1
|
Role of Cytochrome P450 (CYP)1A in Hyperoxic Lung Injury: Analysis of the Transcriptome and Proteome. Sci Rep 2017; 7:642. [PMID: 28377578 PMCID: PMC5428698 DOI: 10.1038/s41598-017-00516-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/28/2017] [Indexed: 01/22/2023] Open
Abstract
Hyperoxia contributes to lung injury in experimental animals and diseases such as acute respiratory distress syndrome in humans. Cytochrome P450 (CYP)1A enzymes are protective against hyperoxic lung injury (HLI). The molecular pathways and differences in gene expression that modulate these protective effects remain largely unknown. Our objective was to characterize genotype specific differences in the transcriptome and proteome of acute hyperoxic lung injury using the omics platforms: microarray and Reverse Phase Proteomic Array. Wild type (WT), Cyp1a1−/− and Cyp1a2−/− (8–10 wk, C57BL/6J background) mice were exposed to hyperoxia (FiO2 > 0.95) for 48 hours. Comparison of transcriptome changes in hyperoxia-exposed animals (WT versus knock-out) identified 171 genes unique to Cyp1a1−/− and 119 unique to Cyp1a2−/− mice. Gene Set Enrichment Analysis revealed pathways including apoptosis, DNA repair and early estrogen response that were differentially regulated between WT, Cyp1a1−/− and Cyp1a2−/− mice. Candidate genes from these pathways were validated at the mRNA and protein level. Quantification of oxidative DNA adducts with 32P-postlabeling also revealed genotype specific differences. These findings provide novel insights into mechanisms behind the differences in susceptibility of Cyp1a1−/− and Cyp1a2−/− mice to HLI and suggest novel pathways that need to be investigated as possible therapeutic targets for acute lung injury.
Collapse
|
2
|
Mihaila C, Schramm J, Strathmann FG, Lee DL, Gelein RM, Luebke AE, Mayer-Pröschel M. Identifying a window of vulnerability during fetal development in a maternal iron restriction model. PLoS One 2011; 6:e17483. [PMID: 21423661 PMCID: PMC3057971 DOI: 10.1371/journal.pone.0017483] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 02/07/2011] [Indexed: 11/19/2022] Open
Abstract
It is well acknowledged from observations in humans that iron deficiency during pregnancy can be associated with a number of developmental problems in the newborn and developing child. Due to the obvious limitations of human studies, the stage during gestation at which maternal iron deficiency causes an apparent impairment in the offspring remains elusive. In order to begin to understand the time window(s) during pregnancy that is/are especially susceptible to suboptimal iron levels, which may result in negative effects on the development of the fetus, we developed a rat model in which we were able to manipulate and monitor the dietary iron intake during specific stages of pregnancy and analyzed the developing fetuses. We established four different dietary-feeding protocols that were designed to render the fetuses iron deficient at different gestational stages. Based on a functional analysis that employed Auditory Brainstem Response measurements, we found that maternal iron restriction initiated prior to conception and during the first trimester were associated with profound changes in the developing fetus compared to iron restriction initiated later in pregnancy. We also showed that the presence of iron deficiency anemia, low body weight, and changes in core body temperature were not defining factors in the establishment of neural impairment in the rodent offspring.Our data may have significant relevance for understanding the impact of suboptimal iron levels during pregnancy not only on the mother but also on the developing fetus and hence might lead to a more informed timing of iron supplementation during pregnancy.
Collapse
Affiliation(s)
- Camelia Mihaila
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States of America
| | - Jordan Schramm
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, New York, United States of America
| | - Frederick G. Strathmann
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States of America
| | - Dawn L. Lee
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York, United States of America
| | - Robert M. Gelein
- Department of Environmental Medicine, University of Rochester, Rochester, New York, United States of America
| | - Anne E. Luebke
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, New York, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- * E-mail: (MM-P); (AEL)
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States of America
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, New York, United States of America
- * E-mail: (MM-P); (AEL)
| |
Collapse
|
3
|
Zhou GD, Richardson M, Fazili IS, Wang J, Donnelly KC, Wang F, Amendt B, Moorthy B. Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: implications for cancer prevention. Toxicol Appl Pharmacol 2010; 249:224-30. [PMID: 20888851 DOI: 10.1016/j.taap.2010.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 02/07/2023]
Abstract
Carcinogen-DNA adducts could lead to mutations in critical genes, eventually resulting in cancer. Many studies have shown that retinoic acid (RA) plays an important role in inducing cell apoptosis. Here we have tested the hypothesis that levels of carcinogen-DNA adducts can be diminished by DNA repair and/or by eliminating damaged cells through apoptosis. Our results showed that the levels of total DNA adducts in HepG2 cells treated with benzo(a)pyrene (BP, 2 μM)+RA (1 μM) were significantly reduced compared to those treated with BP only (P=0.038). In order to understand the mechanism of attenuation of DNA adducts, further experiments were performed. Cells were treated with BP (4 μM) for 24h to initiate DNA adduct formation, following which the medium containing BP was removed, and fresh medium containing 1 μM RA was added. The cells were harvested 24h after RA treatment. Interestingly, the levels of total DNA adducts were lower in the BP/RA group (390 ± 34) than those in the BP/DMSO group (544 ± 33), P=0.032. Analysis of cell apoptosis showed an increase in BP+RA group, compared to BP or RA only groups. Our results also indicated that attenuation of BP-DNA adducts by RA was not primarily due to its effects on CYP1A1 expression. In conclusion, our results suggest a mechanistic link between cellular apoptosis and DNA adduct formation, phenomena that play important roles in BP-mediated carcinogenesis. Furthermore, these results help understand the mechanisms of carcinogenesis, especially in relation to the chemopreventive properties of nutritional apoptosis inducers.
