce Fat Content and Improve Lipid Profile in Spanish Cured Processed Meat Product ('Chorizo'). Foods 2024; 13:2262. [PMID: 39063345 PMCID: PMC11275596 DOI: 10.3390/foods13142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, three out of five types of oil-in-water and water-in-oil emulsions were selected to replace pork backfat to reduce the fat content and the improve monounsaturated and polyunsaturated fatty acid content in dry cured sausage ('chorizo'). Different characteristics of the new product were studied: the texture profile, color, nutritional value, lipid profile, vitamin E and thiobarbituric acid (TBA) and sensory qualities. The use of emulsions to replace the animal fat affected all color parameters, obtaining darker, less red and yellow products, which could impact the consumer's purchase intention. This replacement also altered the texture parameters, increasing or decreasing the hardness in comparison with the control sample. The cohesiveness, however, decreased in all cases, which meant that when the samples are cut for consumption, they disintegrated more than the traditional ones. The most relevant aspect for nutritional value is that the use of the new emulsions helped to reduce the total fat and energy value of the reformulated samples. The most significant aspect is that this reformulation helped to reduce the fat content-specifically, saturated fat-while increasing the content of Omega 3/6. The new formulas contained significant quantities of TBA and vitamin E when comparing them with the traditional product.
Collapse
Affiliation(s)
- Elena Martínez
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Campus Universitario s/n, 02071 Albacete, Spain; (E.M.); (M.Á.-O.); (J.E.P.)
| | - Wagner Goncalves Vieira Júnior
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil;
| | - Manuel Álvarez-Ortí
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Campus Universitario s/n, 02071 Albacete, Spain; (E.M.); (M.Á.-O.); (J.E.P.)
| | - Adrián Rabadán
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Campus Universitario s/n, 02071 Albacete, Spain; (E.M.); (M.Á.-O.); (J.E.P.)
| | - José Emilio Pardo
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Campus Universitario s/n, 02071 Albacete, Spain; (E.M.); (M.Á.-O.); (J.E.P.)
| |
Collapse
|
2
|
Wei JY, Ma LX, Liu WT, Dong LH, Hou X, Bao XY, Hou W. Mechanisms and protective measures for radiation-induced brachial plexus nerve injury. Brain Res Bull 2024; 210:110924. [PMID: 38460911 DOI: 10.1016/j.brainresbull.2024.110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Radiation therapy is a common treatment modality for patients with malignant tumors of the head and neck, chest and axilla. However, radiotherapy inevitably causes damage to normal tissues at the irradiated site, among which damage to the brachial plexus nerve(BP) is a serious adverse effect in patients receiving radiation therapy in the scapular or axillary regions, with clinical manifestations including abnormal sensation, neuropathic pain, and dyskinesia, etc. These adverse effects seriously reduce the living quality of patients and pose obstacles to their prognosis. Therefore, it is important to elucidate the mechanism of radiation induced brachial plexus injury (RIBP) which remains unclear. Current studies have shown that the pathways of radiation-induced BP injury can be divided into two categories: direct injury and indirect injury, and the indirect injury is closely related to the inflammatory response, microvascular damage, cytokine production and other factors causing radiation-induced fibrosis. In this review, we summarize the underlying mechanisms of RIBP occurrence and possible effective methods to prevent and treat RIBP.
Collapse
Affiliation(s)
- Jia Ying Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Li Xin Ma
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Wen Tong Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Li Hua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Xue Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Xue Ying Bao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Wei Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Zhang M, Li H, Guo M, Zhao F, Xie Y, Zhang Z, Lv J, Qiu L. Vitamin E alleviates pyraclostrobin-induced toxicity in zebrafish (Danio rerio) and its potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171219. [PMID: 38408665 DOI: 10.1016/j.scitotenv.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 μM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 μg/L to 64.72, 108.62 and 72.78 μg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 μg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.
Collapse
Affiliation(s)
- Mengna Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Mengyu Guo
- College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yao Xie
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhongyu Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Vitamin E protective effects on genomic and cellular damage caused by paediatric preventive supplementation for anaemia: an experimental model. Br J Nutr 2023; 129:468-477. [PMID: 35591764 DOI: 10.1017/s0007114522001556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Iron deficiency is the leading cause of anaemia. In Argentina, the prevalence of anaemia and iron deficiency is very high; for that reason, the Argentine Society of Pediatrics recommends daily ferrous sulphate supplementation as a preventive treatment strategy. Alternatively, weekly ferrous sulphate supplementation has also been shown to be effective for anaemia prevention. Excess iron could be related to oxidative stress, which may in turn cause cytomolecular damage. Both can be prevented with vitamin E supplementation. We evaluated the effect of both daily and weekly ferrous sulphate supplementation combined with two doses of vitamin E on cell viability, oxidative stress and cytomolecular damage in peripheral blood cultured in vitro. The experimental design included the following groups: untreated negative control, two vitamin E controls (8·3 and 16·6 µg/ml), weekly ferrous sulphate supplementation (0·55 mg/ml) with each vitamin E dose, daily ferrous sulphate supplementation (0·14 mg/ml) with each vitamin E dose and a positive control. Daily ferrous sulphate supplementation decreased cell viability and increased the levels of reactive oxygen species, lipid peroxidation and cytomolecular damage (P < 0·5) compared with the weekly supplementation, probably due to the excess iron observed in the former. Vitamin E seemed to reduce ferrous sulphate-induced oxidative stress and genomic damage.
Collapse
|
5
|
Gajski G, Gerić M, Jakaša I, Peremin I, Domijan AM, Vučić Lovrenčić M, Kežić S, Bituh M, Moraes de Andrade V. Inflammatory, oxidative and DNA damage status in vegetarians: is the future of human diet green? Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34634971 DOI: 10.1080/10408398.2021.1986464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The health benefit of a vegetarian diet is still under debate as it may result in a higher intake of some beneficial micronutrients, while others may be reduced, thus influencing various metabolic pathways and health-related biomarkers. This scoping review discusses inflammatory, oxidative and DNA damage status in vegetarians and vegans compared to omnivores. Most of the reviewed studies indicated favorable effects of a vegetarian diet on oxidative status compared to omnivores but did not clearly associate particular dietary habits to genome damage. The evidence on the effect of vegetarian diet on the inflammatory and immunological biomarkers is poor, which could at least partly be explained by methodological constraints such as small sample size, short duration of vegetarianism and inconsistent definitions of the omnivorous diet. The only inflammatory biomarker that seems to be associated with the vegetarian diet was inflammatory mediator C-reactive protein, which in several studies showed lower values in vegetarians as compared to omnivores. There were very few studies on immunological markers and the results on the difference between vegetarians and omnivores were inconclusive. Although several biomarkers involved in oxidative stress and inflammation showed a beneficial association with the vegetarian diet, further research in well-defined and sufficiently sized cohorts is needed to provide more evidence.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivone Jakaša
- Faculty of Food Technology and Biotechnology, Department of Chemistry and Biochemistry, Laboratory for Analytical Chemistry, University of Zagreb, Zagreb, Croatia
| | - Ines Peremin
- Faculty of Food Technology and Biotechnology, Department of Chemistry and Biochemistry, Laboratory for Analytical Chemistry, University of Zagreb, Zagreb, Croatia
| | - Ana-Marija Domijan
- Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, University of Zagreb, Zagreb, Croatia
| | | | - Sanja Kežić
- Coronel Institute of Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martina Bituh
- Faculty of Food Technology and Biotechnology, Department of Food Quality Control, Laboratory for Food Chemistry and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Health Sciences Unit, Translational Biomedicine Laboratory, University of Southern Santa Catarina, Criciúma, Brazil
| |
Collapse
|
6
|
Robinson O, Chadeau Hyam M, Karaman I, Climaco Pinto R, Ala-Korpela M, Handakas E, Fiorito G, Gao H, Heard A, Jarvelin M, Lewis M, Pazoki R, Polidoro S, Tzoulaki I, Wielscher M, Elliott P, Vineis P. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging Cell 2020; 19:e13149. [PMID: 32363781 PMCID: PMC7294785 DOI: 10.1111/acel.13149] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 01/08/2023] Open
Abstract
Markers of biological aging have potential utility in primary care and public health. We developed a model of age based on untargeted metabolic profiling across multiple platforms, including nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry in urine and serum, within a large sample (N = 2,239) from the UK Airwave cohort. We validated a subset of model predictors in a Finnish cohort including repeat measurements from 2,144 individuals. We investigated the determinants of accelerated aging, including lifestyle and psychological risk factors for premature mortality. The metabolomic age model was well correlated with chronological age (mean r = .86 across independent test sets). Increased metabolomic age acceleration (mAA) was associated after false discovery rate (FDR) correction with overweight/obesity, diabetes, heavy alcohol use and depression. DNA methylation age acceleration measures were uncorrelated with mAA. Increased DNA methylation phenotypic age acceleration (N = 1,110) was associated after FDR correction with heavy alcohol use, hypertension and low income. In conclusion, metabolomics is a promising approach for the assessment of biological age and appears complementary to established epigenetic clocks.
