1
|
Vodopivec DM, Hu MI. RET kinase inhibitors for RET-altered thyroid cancers. Ther Adv Med Oncol 2022; 14:17588359221101691. [PMID: 35756966 PMCID: PMC9218446 DOI: 10.1177/17588359221101691] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Precision oncology has opened a new era in cancer treatment focused on targeting specific cellular pathways directly involved in tumorigenesis. The REarrangement during Transfection (RET) proto-oncogene is involved in the pathogenesis of various thyroid cancer subtypes. Mutations in RET give rise to both hereditary and sporadic medullary thyroid cancer (MTC). RET fusions are found in follicular cell-derived thyroid cancers (papillary, poorly differentiated, and anaplastic). Hence, drugs that block the RET tyrosine kinase receptor have been explored in the management of locally advanced or metastatic thyroid cancer. The multikinase inhibitors (MKIs) with nonselective RET inhibition are sorafenib, lenvatinib, vandetanib, cabozantinib, and sunitinib. Although the efficacy of these drugs varies, a major issue is the lack of specificity resulting in a higher rate of drug-related toxicities, leading to dose reduction, interruption, or discontinuation. Moreover, MKIs are subject to drug resistance by RET Val804 residue gatekeeper mutations. In phase I/II clinical studies, the highly selective first-generation RET inhibitors, selpercatinib and pralsetinib, demonstrate high efficacy in controlling disease even in the presence of gatekeeper mutations combined with greater tolerability. However, resistance mechanisms such as RET solvent front mutations (SFMs) have evolved in some patients, giving the need to develop the selective second-generation RET inhibitors. Although the approval of selpercatinib and pralsetinib in 2020 has profoundly benefited patients with RET-altered thyroid cancer, further research into optimal treatment strategies, mechanisms of drug resistance, long-term consequences of potent RET-inhibition, and development of more effective agents against emergent mutations are much needed.
Collapse
Affiliation(s)
- Danica M Vodopivec
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4000, USA
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Li S, Shi X, Li J, Zhou X. Pathogenicity of the MAGE family. Oncol Lett 2021; 22:844. [PMID: 34733362 PMCID: PMC8561213 DOI: 10.3892/ol.2021.13105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The melanoma antigen gene (MAGE) protein family is a group of highly conserved proteins that share a common homology domain. Under normal circumstances, numerous MAGE proteins are only expressed in reproduction-related tissues; however, abnormal expression levels are observed in a variety of tumor tissues. The MAGE family consists of type I and II proteins, several of which are cancer-testis antigens that are highly expressed in cancer and serve a critical role in tumorigenesis. Therefore, this review will use the relationship between MAGEs and tumors as a starting point, focusing on the latest developments regarding the function of MAGEs as oncogenes, and preliminarily reveal their possible mechanisms.
Collapse
Affiliation(s)
- Sanyan Li
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingping Li
- Department of Respiratory Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xianrong Zhou
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
3
|
Stosic A, Fuligni F, Anderson ND, Davidson S, de Borja R, Acker M, Forte V, Campisi P, Propst EJ, Wolter NE, Chami R, Mete O, Malkin D, Shlien A, Wasserman JD. Diverse Oncogenic Fusions and Distinct Gene Expression Patterns Define the Genomic Landscape of Pediatric Papillary Thyroid Carcinoma. Cancer Res 2021; 81:5625-5637. [PMID: 34535459 DOI: 10.1158/0008-5472.can-21-0761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Pediatric papillary thyroid carcinoma (PPTC) is clinically distinct from adult-onset disease. Although there are higher rates of metastasis and recurrence in PPTC, prognosis remains highly favorable. Molecular characterization of PPTC has been lacking. Historically, only 40% to 50% of childhood papillary thyroid carcinoma (PTC) were known to be driven by genomic variants common to adult PTC; oncogenic drivers in the remainder were unknown. This contrasts with approximately 90% of adult PTC driven by a discrete number of variants. In this study, 52 PPTCs underwent candidate gene testing, followed in a subset by whole-exome and transcriptome sequencing. Within these samples, candidate gene testing identified variants in 31 (60%) tumors, while exome and transcriptome sequencing identified oncogenic variants in 19 of 21 (90%) remaining tumors. The latter were enriched for oncogenic fusions, with 11 nonrecurrent fusion transcripts, including two previously undescribed fusions, STRN-RET and TG-PBF. Most fusions were associated with 3' receptor tyrosine kinase (RTK) moieties: RET, MET, ALK, and NTRK3. For advanced (distally metastatic) tumors, a driver variant was described in 91%. Gene expression analysis defined three clusters that demonstrated distinct expression of genes involved in thyroid differentiation and MAPK signaling. Among RET-CCDC6-driven tumors, gene expression in pediatric tumors was distinguishable from that in adults. Collectively, these results show that the genomic landscape of pediatric PTC is different from adult PTC. Moreover, they identify genomic drivers in 98% of PPTCs, predominantly oncogenic fusion transcripts involving RTKs, with a pronounced impact on gene expression. Notably, most advanced tumors were driven by a variant for which targeted systemic therapy exists. SIGNIFICANCE: This study highlights important distinctions between the genomes and transcriptomes of pediatric and adult papillary thyroid carcinoma, with implications for understanding the biology, diagnosis, and treatment of advanced disease in children.