Collapse
Affiliation(s)
- Guo-Dong Zhou
- Department of Environmental and Occupational Health, School of Rural Public Health, Texas A&M University System, College Station, Texas 77030-3303, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhou GD, Popovic N, Lupton JR, Turner ND, Chapkin RS, Donnelly KC. Tissue-specific attenuation of endogenous DNA I-compounds in rats by carcinogen azoxymethane: possible role of dietary fish oil in colon cancer prevention. Cancer Epidemiol Biomarkers Prev 2005; 14:1230-5. [PMID: 15894677 DOI: 10.1158/1055-9965.epi-04-0759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
I-compounds are bulky covalent DNA modifications that are derived from metabolic intermediates of nutrients. Some I-compounds may play protective roles against cancer, aging, and degenerative diseases. Many carcinogens and tumor promoters significantly reduce I-compound levels gradually during carcinogenesis. Colon cancer is the second leading cause of cancer death in the United States, whereas cancer of the small intestine is relatively rare. Here we have studied levels of I-compounds in DNA of colon and duodenum of male Sprague-Dawley rats treated with azoxymethane. The effects of dietary lipids (fish oil or corn oil) on colon and duodenal DNA I-compounds were also investigated. Rats fed a diet containing fish oil or corn oil were treated with 15 mg/kg azoxymethane. Animals were terminated 0, 6, 9, 12, or 24 hours after injection. I-compound levels were analyzed by the nuclease P1-enhanced (32)P-postlabeling assay. Rats treated with azoxymethane displayed lower levels of I-compounds in colon DNA compared with control groups (0 hour). However, I-compound levels in duodenal DNA were not diminished after azoxymethane treatment. Animals fed a fish oil diet showed higher levels of I-compounds in colonic DNA compared with corn oil groups (mean adduct levels for fish and corn oil groups were 13.35 and 10.69 in 10(9) nucleotides, respectively, P = 0.034). Taken together, these results support claims that fish oil, which contains a high level of omega-3 polyunsaturated fatty acids, may have potent chemopreventive effects on carcinogen-induced colon cancer. The fact that duodenal I-compounds were not diminished by azoxymethane treatment may have been due to the existence of tissue-specific factors protecting against carcinogenesis. In conclusion, our observations show that endogenous DNA adducts may serve not only as sensitive biomarkers in carcinogenesis and cancer prevention studies, but are also helpful to further our understanding of the chemopreventive properties of omega-3 fatty acids and mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Guo-Dong Zhou
- Institute of Biosciences and Technology, Texas Medical Center, Texas A and M University System, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Copper (Cu), a redox active metal, is an essential nutrient for all species studied to date. During the past decade, there has been increasing interest in the concept that marginal deficits of this element can contribute to the development and progression of a number of disease states including cardiovascular disease and diabetes. Deficits of this nutrient during pregnancy can result in gross structural malformations in the conceptus, and persistent neurological and immunological abnormalities in the offspring. Excessive amounts of Cu in the body can also pose a risk. Acute Cu toxicity can result in a number of pathologies, and in severe cases, death. Chronic Cu toxicity can result in liver disease and severe neurological defects. The concept that elevated ceruloplasmin is a risk factor for certain diseases is discussed. In this paper, we will review recent literature on the potential causes of Cu deficiency and Cu toxicity, and the pathological consequences associated with the above. Finally, we will review some of the potential biochemical lesions that might underlie these pathologies. Given that oxidative stress is a characteristic of Cu deficiency, the role of Cu in the oxidative defense system will receive special attention. The concept that excess Cu may be a precipitating factor in Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- Janet Y Uriu-Adams