Collapse
Affiliation(s)
- Oliver Robinson
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Marc Chadeau Hyam
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Ibrahim Karaman
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Rui Climaco Pinto
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of MedicineUniversity of Oulu and Biocenter OuluOuluFinland
- NMR Metabolomics LaboratorySchool of Pharmacy, University of Eastern FinlandKuopioFinland
| | - Evangelos Handakas
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Giovanni Fiorito
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
- Laboratory of BiostatisticsDepartment of Biomedical SciencesUniversity of SassariSassariItaly
- Italian Institute for Genomic Medicine (IIGM, former HuGeF)CandioloItaly
| | - He Gao
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Andy Heard
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Marjo‐Riitta Jarvelin
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
- Center for Life Course Health ResearchFaculty of MedicineUniversity of Oulu and Unit of Primary Health CareOulu University HospitalOuluFinland
- Department of Life SciencesCollege of Health and Life SciencesBrunel University LondonUxbridgeUK
| | - Matthew Lewis
- National Phenome CentreDepartment of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Raha Pazoki
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
- Department of Life SciencesCollege of Health and Life SciencesBrunel University LondonUxbridgeUK
| | - Silvia Polidoro
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
- Italian Institute for Genomic Medicine (IIGM, former HuGeF)CandioloItaly
| | - Ioanna Tzoulaki
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Matthias Wielscher
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Paul Elliott
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
| | - Paolo Vineis
- MRC Centre for Environment and HealthDepartment of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonLondonUK
- Italian Institute for Genomic Medicine (IIGM, former HuGeF)CandioloItaly
| |
Collapse
|
7
|
Aksoz E, Korkut O, Aksit D, Gokbulut C. Vitamin E (α‐, β + γ‐ and δ‐tocopherol) levels in plant oils. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elif Aksoz
- Department of Medical Pharmacology Faculty of Medicine Balikesir University Balikesir Turkey
| | - Oguzhan Korkut
- Department of Medical Pharmacology Faculty of Medicine Balikesir University Balikesir Turkey
| | - Dilek Aksit
- Department of Pharmacology and Toxicology Faculty of Veterinary Balikesir University Balikesir Turkey
| | - Cengiz Gokbulut
- Department of Medical Pharmacology Faculty of Medicine Balikesir University Balikesir Turkey
| |
Collapse
|
8
|
Krief F, Simon C, Goldstein R, Ellenberg LP, Ledee N. Efficacy of tocopherol and pentoxifylline combined therapy for women undergoing assisted reproductive treatment with poor endometrial development: a retrospective cohort study on 143 patients. HUM FERTIL 2019; 24:367-375. [PMID: 31597488 DOI: 10.1080/14647273.2019.1673906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Poor endometrial development during in vitro fertilization remains challenging. Indeed, no broadly accepted definition of poor endometrial development exists, and no treatment has shown any improvement in the condition. The aim of this study was to analyze whether treatment with a combination of pentoxifylline and tocopherol increases endometrial volume. This monocentric and retrospective study includes patients with previous miscarriages, in vitro fertilization failure, or poor endometrial development. The patients had an ultrasonography during the mid-luteal phase to assess both endometrial thickness and endometrial volume (EV). If the volume was less than 2 mL, they were given pentoxifylline (PTX) and tocopherol for at least 2 months before a second ultrasound assessment. One hundred and forty-four patients were analyzed. The mean duration of treatment was 132 days. The combination of tocopherol and PTX significantly increased the EV by 0.47 mL (p < 0.0001; 95% CI 0.38-0.57). The mean ± SD EV was 1.34 ± 0.38 mL and 1.82 ± 0.63 mL before and after the treatment respectively. No data concerning pregnancy rates were interpretable. We showed an improvement of poor endometrial proliferation with a treatment including PTX and tocopherol. These promising results should be followed up by a prospective study.
Collapse
Affiliation(s)
- Fabien Krief
- Service de Médecine de la Reproduction, Hôpital Jean Verdier APHP , Bondy , France
| | - Cynthia Simon
- Service de Médecine de la Reproduction, Hôpital Paul de Viguier , Toulouse , France
| | | | - Laura Prat Ellenberg
- Service de Médecine de la Reproduction, Hôpital Pierre Rouques Les Bluets , Paris , France
| | - Nathalie Ledee
- Service de Médecine de la Reproduction, Hôpital Pierre Rouques Les Bluets , Paris , France
| |
Collapse
|
9
|
α-Tocopherol Protects the Heart, Muscles, and Testes from Lipid Peroxidation in Growing Male Rats Subjected to Physical Efforts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8431057. [PMID: 33927795 PMCID: PMC8051519 DOI: 10.1155/2019/8431057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022]
Abstract
The effect of α-tocopherol supplementation on adaptation to training is still equivocal. The aim of the study was to determine the effect of training and α-tocopherol supplementation on α-tocopherol and thiobarbituric acid reactive substance (TBARS) concentration in the rat liver, heart, muscles, and testes. Male Wistar rats (n = 32) were divided into four groups (nonsupplemented, not trained—C; nonsupplemented, trained—CT; supplemented, not trained—E; supplemented and trained—ET). During the 14-day experimental period, 2 mg/d of vitamin E as α-tocopherol acetate was administered to the animals (groups E and ET). Rats in the training group (CT and ET) were subjected to 15 minutes of treadmill running each day. The α-tocopherol levels in rat tissues were assessed using high-performance liquid chromatography (HPLC). Lipid peroxides were determined by TBARS spectrophotometric method. α-Tocopherol had a significant impact on α-tocopherol concentration in all tissues. Training increased the α-tocopherol concentration in the heart and muscles but reduced it in the liver. Training also caused increased lipid peroxidation in the muscles, heart, and testes; but a higher α-tocopherol content in tissues reduced the TBARS level. The main finding of the study is that impaired α-tocopherol status and its adequate intake is needed to maintain optimal status to prevent damage to the skeletal and cardiac muscles as well as the testes in growing individuals.
Collapse
|
10
|
Alqudah MA, Al-Ashwal FY, Alzoubi KH, Alkhatatbeh M, Khabour O. Vitamin E protects human lymphocytes from genotoxicity induced by oxaliplatin. Drug Chem Toxicol 2017; 41:281-286. [DOI: 10.1080/01480545.2017.1384835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohammad A.Y. Alqudah
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Fahmi Y. Al-Ashwal
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alkhatatbeh
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
11
|
Abdel-Hafez SH, Abdelwahab AB, Kirsch G. Design, synthesis and cytotoxic activity of vitamin E bearing selenium compounds against human breast cancer cell line (MCF-7). PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1333505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shams H. Abdel-Hafez
- Chemistry Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | | | | |
Collapse
|
12
|
Nematbakhsh M, Pezeshki Z, Eshraghi Jazi F, Mazaheri B, Moeini M, Safari T, Azarkish F, Moslemi F, Maleki M, Rezaei A, Saberi S, Dehghani A, Malek M, Mansouri A, Ghasemi M, Zeinali F, Zamani Z, Navidi M, Jilanchi S, Shirdavani S, Ashrafi F. Cisplatin-Induced Nephrotoxicity; Protective Supplements and Gender Differences. Asian Pac J Cancer Prev 2017; 18:295-314. [PMID: 28345324 PMCID: PMC5454720 DOI: 10.22034/apjcp.2017.18.2.295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cisplatin (CDDP) has been widely used as a chemotherapeutic agent for solid tumors. The most common side effect of CDDP is nephrotoxicity, and many efforts have been made in the laboratory and the clinic to employ candidate adjuvants to CDDP to minimize this adverse influence. Many synthetic and herbal antioxidants as well as trace elements have been investigated for this purpose in recent years and a variety of positive and negative results have been yielded. However, no definitive supplement has so far been proposed to prevent CDDP-induced nephrotoxicity; however, this condition is gender related and the sex hormone estrogen may protect the kidney against CDDP damage. In this review, the results of research related to the effect of different synthetic and herbal antioxidants supplements are presented and discussed with suggestions included for future work.