Collapse
Affiliation(s)
- Ana Stosic
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Endocrinology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Fabio Fuligni
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Nathaniel D Anderson
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Scott Davidson
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Richard de Borja
- Genome Informatics, Ontario Institute for Cancer Research, Toronto, Ontario
| | - Meryl Acker
- Division of Endocrinology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Vito Forte
- Department of Otolaryngology, Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Paolo Campisi
- Department of Otolaryngology, Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Evan J Propst
- Department of Otolaryngology, Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nikolaus E Wolter
- Department of Otolaryngology, Head & Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Otolaryngology, Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Rose Chami
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Anatomical Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - David Malkin
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Adam Shlien
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada. .,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan D Wasserman
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Division of Endocrinology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Kim D, Jung SH, Chung YJ. Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach. Genomics Inform 2021; 19:e41. [PMID: 35172474 PMCID: PMC8752984 DOI: 10.5808/gi.21061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
In addition to mutations and copy number alterations, gene fusions are commonly identified in cancers. In thyroid cancer, fusions of important cancer-related genes have been commonly reported; however, extant panels do not cover all clinically important gene fusions. In this study, we aimed to develop a custom RNA-based sequencing panel to identify the key fusions in thyroid cancer. Our ThyChase panel was designed to detect 87 types of gene fusion. As quality control of RNA sequencing, five housekeeping genes were included in this panel. When we applied this panel for the analysis of fusions containing reference RNA (HD796), three expected fusions (EML4-ALK, CCDC6-RET, and TPM3-NTRK1) were successfully identified. We confirmed the fusion breakpoint sequences of the three fusions from HD796 by Sanger sequencing. Regarding the limit of detection, this panel could detect the target fusions from a tumor sample containing a 1% fusion-positive tumor cellular fraction. Taken together, our ThyChase panel would be useful to identify gene fusions in the clinical field.
Collapse
Affiliation(s)
- Dongmoung Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yeun-Jun Chung
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
5
|
Liu M, Chen P, Hu HY, Ou-Yang DJ, Khushbu RA, Tan HL, Huang P, Chang S. Kinase gene fusions: roles and therapeutic value in progressive and refractory papillary thyroid cancer. J Cancer Res Clin Oncol 2021; 147:323-337. [PMID: 33387037 DOI: 10.1007/s00432-020-03491-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
The incidence of papillary thyroid cancer (PTC), the major type of thyroid cancer, is increasing rapidly around the world, and its pathogenesis is still unclear. There is poor prognosis for PTC involved in rapidly progressive tumors and resistance to radioiodine therapy. Kinase gene fusions have been discovered to be present in a wide variety of malignant tumors, and an increasing number of novel types have been detected in PTC, especially progressive tumors. As a tumor-driving event, kinase fusions are constitutively activated or overexpress their kinase function, conferring oncogenic potential, and their frequency is second only to BRAFV600E mutation in PTC. Diverse forms of kinase fusions have been observed and are associated with specific pathological features of PTC (usually at an advanced stage), and clinical trials of therapeutic strategies targeting kinase gene fusions are feasible for radioiodine-resistant PTC. This review summarizes the roles of kinase gene fusions in PTC and the value of clinical therapy of targeting fusions in progressive or refractory PTC, and discusses the future perspectives and challenges related to kinase gene fusions in PTC patients.
Collapse
Affiliation(s)
- Mian Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hui-Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Deng-Jie Ou-Yang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rooh-Afza Khushbu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hai-Long Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
6
|
Hernando J, Ros J, Arroyo A, Capdevila J. Clinical and Translational Challenges in Thyroid Cancer. Curr Med Chem 2020; 27:4806-4822. [PMID: 32056516 DOI: 10.2174/0929867327666200214125712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 01/15/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy and it accounts for 1% of all newly diagnosed tumors. Approximately 10% of patients with differentiated thyroid carcinomas (DTC) and 30% with medullary thyroid carcinoma (MTC) could not be cured with locoregional treatment and could develop metastatic disease. In addition, one of the most aggressive solid tumors can arise from the thyroid gland, the anaplastic thyroid carcinoma, with a median overall survival of less than 6 months. Currently, only four drugs are approved for the treatment of DTC and MTC and several unmet needs are focusing the scientific discussions, including the resistant setting, the off-target side effects that may reduce the efficacy and the molecular knowledge-based combinations. In this review, we aimed to discuss the current molecular landscape and treatment of thyroid cancers, and the ongoing clinical and translational research lines focusing on new drugs and drug combinations to improve the inhibition of driver mutations, such as BRAF and RET, and how systemic therapies that improved outcomes of other cancer types, like immunotherapy and peptide receptor radionuclide therapy, may play a role in the future management of advanced thyroid cancers.