- Department of Nutrition, One Shields Ave., University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
6
|
Keane B, Collier MH, Rogstad SH. Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale). ENVIRONMENTAL MONITORING AND ASSESSMENT 2005; 105:341-57. [PMID: 15952527 DOI: 10.1007/s10661-005-4333-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Assessing the genetic structure of natural populations differentially impacted by anthropogenic contaminants can be a useful tool for evaluating the population genetic consequences of exposure to pollution. In this study, measures of genetic diversity at variable-number-tandem-repeat loci in six dandelion populations (3 urban and 3 rural) showed patterns that may have been influenced by exposure to environmental contaminants. Mean genetic similarity among individuals within a population was significantly and positively correlated with increasing levels of airborne particulate matter (< or = 10 microm, PM10) and soil concentrations of four metals (Cd, Fe, Ni and Pb). In addition, mean genetic similarity was always significantly higher at the urban sites compared to rural sites. There was a significant negative correlation between the number of genotypes at a site and increasing amounts of PM10, concentrations of five soil metals (Cd, Cu, Fe, Ni and Pb), leaf tissue levels of Fe and a significant positive correlation between the extent of clonality at a site and levels of PM10 and soil concentrations of five metals (Cd, Cu, Fe, Ni and Pb). Although, this study does not directly establish a causal link between the specific contaminants detected at the study sites and differences in genetic diversity, our data are consistent with the hypothesis that pollution-induced selection has contributed in some fashion to the lower genetic diversity found at the urban sites.
Collapse
Affiliation(s)
- Brian Keane
- Department of Zoology, Miami University-Hamilton, Hamilton, Ohio, USA
| | | | | |
Collapse
|
7
|
Zhou GD, Randerath K, Donnelly KC, Jaiswal AK. Effects of NQO1 deficiency on levels of cyclopurines and other oxidative DNA lesions in liver and kidney of young mice. Int J Cancer 2004; 112:877-83. [PMID: 15386390 DOI: 10.1002/ijc.20375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
I-compounds are bulky indigenous DNA adducts that can be detected by (32)P-postlabeling. A subgroup, termed type II I-compounds, represents DNA lesions induced by oxidative stress. Several major type II I-compounds have been identified as dinucleotides containing 3'-terminal 8,5'-cyclo-2'-deoxyadenosine (cA). Levels of type II I-compounds depend on the pro-oxidant status of the cell. For example, enhanced formation of such oxidative DNA lesions in newborn rodents appears to be a consequence of incomplete development of neonatal antioxidant defense systems. We tested the hypothesis that young mice deficient in NAD(P)H:quinone oxidoreductase 1 (NQO1), an antioxidant enzyme catalyzing the detoxification of quinones and their derivatives, show increased formation of these oxidative DNA lesions. Type II I-compound levels were determined by (32)P-postlabeling in liver and kidney DNA of untreated male wild-type or NQO1-null C57BL/6 mice of different ages. NQO1 catalytic activities and contents were measured by spectrophotometric and Western blotting techniques, respectively. Elevated oxidative adduct levels including those containing cA were detected in NQO1-null compared to wild-type mice at 10, 30 and 90 days in liver and at 30 and 90 days in kidney DNA. Furthermore, there were statistically significant inverse relationships between type II I-compound levels and NQO1 activities in wild-type mice up to 30 days of age. Taken together, the results suggest that NQO1 plays an important role in attenuating endogenous oxidative DNA damage in vivo. Our results show also that type II I-compounds represent useful and sensitive biomarkers with utility in studies of oxidative DNA damage and its consequences.
Collapse
Affiliation(s)
- Guo-Dong Zhou
- Department of Environmental and Occupational Health, School of Rural Public Health, Texas A&M University System, Bryan, TX, USA.