Collapse
Affiliation(s)
- Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran. *
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ladeira C, Pádua M, Veiga L, Viegas S, Carolino E, Gomes MC, Brito M. Influence of Serum Levels of Vitamins A, D, and E as well as Vitamin D Receptor Polymorphisms on Micronucleus Frequencies and Other Biomarkers of Genotoxicity in Workers Exposed to Formaldehyde. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 8:205-14. [PMID: 26987125 DOI: 10.1159/000444486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/05/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Formaldehyde is classified as carcinogenic to humans, making it a major concern, particularly in occupational settings. Fat-soluble vitamins, such as vitamins A, D, and E, are documented as antigenotoxic and antimutagenic and also correlate with the cell antioxidant potential. This study investigates the influence of these vitamins on genotoxicity biomarkers of formaldehyde-exposed hospital workers. METHODS The target population were hospital workers exposed to formaldehyde (n = 55). Controls were nonexposed individuals (n = 80). The most used genotoxicity biomarkers were the cytokinesis-block micronucleus assay for lymphocytes and the micronucleus test for exfoliated buccal cells. Vitamins A and E were determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD) and vitamin D receptor (VDR) polymorphisms by real-time PCR. RESULTS Significant correlations were found between genotoxicity biomarkers and between vitamins A and E in controls. Multiple regression showed that vitamin A was significantly associated with a higher mean of nucleoplasmic bridges (p < 0.001), and vitamin E was significantly associated with a decreased frequency of nuclear buds (p = 0.045) in the exposed group. No effect of vitamin D was observed. The VDRBsmI TT genotype carriers presented higher means of all the genotoxicity biomarkers; however, we found no significant associations. CONCLUSIONS The study suggests that vitamin levels may modulate direct signs of genotoxicity.
Collapse
Affiliation(s)
- Carina Ladeira
- Environment and Health Research Group, Escola Superior de Tecnologia da Sax00FA;de de Lisboa - IPL, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
14
|
Soloneski S, Nikoloff N, Larramendy ML. Analysis of possible genotoxicity of the herbicide flurochloridone and its commercial formulations: Endo III and Fpg alkaline comet assays in Chinese hamster ovary (CHO-K1) cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 797:46-52. [DOI: 10.1016/j.mrgentox.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/27/2022]
|
15
|
Rondanelli M, Faliva MA, Peroni G, Moncaglieri F, Infantino V, Naso M, Perna S. Focus on Pivotal Role of Dietary Intake (Diet and Supplement) and Blood Levels of Tocopherols and Tocotrienols in Obtaining Successful Aging. Int J Mol Sci 2015; 16:23227-49. [PMID: 26404241 PMCID: PMC4632695 DOI: 10.3390/ijms161023227] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/14/2022] Open
Abstract
Numerous specific age-related morbidities have been correlated with low intake and serum levels of tocopherols and tocotrienols. We performed a review in order to evaluate the extant evidence regarding: (1) the association between intake and serum levels of tocopherols and tocotrienols and age-related pathologies (osteoporosis, sarcopenia and cognitive impairment); and (2) the optimum diet therapy or supplementation with tocopherols and tocotrienols for the treatment of these abnormalities. This review included 51 eligible studies. The recent literature underlines that, given the detrimental effect of low intake and serum levels of tocopherols and tocotrienols on bone, muscle mass, and cognitive function, a change in the lifestyle must be the cornerstone in the prevention of these specific age-related pathologies related to vitamin E-deficient status. The optimum diet therapy in the elderly for avoiding vitamin E deficiency and its negative correlates, such as high inflammation and oxidation, must aim at achieving specific nutritional goals. These goals must be reached through: accession of the elderly subjects to specific personalized dietary programs aimed at achieving and/or maintaining body weight (avoid malnutrition); increase their intake of food rich in vitamin E, such as derivatives of oily seeds (in particular wheat germ oil), olive oil, hazelnuts, walnuts, almonds, and cereals rich in vitamin E (such as specific rice cultivar rich in tocotrienols) or take vitamin E supplements. In this case, vitamin E can be correctly used in a personalized way either for the outcome from the pathology or to achieve healthy aging and longevity without any adverse effects.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia 27100, Italy.
| | - Milena Anna Faliva
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia 27100, Italy.
| | - Gabriella Peroni
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia 27100, Italy.
| | - Francesca Moncaglieri
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia 27100, Italy.
| | - Vittoria Infantino
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia 27100, Italy.
| | - Maurizio Naso
- Faculty of Medicine and Surgery, Department of Clinical Sciences, University of Milano, Milan 20100, Italy.
| | - Simone Perna
- Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia 27100, Italy.
| |
Collapse
|
16
|
Concentration of selected fatty acids, fat-soluble vitamins and β-carotene in late lactation mares' milk. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
The impact of uterine radiation on subsequent fertility and pregnancy outcomes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:482968. [PMID: 25165706 PMCID: PMC4140124 DOI: 10.1155/2014/482968] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/19/2014] [Indexed: 11/29/2022]
Abstract
Future fertility is of paramount importance to younger cancer survivors. Advances in assisted reproductive technology mean that young women treated with radiation involving the uterus may require clinical guidance regarding whether to attempt a pregnancy themselves. We performed a review of the literature regarding radiation involving uterus (total body irradiation (TBI) and pelvic radiation), fertility, and pregnancy outcomes to come up with a recommendation for our patients. Limited evidence suggests lower fecundity and an increased incidence of pregnancy complications after uterine radiation. Higher radiation doses and direct uterine radiation both significantly increase the risk of an adverse pregnancy outcome. Uterine radiation doses of <4 Gy do not appear to impair uterine function. Adult TBI data (usually 12 Gy) suggest pregnancy is possible but with lower fecundity and more complications. Although there is no clear data indicating the dose of radiation to the uterus, above which a pregnancy would not be sustainable, we suggest patients receiving >45 Gy during adulthood and >25 Gy in childhood be counselled to avoid attempting pregnancy. There is preliminary evidence that menopausal hormone therapy and a combination of pentoxifylline and tocopherol may improve uterine function following irradiation.
Collapse
|
18
|
Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res Rev 2014; 14:81-101. [PMID: 24418256 DOI: 10.1016/j.arr.2014.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Aging is a complex biological phenomenon in which the deficiency of the nutritional state combined with the presence of chronic inflammation and oxidative stress contribute to the development of many age-related diseases. Under this profile, the free radicals produced by the oxidative stress lead to a damage of DNA, lipids and proteins with subsequent altered cellular homeostasis and integrity. In young-adult age, the cell has a complex efficient system to maintain a proper balance between the levels of free radicals and antioxidants ensuring the integrity of cellular components. In contrast, in old age this balance is poorly efficient compromising cellular homeostasis. Supplementation with Vitamin E can restore the balance and protect against the deteriorating effects of oxidative stress, progression of degenerative diseases, and aging. Experiments in cell cultures and in animals have clearly shown that Vitamin E has a pivotal role as antioxidant agent against the lipid peroxidation on cell membranes preserving the tissue cells from the oxidative damage. Such a role has been well documented in immune, endothelial, and brain cells from old animals describing how the Vitamin E works both at cytoplasmatic and nuclear levels with an influence on many genes related to the inflammatory/immune response. All these findings have supported a lot of clinical trials in old humans and in inflammatory age-related diseases with however contradictory and inconsistent results and even indicating a dangerous role of Vitamin E able to affect mortality. Various factors can contribute to all the discrepancies. Among them, the doses and the various isoforms of Vitamin E family (α,β,γ,δ tocopherols and the corresponding tocotrienols) used in different trials. However, the more plausible gap is the poor consideration of the Vitamin E-gene interactions that may open new roadmaps for a correct and personalized Vitamin E supplementation in aging and age-related diseases with satisfactory results in order to reach healthy aging and longevity. In this review, this peculiar nutrigenomic and/or nutrigenetic aspect is reported and discussed at the light of specific polymorphisms affecting the Vitamin E bioactivity.