Collapse
Affiliation(s)
- Jorge Hernando
- Medical Oncology Department, Gastrointestinal and Endocrine Tumor Unit, Vall d´Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), Pg Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - Javier Ros
- Medical Oncology Department, Gastrointestinal and Endocrine Tumor Unit, Vall d´Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), Pg Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - Alvaro Arroyo
- Medical Oncology Department, Gastrointestinal and Endocrine Tumor Unit, Vall d´Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), Pg Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - Jaume Capdevila
- Medical Oncology Department, Gastrointestinal and Endocrine Tumor Unit, Vall d´Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), Pg Vall d´Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Luzón-Toro B, Fernández RM, Villalba-Benito L, Torroglosa A, Antiñolo G, Borrego S. Influencers on Thyroid Cancer Onset: Molecular Genetic Basis. Genes (Basel) 2019; 10:E913. [PMID: 31717449 PMCID: PMC6895808 DOI: 10.3390/genes10110913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Thyroid cancer, a cancerous tumor or growth located within the thyroid gland, is the most common endocrine cancer. It is one of the few cancers whereby incidence rates have increased in recent years. It occurs in all age groups, from children through to seniors. Most studies are focused on dissecting its genetic basis, since our current knowledge of the genetic background of the different forms of thyroid cancer is far from complete, which poses a challenge for diagnosis and prognosis of the disease. In this review, we describe prevailing advances and update our understanding of the molecular genetics of thyroid cancer, focusing on the main genes related with the pathology, including the different noncoding RNAs associated with the disease.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
8
|
ANKRD26-RET - A novel gene fusion involving RET in papillary thyroid carcinoma. Cancer Genet 2019; 238:10-17. [DOI: 10.1016/j.cancergen.2019.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
|
9
|
Takeuchi K. Discovery Stories of RET Fusions in Lung Cancer: A Mini-Review. Front Physiol 2019; 10:216. [PMID: 30941048 PMCID: PMC6433883 DOI: 10.3389/fphys.2019.00216] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
In 2004, a chemical inhibitor of the kinase activity of EGFR was reported to be effective in a subset of lung cancer patients with activating somatic mutations of EGFR. It remained unclear, however, whether kinase fusion genes also play a major role in the pathogenesis of lung cancers. The discovery of the EML4-ALK fusion kinase in 2007 was a breakthrough for this situation, and kinase fusion genes now form a group of relevant targetable oncogenes in lung cancer. In this mini-review article, the discovery of REarrangement during Transfection fusions, the third kinase fusion gene in lung cancer, is briefly described.
Collapse
Affiliation(s)
- Kengo Takeuchi
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
10
|
Thyroid cancers of follicular origin in a genomic light: in-depth overview of common and unique molecular marker candidates. Mol Cancer 2018; 17:116. [PMID: 30089490 PMCID: PMC6081953 DOI: 10.1186/s12943-018-0866-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
In recent years, thyroid malignances have become more prevalent, especially among women. The most common sporadic types of thyroid tumors of follicular origin include papillary, follicular and anaplastic thyroid carcinomas. Although modern diagnosis methods enable the identification of tumors of small diameter, tumor subtype differentiation, which is imperative for the correct choice of treatment, is still troublesome. This review discusses the recent advances in the field of molecular marker identification via next-generation sequencing and microarrays. The potential use of these biomarkers to distinguish among the most commonly occurring sporadic thyroid cancers is presented and compared. Geographical heterogeneity might be a differentiator, although not necessarily a limiting factor, in biomarker selection. The available data advocate for a subset of mutations common for the three subtypes as well as mutations that are unique for a particular tumor subtype. Tumor heterogeneity, a known issue occurring within solid malignancies, is also discussed where applicable. Public databases with datasets derived from high-throughput experiments are a valuable source of information that aid biomarker research in general, including the identification of molecular hallmarks of thyroid cancer.
Collapse
|
11
|
Abstract
BACKGROUND Gene fusions are known in many cancers as driver or passenger mutations. They play an important role in both the etiology and pathogenesis of cancer and are considered as potential diagnostic and prognostic markers and possible therapeutic targets. The spectrum and prevalence of gene fusions in thyroid cancer ranges from single cases up to 80%, depending on the specific type of cancer. During last three years, massive parallel sequencing technologies have revealed new fusions and allowed detailed characteristics of fusions in different types of thyroid cancer. SUMMARY This article reviews all known fusions and their prevalence in papillary, poorly differentiated and anaplastic, follicular, and medullary carcinomas. The mechanisms of fusion formation are described. In addition, the mechanisms of oncogenic transformation, such as altered gene expression, forced oligomerization, and subcellular localization, are given. CONCLUSION The prognostic value and perspectives of the utilization of gene fusions as therapeutic targets are discussed.
Collapse
Affiliation(s)
- Valentina D Yakushina
- 1 Research Centre for Medical Genetics , Moscow, Russian Federation
- 2 Moscow Institute of Physics and Technology , Moscow, Russian Federation
| | | | - Alexander V Lavrov
- 1 Research Centre for Medical Genetics , Moscow, Russian Federation
- 4 Russian National Research Medical University , Moscow, Russian Federation
| |
Collapse
|
12
|
Watanabe M, Hatakeyama S. TRIM proteins and diseases. J Biochem 2017; 161:135-144. [PMID: 28069866 DOI: 10.1093/jb/mvw087] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Ubiquitination is one of the posttranslational modifications that regulates a number of intracellular events including signal transduction, protein quality control, transcription, cell cycle, apoptosis and development. The ubiquitin system functions as a garbage machine to degrade target proteins and as a regulator for several signalling pathways. Biochemical reaction of ubiquitination requires several enzymes including E1, E2 and E3, and E3 ubiquitin ligases play roles as receptors for recognizing target proteins. Most of the tripartite motif (TRIM) proteins are E3 ubiquitin ligases. Recent studies have shown that some TRIM proteins function as important regulators for a variety of diseases including cancer, inflammatory diseases, infectious diseases, neuropsychiatric disorders, chromosomal abnormalities and developmental diseases. In this review, we summarize the involvement of TRIM proteins in the aetiology of various diseases.