| | | | | | | |
Collapse
|
8
|
Izzotti A, Balansky RM, Camoirano A, Cartiglia C, Longobardi M, Tampa E, De Flora S. Birth-related genomic and transcriptional changes in mouse lung. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2003; 544:441-9. [PMID: 14644347 DOI: 10.1016/j.mrrev.2003.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Birth is characterized by a sudden transition from the maternal-mediated respiration to the autonomous pulmonary respiration. Notwithstanding the importance of the involved functional and metabolic changes, little is known about possible DNA alterations occurring in the lung during the perinatal period. We comparatively evaluated genomic and transcriptional changes in the lung of fetuses and newborn Swiss albino mice, whose dams had either been untreated or treated with oral N-acetyl-L-cysteine (NAC) throughout the pregnancy period. In the less than 24h period elapsing between the end of fetal life and the start of post-natal life, nucleotide alterations occurred in mouse lung, as shown by a significant increase of both bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine levels, detected by 32P post-labeling procedures. The frequency of micronuclei in peripheral blood erythrocytes was not significantly increased after birth. Multigene expression analysis of 746 selected genes, by cDNA arrays, showed that 33 of them (4.4%) were upregulated in the lung of newborn mice, as compared with fetuses. The overexpressed genes were mainly involved in protective mechanism as a response to oxidative changes, alterations of glutathione metabolism, cellular stress, and damage to DNA and proteins. The transplacental treatment with NAC totally prevented birth-related genomic alterations in lung DNA. NAC did not change the basal gene expression in mouse fetal lung, but attenuated the upregulation of most genes involved in oxidative stress, stress response, and DNA repair in the lung of newborn mice. In fact, only 13 genes (1.7%) were overexpressed in newborns from NAC-treated dams. It therefore appears that administration of NAC during pregnancy is beneficial not only to counteract the adverse effects of toxic agents, as supported by previous studies, but also to attenuate birth-related DNA alterations.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, via A. Pastore 1, Genoa I-16132, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Egli D, Selvaraj A, Yepiskoposyan H, Zhang B, Hafen E, Georgiev O, Schaffner W. Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J 2003; 22:100-8. [PMID: 12505988 PMCID: PMC140060 DOI: 10.1093/emboj/cdg012] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2002] [Revised: 11/06/2002] [Accepted: 11/07/2002] [Indexed: 11/13/2022] Open
Abstract
'Metal-responsive transcription factor-1' (MTF-1), a zinc finger protein, is conserved from mammals to insects. In the mouse, it activates metallothionein genes and other target genes in response to several cell stress conditions, notably heavy metal load. The knockout of MTF-1 in the mouse has an embryonic lethal phenotype accompanied by liver degeneration. Here we describe the targeted disruption of the MTF-1 gene in Drosophila by homologous recombination. Unlike the situation in the mouse, knockout of MTF-1 in Drosophila is not lethal. Flies survive well under laboratory conditions but are sensitive to elevated concentrations of copper, cadmium and zinc. Basal and metal-induced expression of Drosophila metallothionein genes MtnA (Mtn) and MtnB (Mto), and of two new metallothionein genes described here, MtnC and MtnD, is abolished in MTF-1 mutants. Unexpectedly, MTF-1 mutant larvae are sensitive not only to copper load but also to copper depletion. In MTF-1 mutants, copper depletion prevents metamorphosis and dramatically extends larval development/lifespan from normally 4-5 days to as many as 32 days, possibly reflecting the effects of impaired oxygen metabolism. These findings expand the roles of MTF-1 in the control of heavy metal homeostasis.
Collapse
Affiliation(s)
- Dieter Egli
- Institut für Molekularbiologie and Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Randerath K, Zhou GD, Somers RL, Robbins JH, Brooks PJ. A 32P-postlabeling assay for the oxidative DNA lesion 8,5'-cyclo-2'-deoxyadenosine in mammalian tissues: evidence that four type II I-compounds are dinucleotides containing the lesion in the 3' nucleotide. J Biol Chem 2001; 276:36051-7. [PMID: 11454870 DOI: 10.1074/jbc.m105472200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
8,5'-Cyclopurine-2'-deoxynucleotides, which are strong blocks to mammalian DNA and RNA polymerases, represent a novel class of oxidative DNA lesion in that they are specifically repaired by nucleotide excision repair but not by base excision repair or direct enzymatic reversion. Previous studies using thin layer chromatography of (32)P-postlabeled DNA digests have detected several bulky oxidative lesions of unknown structure, called I-compounds, in DNA from normal mammalian organs. We investigated whether any of these type II I-compounds contained 8,5'-cyclo-2'-deoxyadenosine (cA). Two previously detected type II I-compounds were found to be dinucleotides of the sequence pAp-cAp and pCp-cAp. Furthermore, a modification of the technique resulted in detection of two additional I-compounds, pTp-cAp and pGp-cAp. Each I-compound isolated from neonatal rat liver DNA matched authentic (32)P-labeled cA-containing chromatographic standards under nine different chromatographic conditions. Their levels increased significantly after normal birth. The (32)P-postlabeling technique used here is capable of detecting 1-5 lesions/diploid mammalian cell. Thus, it should now be possible to detect changes of cA levels resulting from low level ionizing radiation and other conditions associated with oxidative stress, and to assess cA levels in tissues from patients with the genetic disease xeroderma pigmentosum who are unable to carry out nucleotide excision repair.
Collapse
Affiliation(s)
- K Randerath
- Division of Toxicology, Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|