Collapse
|
19
|
Matough FA, Budin SB, Hamid ZA, Abdul-Rahman M, Al-Wahaibi N, Mohammed J. Tocotrienol-rich fraction from palm oil prevents oxidative damage in diabetic rats. Sultan Qaboos Univ Med J 2014; 14:e95-e103. [PMID: 24516761 DOI: 10.12816/0003342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/29/2013] [Accepted: 09/22/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES This study was carried out to determine the effects of tocotrienol-rich fraction (TRF) (200 mg/Kg) on biomarkers of oxidative stress on erythrocyte membranes and leukocyte deoxyribonucleic acid (DNA) damage in streptozotocin (STZ)-induced diabetic rats. METHODS Male rats (n = 40) were divided randomly into four groups of 10: a normal group; a normal group with TRF; a diabetic group, and a diabetic group with TRF. Following four weeks of treatment, fasting blood glucose (FBG) levels, oxidative stress markers and the antioxidant status of the erythrocytes were measured. RESULTS FBG levels for the STZ-induced diabetic rats were significantly increased (P <0.001) when compared to the normal group and erythrocyte malondialdehyde levels were also significantly higher (P <0.0001) in this group. Decreased levels of reduced glutathione and increased levels of oxidised glutathione (P <0.001) were observed in STZ-induced diabetic rats when compared to the control group and diabetic group with TRF. The results of the superoxide dismutase and glutathione peroxidase activities were significantly lower in the STZ-induced diabetic rats than in the normal group (P <0.001). The levels of DNA damage, measured by the tail length and tail moment of the leukocyte, were significantly higher in STZ-induced diabetic (P <0.0001). TRF supplementation managed to normalise the level of DNA damage in diabetic rats treated with TRF. CONCLUSION Daily supplementation with 200 mg/Kg of TRF for four weeks was found to reduce levels of oxidative stress markers by inhibiting lipid peroxidation and increasing the levels of antioxidant status in a prevention trial for STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Fatmah A Matough
- Department of Biology, Faculty of Science, Sabha University, Sabha, Libya
| | - Siti B Budin
- Programme of Biomedical Sciences, School of Diagnostic Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malayasia
| | - Zariyantey A Hamid
- Programme of Biomedical Sciences, School of Diagnostic Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malayasia
| | - Mariati Abdul-Rahman
- Department of Clinical Oral Biology, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malayasia
| | - Nasar Al-Wahaibi
- Department of Pathology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Jamaludine Mohammed
- Programme of Biomedical Sciences, School of Diagnostic Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malayasia
| |
Collapse
|
20
|
Fenech MF. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control. Cancer Treat Res 2014; 159:427-441. [PMID: 24114494 DOI: 10.1007/978-3-642-38007-5_24] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.
Collapse
Affiliation(s)
- Michael F Fenech
- CSIRO Food and Nutritional Sciences, 10041, Adelaide BC, SA, 5000, Australia,
| |
Collapse
|
21
|
Kontek R, Jakubczak M, Matlawska-Wasowska K. The antioxidants, vitamin A and E but not vitamin C and melatonin enhance the proapoptotic effects of irinotecan in cancer cells in vitro. Toxicol In Vitro 2013; 28:282-91. [PMID: 24287113 DOI: 10.1016/j.tiv.2013.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 12/17/2022]
Abstract
Irinotecan is one of the camptothecin analog which has been shown to have a broad spectrum of antitumor activities against various malignancies. The aim of this study was to evaluate the effect of vitamin A, C, E and melatonin on proapoptotic activity of irinotecan in human cancer cells in vitro. We observed that irinotecan induced apoptosis in all types of analyzed cell lines when used as a single agent. Combination of selected antioxidants with various doses of irinotecan (7.5-60μM) resulted in significant increase in apoptotic cell death in A549 and HT29 cancer cell lines. The highest killing efficiency was observed after co-incubation of the cells with irinotecan and vitamin A (10μM), or vitamin E (25μM), respectively. The addition of vitamin C and melatonin to irinotecan treatment did not promote increase in killing of cancer cells. Our results indicate that some antioxidants can enhance the proapoptoic activity (properties) of irinotecan in human cancer cells in vitro. These findings may be supportive for the optimization of therapeutic efficacy of irinotecan treatment.
Collapse
Affiliation(s)
- Renata Kontek
- University of Lodz, Department of General Genetics, Molecular Biology and Biotechnology, Laboratory of Cytogenetics, Lodz, Poland.
| | - Marta Jakubczak
- University of Lodz, Department of General Genetics, Molecular Biology and Biotechnology, Laboratory of Cytogenetics, Lodz, Poland
| | - Ksenia Matlawska-Wasowska
- University of New Mexico Health Sciences Center, Department of Pediatrics, Division of Hematology and Oncology, Albuquerque, NM, USA
| |
Collapse
|
22
|
Arigony ALV, de Oliveira IM, Machado M, Bordin DL, Bergter L, Prá D, Pêgas Henriques JA. The influence of micronutrients in cell culture: a reflection on viability and genomic stability. BIOMED RESEARCH INTERNATIONAL 2013; 2013:597282. [PMID: 23781504 PMCID: PMC3678455 DOI: 10.1155/2013/597282] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022]
Abstract
Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.
Collapse
Affiliation(s)
- Ana Lúcia Vargas Arigony
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Iuri Marques de Oliveira
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Miriana Machado
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Diana Lilian Bordin
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Lothar Bergter
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Prá
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- PPG em Promoção da Saúde, Universidade de Santa Cruz do Sul (UNISC), Avenida Independência 2293, 96815-900 Santa Cruz do Sul, RS, Brazil
| | - João Antonio Pêgas Henriques
- Laboratório de Reparação de DNA em Eucariotos, Departamento de Biofísica/Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43422, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Educação para Pesquisa, Desenvolvimento e Inovação Tecnológica—ROYAL, Unidade GENOTOX—ROYAL, Centro de Biotecnologia, UFRGS, Avenida Bento Gonçalves 9500, Prédio 43421, Setor IV, Campus do Vale, 91501-970 Porto Alegre, RS, Brazil
- Instituto de Biotecnologia, Departamento de Ciências Biomédicas, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| |
Collapse
|
23
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
24
|
Martysiak-Żurowska D, Szlagatys-Sidorkiewicz A, Zagierski M. Concentrations of alpha- and gamma-tocopherols in human breast milk during the first months of lactation and in infant formulas. MATERNAL AND CHILD NUTRITION 2012; 9:473-82. [PMID: 22513202 DOI: 10.1111/j.1740-8709.2012.00401.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to determine the concentrations of alpha- and gamma-tocopherols in human breast milk samples from different periods of lactation and to compare them with tocopherol content in commercially available formulas for infants at corresponding ages. The study included 93 breast milk samples obtained on the 2nd (colostrum, n = 17), 14th (n = 30), 30th (n = 27) and 90th day of lactation (n = 19), along with 90 samples of commercially available initial and follow-on infant formulas. Concentrations of tocopherols were determined using normal-phase high-performance liquid chromatography. Depending on the stage of lactation, human breast milk contained 2.07-9.99 mg L⁻¹ of alpha-tocopherol and 0.22-0.60 mg L⁻¹ of gamma-tocopherol. Breast milk concentrations of alpha-tocopherol decreased with the time of lactation, while significant differences in gamma-tocopherol concentration were observed only between the 14th and 30th day of lactation. There was no significant correlation between the dietary intake of vitamin E and its estimated breast milk concentration, also in women who declared vitamin supplementation. Compared with colostrum, infant formulas were characterised by significantly lower concentrations of alpha-tocopherol and vitamin E. This finding indicates the need of additional vitamin E supplementation of bottle-fed infants during the initial 2-3 days of life.
Collapse
Affiliation(s)
- Dorota Martysiak-Żurowska
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland Department of Pediatrics, Gastroenterology, Hepatology and Nutrition, Medical University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
25
|
Al-Malki AL, Moselhy SS. Protective effect of vitamin E and epicatechin against nicotine-induced oxidative stress in rats. Toxicol Ind Health 2012; 29:202-8. [PMID: 22287617 DOI: 10.1177/0748233711430976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nicotine is a major pharmacologically active and addictive component of tobacco smoke, which is regarded to be a primary risk factor in the development of cardiovascular and pulmonary diseases. Epicatechin is one of the most potent antioxidants present in the human diet. Particularly high levels of this compound are found in tea, apples and chocolate. It has been reported that tea extracts and/or its constituents have antibacterial, antiviral, antioxidative, antitumor and antimutagenic activities. Vitamin E is a major lipid-soluble antioxidant vitamin and free radical scavenger, presents as an integral component of cellular membranes and has important biological functions. The primary mechanism by which vitamin E is proposed to prevent cancer is through their antioxidant properties. The goal of this study is to evaluate the effect of epicatechin alone or combined with vitamin E in inhibiting the oxidative stress induced by nicotine in rats. Results obtained indicated that there was a significant elevation in the levels of malondialdhyde (MDA) in nicotine injected rats. The combined treatment (epicatechin + Vit E) group showed a potential reduction of these parameters more than individual treatment. The activities of superoxide dismutase, catalase and glutathione peroxidase were found significantly higher in combined treated than untreated rats. In nicotine group, a negative significant correlation between reduced glutathione and MDA (r = -0.92) was observed. In conclusion, these results suggested that the supplementation of diet with epicatechin and vitamin E provided antioxidant defense with strong chemopreventive activity against nicotine-induced carcinogenesis.