Collapse
Affiliation(s)
- Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
13
|
Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol 2016; 12:192-202. [PMID: 26868437 DOI: 10.1038/nrendo.2016.11] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The rearranged during transfection (RET) proto-oncogene was identified in 1985 and, very soon thereafter, a rearrangement named RET/PTC was discovered in papillary thyroid carcinoma (PTC). After this discovery, other RET rearrangements were found in PTCs, particularly in those induced by radiation. For many years, it was thought that these genetic alterations only occurred in PTC, but, in the past couple of years, some RET/PTC rearrangements have been found in other human tumours. 5 years after the discovery of RET/PTC rearrangements in PTC, activating point mutations in the RET proto-oncogene were discovered in both hereditary and sporadic forms of medullary thyroid carcinoma (MTC). In contrast to the alterations found in PTC, the activation of RET in MTC is mainly due to activating point mutations. Interestingly, in the past year, RET rearrangements that were different to those described in PTC were observed in sporadic MTC. The identification of RET mutations is relevant to the early diagnosis of hereditary MTC and the prognosis of sporadic MTC. The diagnostic and prognostic role of the RET/PTC rearrangements in PTC is less relevant but still important in patient management, particularly for deciding if a targeted therapy should be initiated. In this Review, we discuss the pathogenic, diagnostic and prognostic roles of the RET proto-oncogene in both PTC and MTC.
Collapse
Affiliation(s)
- Cristina Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Raffaele Ciampi
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
14
|
A novel RET/PTC variant detected in a pediatric patient with papillary thyroid cancer without ionization history. Hum Pathol 2015; 46:1962-9. [DOI: 10.1016/j.humpath.2015.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/15/2015] [Accepted: 08/26/2015] [Indexed: 12/29/2022]
|
15
|
Hamatani K, Eguchi H, Koyama K, Mukai M, Nakachi K, Kusunoki Y. A novel RET rearrangement (ACBD5/RET) by pericentric inversion, inv(10)(p12.1;q11.2), in papillary thyroid cancer from an atomic bomb survivor exposed to high-dose radiation. Oncol Rep 2014; 32:1809-14. [PMID: 25175022 DOI: 10.3892/or.2014.3449] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/06/2014] [Indexed: 11/06/2022] Open
Abstract
During analysis of RET/PTC rearrangements in papillary thyroid cancer (PTC) among atomic bomb survivors, a cDNA fragment of a novel type of RET rearrangement was identified in a PTC patient exposed to a high radiation dose using the improved 5' RACE method. This gene resulted from the fusion of the 3' portion of RET containing tyrosine kinase domain to the 5' portion of the acyl-coenzyme A binding domain containing 5 (ACBD5) gene, by pericentric inversion inv(10)(p12.1;q11.2); expression of the fusion gene was confirmed by RT-PCR. ACBD5 gene is ubiquitously expressed in various human normal tissues including thyroid. Full-length cDNA of the ACBD5-RET gene was constructed and then examined for tumorigenicity. Enhanced phosphorylation of ERK proteins in the MAPK pathway was observed in NIH3T3 cells transfected with expression vector encoding the full-length ACBD5/RET cDNA, while this was not observed in the cells transfected with empty expression vector. Stable NIH3T3 transfectants with ACBD5-RET cDNA induced tumor formation after their injection into nude mice. These findings suggest that the ACBD5-RET rearrangement is causatively involved in the development of PTC.
Collapse
Affiliation(s)
- Kiyohiro Hamatani
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Hidetaka Eguchi
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kazuaki Koyama
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Mayumi Mukai
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kei Nakachi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
16
|
Plaza-Menacho I, Mologni L, McDonald NQ. Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal 2014; 26:1743-52. [PMID: 24705026 DOI: 10.1016/j.cellsig.2014.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/30/2014] [Indexed: 11/15/2022]
Abstract
De-regulation of RET signaling by oncogenic mutation, gene rearrangement, overexpression or transcriptional up-regulation is implicated in several human cancers of neuroendocrine and epithelial origin (thyroid, breast, lung). Understanding how RET signaling mechanisms associated with these oncogenic events are deregulated, and their impact in the biological processes driving tumor formation and progression, as well as response to treatment, will be crucial to find and develop better targeted therapeutic strategies. In this review we emphasie the distinct mechanisms of RET signaling in cancer and summarise current knowledge on small molecule inhibitors targeting the tyrosine kinase domain of RET as therapeutic drugs in RET-positive cancers.
Collapse
Affiliation(s)
- I Plaza-Menacho
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK.
| | - L Mologni
- Dept. of Health Sciences, University of Milano-Bicocca, Italy
| | - N Q McDonald
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
17
|
Abstract
Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as 'druggable' targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours.
Collapse
Affiliation(s)
- Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
18
|
Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK, Potts PR. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell 2013; 152:1051-64. [PMID: 23452853 DOI: 10.1016/j.cell.2013.01.051] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/29/2012] [Accepted: 01/24/2013] [Indexed: 02/01/2023]
Abstract
Endosomal protein trafficking is an essential cellular process that is deregulated in several diseases and targeted by pathogens. Here, we describe a role for ubiquitination in this process. We find that the E3 RING ubiquitin ligase, MAGE-L2-TRIM27, localizes to endosomes through interactions with the retromer complex. Knockdown of MAGE-L2-TRIM27 or the Ube2O E2 ubiquitin-conjugating enzyme significantly impaired retromer-mediated transport. We further demonstrate that MAGE-L2-TRIM27 ubiquitin ligase activity is required for nucleation of endosomal F-actin by the WASH regulatory complex, a known regulator of retromer-mediated transport. Mechanistic studies showed that MAGE-L2-TRIM27 facilitates K63-linked ubiquitination of WASH K220. Significantly, disruption of WASH ubiquitination impaired endosomal F-actin nucleation and retromer-dependent transport. These findings provide a cellular and molecular function for MAGE-L2-TRIM27 in retrograde transport, including an unappreciated role of K63-linked ubiquitination and identification of an activating signal of the WASH regulatory complex.
Collapse
Affiliation(s)
- Yi-Heng Hao
- Department of Physiology, UT Southwestern Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Recent molecular studies have described a number of abnormalities associated with the pathogenesis of thyroid carcinoma. These distinct molecular events are often associated with specific stages of tumor development and may serve as prognostic factors and therapeutic targets. A better understanding of the mechanisms involved in thyroid cancer pathogenesis, will hopefully help translate these discoveries to improved patient care.
Collapse
Affiliation(s)
- Kepal N Patel
- Thyroid Cancer Interdisciplinary Program, Division of Endocrine Surgery, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Weier HUG, Ito Y, Kwan J, Smida J, Weier JF, Hieber L, Lu CM, Lehmann L, Wang M, Kassabian HJ, Zeng H, O'Brien B. Delineating chromosomal breakpoints in radiation-induced papillary thyroid cancer. Genes (Basel) 2011; 2:397-419. [PMID: 22096618 PMCID: PMC3216054 DOI: 10.3390/genes2030397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/23/2011] [Accepted: 06/16/2011] [Indexed: 12/11/2022] Open
Abstract
Recurrent translocations are well known hallmarks of many human solid tumors and hematological disorders, where patient- and breakpoint-specific information may facilitate prognostication and individualized therapy. In thyroid carcinomas, the proto-oncogenes RET and NTRK1 are often found to be activated through chromosomal rearrangements. However, many sporadic tumors and papillary thyroid carcinomas (PTCs) arising in patients with a history of exposure to elevated levels of ionizing irradiation do not carry these known abnormalities. We developed a rapid scheme to screen tumor cell metaphase spreads and identify candidate genes of tumorigenesis and neoplastic progression for subsequent functional studies. Using a series of overnight fluorescence in situ hybridization (FISH) experiments with pools comprised of bacterial artificial chromosome (BAC) clones, it now becomes possible to rapidly refine breakpoint maps and, within one week, progress from the low resolution Spectral Karyotyping (SKY) maps or Giemsa-banding (G-banding) karyotypes to fully integrated, high resolution physical maps including a list of candiate genes in the critical regions.
Collapse
Affiliation(s)
- Heinz-Ulrich G. Weier
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; E-Mails: (H.-U.G.W.); (J.K.); (H.J.K.); (H.Z.)
| | - Yuko Ito
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; E-Mails: (H.-U.G.W.); (J.K.); (H.J.K.); (H.Z.)
- National Institute of Science and Technology Policy (NISTEP), Ministry of Education, Culture, Sports, Science and Technology, Tokyo 100-0005, Japan; E-Mail:
| | - Johnson Kwan
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; E-Mails: (H.-U.G.W.); (J.K.); (H.J.K.); (H.Z.)
| | - Jan Smida
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; E-Mail:
| | - Jingly F. Weier
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; E-Mails: (H.-U.G.W.); (J.K.); (H.J.K.); (H.Z.)
- Clinical Labs–Cytogenetics, University of California, 185 Berry Street Suite 290, San Francisco, CA 94143-0100, USA; E-Mail:
| | - Ludwig Hieber
- Department of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr.1, Neuherberg 85764, Germany; E-Mail:
| | - Chun-Mei Lu
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; E-Mails: (H.-U.G.W.); (J.K.); (H.J.K.); (H.Z.)
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, No.35, Lane 215, Section 1, Chungshan Road, Taiping City, Taichung 411, Taiwan; E-Mail:
| | - Lars Lehmann
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; E-Mails: (H.-U.G.W.); (J.K.); (H.J.K.); (H.Z.)
- Department of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr.1, Neuherberg 85764, Germany; E-Mail:
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; E-Mail:
| | - Mei Wang
- Department of Diabetes, City of Hope, 1500 Duarte Road, Duarte, CA 91010-3012, USA; E-mail:
| | - Haig J. Kassabian
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; E-Mails: (H.-U.G.W.); (J.K.); (H.J.K.); (H.Z.)
| | - Hui Zeng
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; E-Mails: (H.-U.G.W.); (J.K.); (H.J.K.); (H.Z.)
| | - Benjamin O'Brien
- Life Sciences Division, E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; E-Mails: (H.-U.G.W.); (J.K.); (H.J.K.); (H.Z.)