Collapse
Affiliation(s)
- Abdulrahman L Al-Malki
- Biochemistry Department, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
26
|
Al-Malki AL, Moselhy SS, Refai MY. Synergistic effect of lycopene and tocopherol against oxidative stress and mammary tumorigenesis induced by 7,12-dimethyl[a]benzanthracene in female rats. Toxicol Ind Health 2011; 28:542-8. [DOI: 10.1177/0748233711416948] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is one of the most serious problems in oncology. We investigated the antitumor potential of lycopene (Lyco) alone or combined with tocopherol (Lyco + Toco) for 90 days against a single oral dose of (50 mg/kg body weight) 7,12-dimethyl[ a]benzanthracene (DMBA)-induced oxidative stress and mammary carcinogenesis in female rats. The treatment protocol started from the day immediately after DMBA administration. Results obtained indicated that there was a significant elevation in the levels of malondialdehyde (MDA) and nitric oxide (NO) in serum and breast tissues of DMBA-injected rats. The combined treatment (Lyco + Toco) group showed a potential reduction of these parameters more than Lyco alone group. The activities of superoxide dismutase, catalase, and glutathione peroxidase were found to be significantly higher when compared to rats treated with Lyco alone. In DMBA group, a positive significant correlation between NO and MDA ( r = 0.92) was observed. Histopathological examination revealed the formation of tumor and angiogenesis in DMBA-induced rats and these abnormal changes were ameliorated by combined treatment with Lyco + Toco. In conclusion, these results suggested that supplementation of diet with Lyco and Toco provided antioxidant defense, with strong chemopreventive activity against DMBA-induced mammary tumors.
Collapse
Affiliation(s)
| | - Said S Moselhy
- Biochemistry Department, King Abdul-Aziz University, KSA, Jeddah
- Ain Shams University, Cairo, Egypt
| | - Mohammed Y Refai
- Biochemistry Department, King Abdul-Aziz University, KSA, Jeddah
| |
Collapse
|
27
|
Fenech M. Current Knowledge and Strategies to Determine Dietary Reference Values for DNA Damage Prevention. Genes Environ 2011. [DOI: 10.3123/jemsge.33.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Fenech MF. Nutriomes and nutrient arrays - the key to personalised nutrition for DNA damage prevention and cancer growth control. Genome Integr 2010; 1:11. [PMID: 20704708 PMCID: PMC2927499 DOI: 10.1186/2041-9414-1-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/12/2010] [Indexed: 11/26/2022] Open
Abstract
DNA damage at the base-sequence, epigenome and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability and DNA repair. In this paper I describe and propose the use of high-throughput nutrient array systems with high content analysis diagnostics of DNA damage, cell death and cell growth for defining, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control.
Collapse
Affiliation(s)
- Michael F Fenech
- CSIRO Food and Nutritional Sciences, PO Box 10041 Adelaide BC, SA, 5000, Australia.
| |
Collapse
|
29
|
Erkekoglu P, Baydar T. Evaluation of the protective effect of ascorbic acid on nitrite- and nitrosamine-induced cytotoxicity and genotoxicity in human hepatoma line. Toxicol Mech Methods 2010; 20:45-52. [PMID: 20100056 DOI: 10.3109/15376510903583711] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitrites are ubiquitous environmental contaminants present in drinking water and foods. Nitrosamines can be formed endogenously from nitrate and nitrite and secondary amines or may be present in food, tobacco smoke, and drinking water. The major goal of this work was to evaluate the cytotoxic, reactive oxygen species (ROS)-producing and genotoxic effects of nitrite and nitrosamines and the possible protection by ascorbic acid in HepG2 cells. It was found that nitrite, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), and N-nitrosomorpholine (NMOR) decreased cell viability, increased intracellular ROS production, and caused genotoxicity. Compared to untreated cells as determined by alkaline Comet assay, nitrite, NDMA, NDEA, and NMOR raised the tail intensity up to 1.18-, 3.79-, 4.24-, and 4.16-fold, respectively. Ascorbic acid (AA, 10 microM) increased cell viability and reduced ROS production significantly (p < 0.05). Additionally, AA treatment decreased the tail intensity caused by nitrite, NDMA, NDEA, and NMOR to 33.74%, 58.6%, 44.32%, and 43.97%, respectively. It can be concluded that ascorbic acid was able to reduce both tail intensity and tail moment in all of the nitrosamine treatments, particularly in NDMA. AA protected HepG2 cells against genotoxic effects caused by nitrosamines. This protection might be through different mechanisms, some of which are not still understood in depth. The future interest will be to understand which pathways are influenced by antioxidants, particularly by AA, and the outcomes of this prevention in other cell line types.
Collapse
Affiliation(s)
- Pinar Erkekoglu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | | |
Collapse
|
30
|
Fenech MF. Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. Am J Clin Nutr 2010; 91:1438S-1454S. [PMID: 20219957 DOI: 10.3945/ajcn.2010.28674d] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Damage to the genome is recognized as a fundamental cause of developmental and degenerative diseases. Several micronutrients play an important role in protecting against DNA damage events generated through endogenous and exogenous factors by acting as cofactors or substrates for enzymes that detoxify genotoxins as well as enzymes involved in DNA repair, methylation, and synthesis. In addition, it is evident that either micronutrient deficiency or micronutrient excess can modify genome stability and that these effects may also depend on nutrient-nutrient and nutrient-gene interaction, which is affected by genotype. These observations have led to the emerging science of genome health nutrigenomics, which is based on the principle that DNA damage is a fundamental cause of disease that can be diagnosed and nutritionally prevented on an individual, genetic subgroup, or population basis. In this article, the following topics are discussed: 1) biomarkers used to study genome damage in humans and their validation, 2) evidence for the association of genome damage with developmental and degenerative disease, 3) current knowledge of micronutrients required for the maintenance of genome stability in humans, 4) the effect of nutrient-nutrient and nutrient-genotype interaction on DNA damage, and 5) strategies to determine dietary reference values of single micronutrients and micronutrient combinations (nutriomes) on the basis of DNA damage prevention. This article also identifies important knowledge gaps and future research directions required to shed light on these issues. The ultimate goal is to match the nutriome to the genome to optimize genome maintenance and to prevent pathologic amounts of DNA damage.
Collapse
Affiliation(s)
- Michael F Fenech
- Commonwealth Scientific and Industrial Research Organisation Food and Nutritional Sciences, Adelaide BC SA 5000, Australia.
| |
Collapse
|
31
|
Cooke MS, Evans MD, Mistry N, Lunec J. Role of dietary antioxidants in the prevention of in vivo oxidative DNA damage. Nutr Res Rev 2009; 15:19-42. [PMID: 19087397 DOI: 10.1079/nrr200132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence consistently shows that diets high in fresh fruit and vegetables significantly lower cancer risk. Given the postulated role of oxidative DNA damage in carcinogenesis, the assumption has been made that it is the antioxidant properties of food constituents, such as vitamin C, E and carotenoids, which confer protection. However, epidemiological studies with specific antioxidants, either singly or in combination, have not, on the whole, supported this hypothesis. In contrast, studies examining the in vitro effect of antioxidants upon oxidative DNA damage have generally been supportive, in terms of preventing damage induction. The same, however, cannot be said for the in vivo intervention studies where overall the results have been equivocal. Nevertheless, recent work has suggested that some dietary antioxidants may confer protective properties through a novel mechanism, unrelated to their conventional free-radical scavenging abilities. Upregulation of antioxidant defence, xenobiotic metabolism, or DNA-repair genes may all limit cellular damage and hence promote maintenance of cell integrity. However, until further work has clarified whether dietary supplementation with antioxidants confers a reduced risk of cancer and the mechanism by which this effect is exerted, the recommendation for a diet rich in fruit and vegetables remains valid empirically.