- William Harvey Research Institute, Translational Medicine and Therapeutics, Barts and The London School of Medicine, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Anesthesiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
21
|
Abstract
Thyroid cancer is a common type of endocrine malignancy, and its incidence has been steadily increasing in many regions of the world. Initiation and progression of thyroid cancer involves multiple genetic and epigenetic alterations, of which mutations leading to the activation of the MAPK and PI3K-AKT signaling pathways are crucial. Common mutations found in thyroid cancer are point mutation of the BRAF and RAS genes as well as RET/PTC and PAX8/PPARγ chromosomal rearrangements. The mutational mechanisms seem to be linked to specific etiologic factors. Chromosomal rearrangements have a strong association with exposure to ionizing radiation and possibly with DNA fragility, whereas point mutations probably arise as a result of chemical mutagenesis. A potential role of dietary iodine excess in the generation of BRAF point mutations has also been proposed. Somatic mutations and other molecular alterations have been recognized as helpful diagnostic and prognostic markers for thyroid cancer and are beginning to be introduced into clinical practice, to offer a valuable tool for the management of patients with thyroid nodules.
Collapse
Affiliation(s)
- Yuri E Nikiforov
- Department of Pathology and Laboratory Medicine, University of Pittsburgh School of Medicine, PUH C-606, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
22
|
Chromosomal aberrations in solid tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 95:55-94. [PMID: 21075329 DOI: 10.1016/b978-0-12-385071-3.00004-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Ever since the identification of the exact number of human chromosomes in 1956, several cancer-specific chromosomal abnormalities have been identified in different tumors. Among the various genetic changes, such as alterations in oncogenes, tumor suppressor genes, and microRNA genes, recurrent chromosome translocations have been identified as an important class of mutations in hematological malignancies, soft tissue sarcomas, and more recently in prostate cancer and lung cancer. Recurrent gene fusions are used for cancer classification and as diagnostic markers, and some have been successfully targeted for drug development. Recent advances in high-throughput sequencing technology and the ambitious undertaking of "The Cancer Genome Atlas" (TCGA) project will help drive the identification of the underlying genetic aberrations in most of the solid cancers. This chapter presents an overview on the current status of the knowledge on chromosome aberrations in solid cancers, cytogenetic and noncytogenetic methods for the characterization of changes at the DNA and RNA levels, technological advancements in high-throughput characterization of the cancer genome and transcriptome, and the current understanding of the molecular mechanism involved in the formation of gene fusions in solid cancer.
Collapse
|
23
|
Cytogenetic and molecular events in adenoma and well-differentiated thyroid follicular-cell neoplasia. ACTA ACUST UNITED AC 2010; 203:21-9. [PMID: 20951315 DOI: 10.1016/j.cancergencyto.2010.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/28/2010] [Indexed: 11/23/2022]
Abstract
In spite of its simple organization, the thyroid gland can give rise to a wide spectrum of neoplasms, ranging from innocuous to highly malignant lesions. Approximately 94% of the malignancies is represented by well-differentiated thyroid carcinoma originating from follicular cells. These neoplasms are divided into two main categories, papillary thyroid carcinoma and follicular thyroid carcinoma. Despite their origin from the same type of cells, the two neoplasias show different biological behavior and a different set of genetic features, including specific cytogenetic patterns. Thyroid adenoma is the benign counterpart of follicular carcinoma. No benign counterpart of papillary carcinoma has yet been identified. The chromosomes of thyroid nodules have been investigated since 1965, and different cytogenetic subgroups have been recognized, some of which show structural chromosomal rearrangements. These structural changes lead to the formation of fusion genes RET-PTC, TRK(-T), and BRAF-AKAP9, which originate as a result of intrachromosomal or interchromosomal rearrangements and are found in papillary thyroid carcinoma. Fusion genes involving PPARγ are caused mainly by translocations and are characteristic of follicular neoplastic tissue. Radiation exposure and the particular architectural arrangement of chromatin regions in which the affected genes lie during interphase are thought to favor the formation of fusion genes in papillary thyroid carcinoma and possibly also in follicular thyroid carcinoma.
Collapse
|
24
|
Hamatani K, Eguchi H, Mukai M, Koyama K, Taga M, Ito R, Hayashi Y, Nakachi K. Improved method for analysis of RNA present in long-term preserved thyroid cancer tissue of atomic bomb survivors. Thyroid 2010; 20:43-9. [PMID: 19785523 DOI: 10.1089/thy.2009.0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Since many thyroid cancer tissue samples from atomic bomb (A-bomb) survivors have been preserved for several decades as unbuffered formalin-fixed, paraffin-embedded specimens, molecular oncological analysis of such archival specimens is indispensable for clarifying the mechanisms of thyroid carcinogenesis in A-bomb survivors. Although RET gene rearrangements are the most important targets, it is a difficult task to examine all of the 13 known types of RET gene rearrangements with the use of the limited quantity of RNA that has been extracted from invaluable paraffin-embedded tissue specimens of A-bomb survivors. In this study, we established an improved 5' rapid amplification of cDNA ends (RACE) method using a small amount of RNA extracted from archival thyroid cancer tissue specimens. METHODS Three archival thyroid cancer tissue specimens from three different patients were used as in-house controls to determine the conditions for an improved switching mechanism at 5' end of RNA transcript (SMART) RACE method; one tissue specimen with RET/PTC1 rearrangement and one with RET/PTC3 rearrangement were used as positive samples. One other specimen, used as a negative sample, revealed no detectable expression of the RET gene tyrosine kinase domain. RESULTS We established a 5' RACE method using an amount of RNA as small as 10 ng extracted from long-term preserved, unbuffered formalin-fixed, paraffin-embedded thyroid cancer tissue by application of SMART technology. This improved SMART RACE method not only identified common RET gene rearrangements, but also isolated a clone containing a 93-bp insert of rare RTE/PTC8 in RNA extracted from formalin-fixed, paraffin-embedded thyroid cancer specimens from one A-bomb survivor who had been exposed to a high radiation dose. In addition, in the papillary thyroid cancer of another high-dose A-bomb survivor, this method detected one novel type of RET gene rearrangement whose partner gene is acyl coenzyme A binding domain 5, located on chromosome 10p. CONCLUSION We conclude that our improved SMART RACE method is expected to prove useful in molecular analyses using archival formalin-fixed, paraffin-embedded tissue samples of limited quantity.
Collapse
Affiliation(s)
- Kiyohiro Hamatani
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Molecular rearrangements in papillary thyroid carcinomas. Clin Chim Acta 2009; 411:301-8. [PMID: 19958753 DOI: 10.1016/j.cca.2009.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/09/2009] [Accepted: 11/26/2009] [Indexed: 11/24/2022]
Abstract
Papillary thyroid cancer is unusual among epithelial malignancies in that it is associated with a number of chromosomal rearrangements. The most common of these is the Ret oncogene, normally silent in the follicular cell, but which has been shown to be rearranged to the promoter region of a variety of different genes, all of which are constituently expressed in the thyroid follicular cell. It has been suggested that chromosomes in the thyroid cell are arranged within the nucleus in such a way as to predispose the cell to inappropriate fusion in the advent of DNA double-strand breakage. The presence of tumour specific fusion genes, and their transcribed proteins, presents a possible therapeutic target for thyroid cancer, but the relative contribution of the gene rearrangement in the growth and development of the tumour will need careful evaluation before clinical studies could take place.
Collapse
|
26
|
Ozato K, Shin DM, Chang TH, Morse HC. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 2008; 8:849-60. [PMID: 18836477 DOI: 10.1038/nri2413] [Citation(s) in RCA: 822] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The superfamily of tripartite motif-containing (TRIM) proteins is conserved throughout the metazoan kingdom and has expanded rapidly during vertebrate evolution; there are now more than 60 TRIM proteins known in humans and mice. Many TRIM proteins are induced by type I and type II interferons, which are crucial for many aspects of resistance to pathogens, and several are known to be required for the restriction of infection by lentiviruses. In this Review, we describe recent data that reveal broader antiviral and antimicrobial activities of TRIM proteins and discuss their involvement in the regulation of pathogen-recognition and transcriptional pathways in host defence.
Collapse
Affiliation(s)
- Keiko Ozato
- Program of Genomics and Differentiation, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892-2753, USA.
| | | | | | | |
Collapse
|
27
|
Chistiakov DA, Voronova NV, Chistiakov PA. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol 2008; 47:809-24. [PMID: 18568480 DOI: 10.1080/02841860801885969] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population.
Collapse
|
28
|
Abstract
Numerous biologic processes and such diseases as cancer depend on activation of tyrosine kinase receptors. The RET tyrosine kinase receptor was discovered two decades ago as a transforming gene and was subsequently implicated in the formation of papillary and medullary thyroid carcinoma. This article examines the data about the mechanism of activation of downstream signal transduction pathways by RET oncoproteins. Collectively, these findings have advanced the understanding of the processes underlying thyroid carcinoma formation.
Collapse
Affiliation(s)
- Maria Domenica Castellone
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR G Salvatore, Università di Napoli Federico II, Naples, Italy
| | | |
Collapse
|
29
|
Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC. BMC Cancer 2008; 8:144. [PMID: 18498667 PMCID: PMC2412888 DOI: 10.1186/1471-2407-8-144] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 05/23/2008] [Indexed: 11/30/2022] Open
Abstract
Background RET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation. Methods Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay. Results In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC. Conclusion These findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.
Collapse
|
30
|
Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 2008; 8:83-95. [PMID: 18088233 DOI: 10.1586/14737159.8.1.83] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system and accounts for approximately 1% of all newly diagnosed cancer cases. The most frequent type of thyroid malignancy is papillary carcinoma, which constitutes approximately 80% of all cases. Papillary carcinomas frequently have genetic alterations leading to the activation of the MAPK signal pathway. Those include RET/PTC rearrangement and point mutations of the BRAF and RAS genes. Mutations in these genes are found in over 70% of papillary carcinomas and they rarely overlap in the same tumor. Frequent genetic alterations in follicular carcinomas, the second most common type of thyroid malignancy, include RAS mutations and PAX8-PPAR gamma rearrangement. RET point mutations are crucial for the development of medullary thyroid carcinomas. Many of these mutations, particularly those leading to the activation of the MAPK pathway, are being actively explored as therapeutic targets for thyroid cancer. Detection of these genetic alterations using molecular techniques is important for preoperative fine-needle aspiration diagnosis, prognosis and treatment of thyroid cancer.