Collapse
Affiliation(s)
- M S Cooke
- Oxidative Stress Group, Division of Chemical Pathology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE2 7LX, UK.
| | | | | | | |
Collapse
|
32
|
Abstract
There is a growing awareness that natural vitamins (with the only exception of pantothenic acid) positively or negatively modulate the synthesis of some cytokines and growth factors in the CNS, and various mammalian cells and organs. As natural vitamins are micronutrients in the human diet, studying their effects can be considered a part of nutritional genomics or nutrigenomics. A given vitamin selectively modifies the synthesis of only a few cytokines and/or growth factors, although the same cytokine and/or growth factor may be regulated by more than one vitamin. These effects seem to be independent of the effects of vitamins as coenzymes and/or reducing agents, and seem to occur mainly at genomic and/or epigenetic level, and/or by modulating NF-kappaB activity. Although most of the studies reviewed here have been based on cultured cell lines, but their findings have been confirmed by some key in vivo studies. The CNS seems to be particularly involved and is severely affected by most avitaminoses, especially in the case of vitamin B(12). However, the vitamin-induced changes in cytokine and growth factor synthesis may initiate a cascade of events that can affect the function, differentiation, and morphology of the cells and/or structures not only in the CNS, but also elsewhere because most natural vitamins, cytokines, and growth factors cross the blood-brain barrier. As cytokines are essential to CNS-immune and CNS-hormone system communications, natural vitamins also interact with these circuits. Further studies of such vitamin-mediated effects could lead to vitamins being used for the treatment of diseases which, although not true avitaminoses, involve an imbalance in cytokine and/or growth factor synthesis.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Laboratory of Neuropathology, 'Città Studi' Department, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.
| |
Collapse
|
33
|
Domenici FA, Vannucchi MTI, Jordão AA, Meirelles MSS, Vannucchi H. DNA Oxidative Damage in Patients with Dialysis Treatment. Ren Fail 2009; 27:689-94. [PMID: 16350819 DOI: 10.1080/08860220500242678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND/AIMS Chronic renal patients on hemodialysis (HD) and peritoneal dialysis (PD) treatment are exposed to oxidative stress and DNA damage. The objective of this study was to assess the oxidative damage to DNA in end-stage chronic renal failure, before and after vitamin E supplementation. METHODS Patients on HD (n=29) and PD (n=22) received oral supplementation with 300 mg vitamin E three times a week for 4 weeks. A blood sample was collected at the beginning and at the end of the supplementation cycle for the determination of vitamin E levels (high-performance liquid chromatography), carbonyl groups, and DNA damage (8-hydroxy 2'-deoxyguanosine [8-OHdG] and comet assay). RESULTS After supplementation, vitamin E concentration was increased by about 50%. Protein oxidation was initially observed in both groups, with a reduction after supplementation. DNA damage detected by the comet assay and by 8-OHdG analysis was significantly reduced (p<0.05) after supplementation in both groups. CONCLUSIONS Vitamin E supplementation reduced oxidative DNA damage in both HD and PD patients. Treatments such as HD and PD induce oxidative stress and consequent DNA damage, and increased plasma vitamin E levels significantly contribute to the normalization of these events.
Collapse
|
34
|
Marko MG, Pang HJE, Ren Z, Azzi A, Huber BT, Bunnell SC, Meydani SN. Vitamin E reverses impaired linker for activation of T cells activation in T cells from aged C57BL/6 mice. J Nutr 2009; 139:1192-7. [PMID: 19403707 PMCID: PMC2714384 DOI: 10.3945/jn.108.103416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Supplemental vitamin E alleviates age-related defects in interleukin (IL)-2 production, T cell proliferation, and immune synapse formation. Here, we evaluated the effect of in vitro supplementation with 46 mumol/L of vitamin E on T cell receptor-proximal signaling events of CD4(+) T cells from young (4-6 mo) and old (22-26 mo) C57BL mice. Aged murine CD4(+) T cells stimulated via CD3 and CD28, tyrosine 191 of the adaptor protein Linker for Activation of T cells (LAT), was hypo-phosphorylated. Supplementation with vitamin E eliminated this difference in the tyrosine phosphorylation of LAT. By using a flow cytometric assay, the age-related differences in the activation-induced phosphorylation of LAT were observed in both naïve and memory T cell subsets. In addition, supplementation with vitamin E eliminates the age-related differences in LAT phosphorylation in both T cell subsets. Neither age nor vitamin E supplementation altered the fraction of LAT entering the membrane compartment. Furthermore, neither age nor vitamin E influenced the phosphorylation of Lck and Zap70, indicating that associated changes in LAT phosphorylation were not caused by alterations in activation states of the upstream kinases Lck and Zap70.
Collapse
Affiliation(s)
- Melissa G. Marko
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Hoan-Jen E. Pang
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Zhihong Ren
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Angelo Azzi
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Brigitte T. Huber
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Stephen C. Bunnell
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 and Department of Pathology, Sackler Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
35
|
Fenech M. Nutritional treatment of genome instability: a paradigm shift in disease prevention and in the setting of recommended dietary allowances. Nutr Res Rev 2009; 16:109-22. [DOI: 10.1079/nrr200359] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Battershill JM, Burnett K, Bull S. Factors affecting the incidence of genotoxicity biomarkers in peripheral blood lymphocytes: impact on design of biomonitoring studies. Mutagenesis 2008; 23:423-37. [DOI: 10.1093/mutage/gen040] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
37
|
Maliakel DM, Kagiya TV, Nair CKK. Prevention of cisplatin-induced nephrotoxicity by glucosides of ascorbic acid and alpha-tocopherol. ACTA ACUST UNITED AC 2008; 60:521-7. [PMID: 18644706 DOI: 10.1016/j.etp.2008.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cisplatin is one of the most widely used cytotoxic therapeutic agents for the treatment of cancer. This drug, at effective higher doses, causes many physiological adverse effects such as nephrotoxicity and genotoxicity. The toxicity of the drug has been attributed to the induction of oxidative free radicals. METHODS Following intraperitoneal administration of cisplatin and ascorbic acid monoglucoside (AsAG) or alpha-tocopherol monoglucoside (TMG), investigations were conducted on levels of serum urea and creatinine, peroxidation of lipids in renal tissues, renal antioxidants and histopathology of renal tissue. RESULTS Administration of cisplatin to mice induced a marked renal failure, characterized by significant increase in serum urea and creatinine levels in addition to severe alterations in renal tissue architecture. Cisplatin also induced oxidative stress as indicated by increased lipid peroxidation and decreased levels of reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase in renal tissues. Administration of AsAG or TMG markedly reduced the cisplatin-induced higher plasma creatinine and urea levels and counteracted the deleterious effects of cisplatin on oxidative stress markers and protected the tissues from the cisplatin-induced lipid peroxidation. CONCLUSION These results indicated that AsAG or TMG has a protective effect against cisplatin-induced renal damage in mice. The protection is mediated by preventing the decline of antioxidant status. The results have implications in use of AsAG or TMG in human application for protecting against drug-induced nephrotoxicity.
Collapse
|
38
|
Murdoch WJ, Van Kirk EA, Youqing Shen. Pathogenic Reactions of the Ovarian Surface Epithelium to Ovulation, Dimethylbenzanthracene, and Estrogen are Negated by Vitamin E. Reprod Sci 2008; 15:839-45. [DOI: 10.1177/1933719108322435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | - Youqing Shen
- Reproductive Biology Program, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
39
|
Effect of vitamin E and selenium on antioxidant enzymes in brain, kidney and liver of cigarette smoke-exposed mice. Biologia (Bratisl) 2007. [DOI: 10.2478/s11756-007-0060-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Alexander BM, Van Kirk EA, Naughton LMA, Murdoch WJ. Ovarian morphometrics in TP53-deficient mice. Anat Rec (Hoboken) 2007; 290:59-64. [PMID: 17441198 PMCID: PMC2571076 DOI: 10.1002/ar.20409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of these investigations was to characterize ovarian responses to hormonal stimulation in TP53-deficient mice. TP53-deficient (KO) and wild-type (WT) mice were induced to ovulate with pregnant mare serum gonadotropin followed by human chorionic gonadotropin. Effect of estradiol on ovarian morphology was determined in induced and control mice implanted with estradiol-containing or placebo pellets. Blood was collected and mice were killed 7 days following implantation. Preserved ovaries were serially sectioned and stained. Numbers of follicles (all classifications) decreased with ovulation induction, but did not differ between WT and KO mice. Numbers of corpora lutea (CL) were less in ovulation-induced KO mice treated with estradiol compared to WT mice. Area of individual CL and serum concentrations of progesterone were greater in ovulation-induced KO mice given estradiol compared to WT mice. Ovulation-induced KO mice had more, larger hemorrhagic follicles than similarly treated WT mice, but hemorrhagic follicles were not influenced by estradiol. Proliferation of ovarian surface epithelial cells did not differ between KO and WT mice induced to ovulate and given estradiol. Ovaries from TP53 gene knockout mice (n = 4) induced to ovulate and given a 21-day estradiol implant three times over 58 days were observed for precursor lesions. There was no indication of precursor lesions in any TP53 KO or WT mouse. TP53 status did not influence recruitment of follicles, but TP53 deficiency hindered the ability of human chorionic gonadotropin to cause ovulation.
Collapse
Affiliation(s)
- Brenda M Alexander
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | | | | | |
Collapse
|
41
|
Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M, Blasiak J, Skorski T. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006; 108:319-27. [PMID: 16527898 PMCID: PMC1895841 DOI: 10.1182/blood-2005-07-2815] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in the BCR/ABL kinase domain play a major role in resistance to imatinib mesylate (IM). We report here that BCR/ABL kinase stimulates reactive oxygen species (ROS), which causes oxidative DNA damage, resulting in mutations in the kinase domain. The majority of mutations involved A/T-->G/C and G/C-->A/T transitions, a phenotype detected previously in patients, which encoded clinically relevant amino acid substitutions, causing IM resistance. This effect was reduced in cells expressing BCR/ABL(Y177F) mutant, which does not elevate ROS. Inhibition of ROS in leukemia cells by the antioxidants pyrrolidine dithiocarbamate (PDTC), N-acetylcysteine (NAC), and vitamin E (VE) decreased the mutagenesis rate and frequency of IM resistance. Simultaneous administration of IM and an antioxidant exerted better antimutagenic effect than an antioxidant alone. Therefore, inhibition of ROS should diminish mutagenesis and enhance the effectiveness of IM.
Collapse
Affiliation(s)
- Mateusz Koptyra
- Department of Microbiology and Immunology, School of Medicine and the Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fernández Y, Miller TP, Denoyelle C, Esteban JA, Tang WH, Bengston AL, Soengas MS. Chemical blockage of the proteasome inhibitory function of bortezomib: impact on tumor cell death. J Biol Chem 2005; 281:1107-18. [PMID: 16278210 DOI: 10.1074/jbc.m511607200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteasome inhibitor bortezomib is emerging as a potent anti-cancer agent. Still, recent clinical trials have revealed a significant secondary toxicity of bortezomib. Consequently, there is much interest in dissecting the mechanism of action of this compound to rationally improve its therapeutic index. The cytotoxic effect of bortezomib is frequently characterized by interfering with downstream events derived from the accumulation of proteasomal targets. Here we identify the first chemical agent able to act upstream of the proteasome to prevent cell killing by bortezomib. Specifically, we show that the polyhydroxyl compound Tiron can function as a competitive inhibitor of bortezomib. This effect of Tiron was surprising, since it is a classical radical spin trap and was expected to scavenge reactive oxygen species produced as a consequence of bortezomib action. The inhibitory effect of Tiron against bortezomib was selective, since it was not shared by other antioxidants, such as vitamin E, MnTBAP, L-N-acetyl-cysteine, and FK-506. Comparative analyses with nonboronated proteasome inhibitors (i.e. MG132) revealed a specificity of Tiron for bortezomib. We exploited this novel feature of Tiron to define the "point of no return" of proteasome inhibition in melanoma cells and to block cell death in a three-dimensional model of human skin. Cells from T-cell lymphoma, breast carcinoma, and non-small cell lung cancer were also responsive to Tiron, suggesting a broad impact of this agent as a bortezomib blocker. These results may have important implications for the analysis of bortezomib in vivo and for the design of drug mixtures containing proteasome inhibitors.
Collapse
Affiliation(s)
- Yolanda Fernández
- Comprehensive Cancer Center and the Department of Dermatology, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Delanian S, Porcher R, Rudant J, Lefaix JL. Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. J Clin Oncol 2005; 23:8570-9. [PMID: 16260695 DOI: 10.1200/jco.2005.02.4729] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Significant regression of radiation (RT) -induced fibrosis (RIF) has been achieved after treatment combining pentoxifylline (PTX) and alpha-tocopherol (vitE). In this study, we focus on the maximum response, how long it takes to achieve response, and changes after treatment discontinuation. PATIENTS AND METHODS Measurable superficial RIF was assessed in patients treated by RT for breast cancer in a long-treatment (24 to 48 months) PTX-vitE (LPE) group of 37 patients (47 RIFs) and in a short-treatment (6 to 12 months) PTX-vitE (SPE) group of seven patients (eight RIFs). Between April 1995 and April 2000, women were treated with a daily combination of PTX (800 mg) and VitE (1,000 IU). RESULTS Combined PTX-vitE was continuously effective and resulted in exponential RIF surface area regression (-46% for LPE and -68% for SPE at 6 months, -58% for LPE and -69% for SPE at 12 months, -63% for LPE and -62% for SPE at 18 months, and -68% for LPE at 24 and 36 months). The mean estimated maximal treatment effect was 68% RIF surface area regression. The mean time to this effect was 24 months and was shorter (16 months) in more recent RIF (< 6 years since RT) than in older RIF (28 months; P = .0003). Symptom severity (Subjective Objective Medical Management and Analytic Evaluation score) was halved in both groups. After treatment discontinuation, mean RIF surface area at 1 year had increased by +40% in the SPE group (rebound) and +8.5% in the LPE group. CONCLUSION Under combined PTX-vitE treatment, RIF regression was exponential, with a two-thirds maximum response after a mean of 2 years. There was a risk of a rebound effect if treatment was too short. Long treatment (>/= 3 years) is recommended in patients with severe RIF.
Collapse
Affiliation(s)
- Sylvie Delanian
- Service d'Oncologie-Radiothérapie, Hôpital Saint-Louis, 1 Ave Claude Vellefaux, 75010 Paris, France.
| | | | | | | |
Collapse
|
44
|
Abstract
Ovulation is a rate-limiting event for the perpetuation of a species; unfortunately, it imparts a cancer risk. Reactive oxidants generated during the mechanics of ovulatory follicular rupture damage the DNA of ovarian surface epithelial cells that are located within a limited diffusion radius. Those cells that survive the trauma of ovulation, along the margins of a ruptured follicle, proliferate and migrate to reconcile the discontinuity within the ovarian epithelium created at the site of oocyte release. It is conceivable that clonal expansion of an ovarian surface epithelial cell with unrepaired DNA, but not committed to death, could be an initiating factor in the etiology of common ovarian cancer. In fact, the majority of cancers of the ovary are derived from the surface epithelium; and circumstances that avert ovulation (oral contraceptive use, pregnancy/lactation) protect against ovarian adenocarcinoma. Not surprisingly, the genotoxic potential of ovulation is exacerbated by malfunctions in tumor suppressor/cell-cycle arrest and base-excision repair mechanisms. Recent experimental evidence indicates that vitamin E and progesterone protect against ovarian metaplasia by negating the oxidative stress of ovulation and by enhancing the repair capacity (genomic integrity) of the surface epithelium, respectively. Ovarian cancer of surface epithelial origin is a deadly insidious disease because it characteristically remains asymptomatic until it has metastasized throughout the abdominal cavity; therefore, prevention is a high priority.
Collapse
Affiliation(s)
- William J Murdoch
- Department of Animal Science and Reproductive Biology Program, University of Wyoming, Laramie, 82071, USA.
| |
Collapse
|
45
|
Fenech M. The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis. Mutagenesis 2005; 20:255-69. [PMID: 15956042 DOI: 10.1093/mutage/gei040] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The evidence of a direct link between increased genome/epigenome damage and elevated risk for adverse health outcomes during the various stages of life, such as infertility, foetal development and cancer is becoming increasingly stronger. The latter is briefly reviewed against a background of evidence indicating that genome and epigenome damage biomarkers, in the absence of overt exposure of genotoxins, are themselves sensitive indicators of deficiency in micronutrients required as cofactors or as components of DNA repair enzymes, for maintenance methylation of CpG sequences and prevention of DNA oxidation and/or uracil incorporation into DNA. The latter is illustrated with cross-sectional and dietary intervention data obtained using the micronucleus assay and other efficient biomarkers for diagnosing genome and/or epigenome instability. The concept of recommended dietary allowances for genome stability and how this could be achieved is discussed. The 'Genome Health Nutrigenomics' concept is also introduced to define and focus attention on the specialized research area of how diet impacts on genome stability and how genotype determines nutritional requirements for genome health maintenance. The review concludes with a vision for a paradigm shift in disease prevention strategy based on the diagnosis and nutritional treatment of genome/epigenome damage on an individual basis, i.e. The Genome Health Clinic.
Collapse
Affiliation(s)
- Michael Fenech
- Genome Health Nutrigenomics Laboratory, CSIRO Health Sciences and Nutrition, Cooperative Research Centre for Diagnostics, PO Box 10041, Adelaide BC, SA 5000, Australia.
| |
Collapse
|
46
|
Boyko A, Filkowski J, Kovalchuk I. Homologous recombination in plants is temperature and day-length dependent. Mutat Res 2005; 572:73-83. [PMID: 15790491 DOI: 10.1016/j.mrfmmm.2004.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 12/10/2004] [Accepted: 12/20/2004] [Indexed: 12/23/2022]
Abstract
Homologous recombination (HR) as a strand break repair mechanism was shown to be influenced by various factors. The balance of different vitamins, macro- and microelements, light spectrum, sodium chloride concentration as well as various environmental mutagens were shown to influence the frequency of HR. In this paper we analysed the influence of temperature (4, 22, and 32 degrees C) and day/night duration on the genome stability of plants. We analyzed the HR frequency in transgenic Arabidopsis thaliana plants carrying beta-glucuronidase based homologous recombination substrate. To find the recombination rate (RR), we related the HR frequency to the number of genomes present in plants grown under different conditions. The RR was also standardized to the transcription activity of the transgene. We found RR to be higher in plants grown at suboptimal temperatures (either 4 or 32 degrees C) as compared to plants grown at 22 degrees C. This negatively correlated with the plant metabolic rate and positively correlated with concentration of peroxide produced by plant. In contrast, the RR in plants grown at different day length (8-24 h) was the lowest in plants grown at the longest day (24 h) and highest in the plants grown at the shortest day (8 h). Over 15-fold difference in the RR between plants grown at the shortest and the longest day was observed. Such a difference in recombination rate was primarily due to the higher transgene activity and higher endoreduplication levels in plants grown at longer days. Our data suggests that even "moderate" changes of environmental conditions may have a significant effect on plant genome stability.
Collapse
Affiliation(s)
- Alexander Boyko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alta., Canada T1K 3M4
| | | | | |
Collapse
|
47
|
Wu SJ, Ng LT, Lin CC. Effects of vitamin E on the cinnamaldehyde-induced apoptotic mechanism in human PLC/PRF/5 cells. Clin Exp Pharmacol Physiol 2005; 31:770-6. [PMID: 15566391 DOI: 10.1111/j.1440-1681.2004.04091.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Cinnamaldehyde has been shown to be effective in inducing cell apoptosis in a number of human cancer cells. The aim of the present study was to investigate the effect of vitamin E on the apoptotic signalling mechanism induced by cinnamaldehyde in human hepatoma PLC/PRF/5 cells. 2. Using the XTT assay, cinnamaldehyde exhibited a powerful antiproliferative effect on PLC/PRF/5 cells. Apoptosis was elicited when cells were treated with 1 micromol/L cinnamaldehyde, as characterized by the appearance of phosphatidylserine on the outer surface of the plasma membrane. 3. The apoptotic effect induced by cinnamaldehyde could be further supported by the release of cytochrome c, Smac/Diablo and Omi/HtrA2 from mitochondria to the cytosol and activation of caspase 3. Cinnamaldehyde also upregulated the expression of pro-apoptotic protein (Bax) and down-regulated the levels of anti-apoptotic proteins, such as Bcl-2 and the inhibitor of apoptosis protein family (X-linked inhibitor of apoptosis protein (XIAP), cellular inhibitor of apoptosis protein (cIAP)-1 and cIAP-2). 4. Cinnamaldehyde induces the generation of reactive oxygen species (ROS) in cells. Following the pre-incubation of PLC/PRF/5 cells with anti-oxidants, it was found that 100 micromol/L vitamin E significantly diminished the effect of cinnamaldehyde-induced apoptosis, whereas a lesser effect was seen with on 100 micromol/L N-acetyl-L-cysteine. Vitamin E effectively blocked the release of cytochrome c, Smac/Diablo and Omi/HtrA2 from mitochondria to the cytosol in cells treated with cinnamaldehyde. Vitamin E also markedly suppressed caspase 3 activation. The expression of apoptotic inhibitors (XIAP, cIAP-1, cIAP-2) and anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) proteins was affected by vitamin E pretreatment. 5. Taken together, the results suggest that cinnamaldehyde triggers apoptosis possibly through the mitochondrial pathway. Pretreatment with vitamin E markedly prevented cinnamaldehyde-mediated apoptosis, which was associated with the modulation of XIAP, cIAP-1, cIAP-2, Bcl-2 and Bax protein activity.
Collapse
Affiliation(s)
- Shu-Jing Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
48
|
Delanian S, Lefaix JL. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol 2005; 73:119-31. [PMID: 15542158 DOI: 10.1016/j.radonc.2004.08.021] [Citation(s) in RCA: 428] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 08/05/2004] [Accepted: 08/25/2004] [Indexed: 11/17/2022]
Abstract
The radiation-induced fibroatrophic process (RIF) constitutes a late, local and unavoidable sequela to high-dose radiotherapy, traditionally considered irreversible. Today, this process is partly reversible, thanks to recent progress in understanding the physiopathology of the lesions it causes and the results of recent clinical trials using antioxidant therapy. This review includes a synthetic description of the static and dynamic features of the RIF process, as reflected by its clinical, instrumental and histopathological characteristics, and by its cellular and molecular regulation. Schematically, three successive clinical and histopathological phases can be distinguished: a pre-fibrotic aspecific inflammatory phase, a constitutive fibrotic cellular phase, and a matrix densification and remodelling phase, possibly ending in terminal tissular necrosis. The respective roles of the chief actors in the RIF process are defined, as well as their development with time. A fibroblastic stromal hypothesis is suggested revolving around a 'gravitational effect' exerted by the couple ROS (reactive oxygen species)--fibroblasts, and partly mediated by TGF-beta1. A variety of strategies have been tested for the management of RIF. In the light of the mechanisms described, a curative procedure has been proposed via the antioxidant pathway. In particular, it was showed that superoxide dismutase and combined pentoxifylline-tocopherol treatment enables the process of established radiation-induced fibroatrophy to be greatly reduced or even reversed, both in clinical practice and animal experiments. The efficacy of combined pentoxifylline-tocopherol treatment in superficial RIF was confirmed in a randomised clinical trial, and then in successful phase II trials especially in uterine fibroatrophy and osteoradionecrosis. It is of critical importance to evaluate these new management approaches in larger clinical trials and to improve the recording of results for better outcome analysis. Mechanistic studies are always necessary to improve understanding of the RIF process and the antifibrotic drug action.
Collapse
Affiliation(s)
- Sylvie Delanian
- Service d'Oncologie-Radiothérapie, Hôpital Saint-Louis APHP, 1, Ave Claude Vellefaux, 75010 Paris, France
| | | |
Collapse
|
49
|
Nicco C, Laurent A, Chereau C, Weill B, Batteux F. Differential modulation of normal and tumor cell proliferation by reactive oxygen species. Biomed Pharmacother 2005; 59:169-74. [PMID: 15862711 DOI: 10.1016/j.biopha.2005.03.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Indexed: 11/30/2022] Open
Affiliation(s)
- Carole Nicco
- Laboratoire d'Immunologie, UPRES 1833, Faculté de Médecine, Université Paris V, AP-HP, 75679 Paris cedex 14, France.
| | | | | | | | | |
Collapse
|
50
|
Fenech M, Baghurst P, Luderer W, Turner J, Record S, Ceppi M, Bonassi S. Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability--results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis 2005; 26:991-9. [PMID: 15705599 DOI: 10.1093/carcin/bgi042] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to determine the association between dietary intake, determined using a food frequency questionnaire, and genome damage in lymphocytes measured using the micronucleus (MN) assay. The study, performed on 190 healthy individuals (mean age 47.8 years, 46% males), also examined whether a supplementation with beta-carotene, vitamins C and E along with zinc (ACEZn), in a randomized trial for 6 months, improves genome stability. Multivariate analysis of baseline data showed that (1) the highest tertile of intake of vitamin E, retinol, folic acid, nicotinic acid (preformed) and calcium is associated with significant reductions in MN frequency, i.e. -28, -31, -33, -46 and -49%, respectively (P < 0.005) relative to the lowest tertile of intake and (2) the highest tertile of intake of riboflavin, pantothenic acid and biotin was associated with significant increases in MN frequency, i.e. +36% (P = 0.054), +51% (P = 0.021), and +65% (P = 0.001), respectively, relative to the lowest tertile of intake. Mid-tertile beta-carotene intake was associated with an 18% reduction in MN frequency (P = 0.038); however, the highest tertile of intake (>6400 microg/day) resulted in an 18% increment in MN frequency. Supplementation with ACEZn significantly reduced the MN index by 13% (P = 0.038). The study also showed interactive additive effects such as the protective effect of increased calcium intake (-46%) and the exacerbating effect of riboflavin (+42%) on increased genome damage caused by low folate intake. The results from this study illustrate the strong impact of a wide variety of micronutrients and their interactions on genome health, depending on the level of intake.
Collapse
Affiliation(s)
- Michael Fenech
- CSIRO Health Sciences and Nutrition, Adelaide, Australia, Women's and Children's Hospital, Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|