Collapse
Affiliation(s)
- Marina N Nikiforova
- Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
31
|
Imkamp F, von Wasielewski R, Musholt TJ, Musholt PB. Rearrangement Analysis in Archival Thyroid Tissues: Punching Microdissection and Artificial RET/PTC 1–12 Transcripts. J Surg Res 2007; 143:350-63. [PMID: 17655865 DOI: 10.1016/j.jss.2006.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/19/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND In few papillary thyroid carcinomas (PTC) and oxyphilic thyroid carcinoma, the clinical impact of the 15 known RET hybrid oncogene variants (RET/PTC 1 to 12, 1L, 3r2, 3r3) is subject to controversial discussions. Large patient cohorts and exploitation of pathological thyroid tissue archives are essential to study the prognostic significance of RET/PTC chimeras. MATERIALS AND METHODS Formalin-fixed and paraffin-embedded thyroid neoplasms were subjected to manual punching macrodissection and subsequent extraction of total RNA. Following reverse transcriptase polymerase chain reaction (RT-PCR)-based screening for RET rearrangements, hybrid-specific expression analyses were carried out for samples indicative of chimeric transcripts. Due to lack of tissue specimen harboring the rare RET chimeras, artificially constructed hybrid sequences of all known RET/PTC variants served as PCR controls. RESULTS Manual punching dissection successfully diminished RET wild-type contamination originating from C-cells dispersed throughout normal thyroid tissues. The average amount of 27.4 mug RNA extracted allowed for repeated molecular analyses (>60 PCRs). Hybrid-specific expression analysis identified 10 of 15 RET rearrangements (8x RET/PTC 1, 2x RET/PTC 3, 5x RET/PTC x) to be found in 54 oxyphilic thyroid tumors examined. Successful amplification of each artificial hybrid sequence ensured the absence of rare chimeric transcripts. Therefore, RET/PTC x represent either common chimeras not amplifiable due to archival RNA degradation or truly novel hybrid oncoproducts. CONCLUSIONS The fast and simple techniques described here were used to examine oxyphilic carcinomas and adenomas. These microdissection and RT-PCR procedures can easily be put into practice in any molecular biology research laboratory to enable screening of large numbers of archival thyroid tumors for known as well as yet unknown RET rearrangements.
Collapse
Affiliation(s)
- Florian Imkamp
- Department of Urology, Hannover University Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
32
|
Nakashima M, Suzuki K, Meirmanov S, Naruke Y, Matsuu-Matsuyama M, Shichijo K, Saenko V, Kondo H, Hayashi T, Ito M, Yamashita S, Sekine I. Foci formation of P53-binding protein 1 in thyroid tumors: Activation of genomic instability during thyroid carcinogenesis. Int J Cancer 2007; 122:1082-8. [DOI: 10.1002/ijc.23223] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Chen F, Clark DP, Hawkins AL, Morsberger LA, Griffin CA. A break-apart fluorescence in situ hybridization assay for detecting RET translocations in papillary thyroid carcinoma. ACTA ACUST UNITED AC 2007; 178:128-34. [DOI: 10.1016/j.cancergencyto.2007.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 10/22/2022]
|
34
|
Nakashima M, Takamura N, Namba H, Saenko V, Meirmanov S, Matsumoto N, Hayashi T, Maeda S, Sekine I. RET oncogene amplification in thyroid cancer: correlations with radiation-associated and high-grade malignancy. Hum Pathol 2007; 38:621-8. [PMID: 17270245 DOI: 10.1016/j.humpath.2006.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/12/2006] [Accepted: 10/12/2006] [Indexed: 11/18/2022]
Abstract
A radiation etiology is well known in thyroid carcinogenesis. RET oncogene rearrangement is the most common oncogenic alteration in Chernobyl-related papillary thyroid cancer (PTC). To find the characteristic alteration associated with RET rearrangements in radiation-induced thyroid cancers, we analyzed the RET oncogene by fluorescence in situ hybridization. The fluorescence in situ hybridization technique has the possibility of detecting RET rearrangements at a single-cell level regardless of the specific fusion partner involved and directly reveals RET copy number on a per-cell basis. Our study demonstrated RET amplification in all 3 cases of radiation-associated thyroid cancers but not in sporadic well-differentiated PTC (n = 11). Furthermore, RET amplification was observed in all 6 cases of sporadic anaplastic thyroid cancers (ATCs). The frequency of RET amplification-positive cells was higher in ATC (7.2%-24.1%) than in PTC (1.5%-2.7%). The highest frequency of RET amplification-positive cells was observed among ATC cases with a strong p53 immunoreactivity. In conclusion, we found RET amplification, which is a rare oncogenic aberration, in thyroid cancer. This report is the first one to suggest the presence of RET amplification in PTC and ATC. RET amplification was correlated with radiation-associated, high-grade malignant potency, and p53 accumulation, suggesting genomic instability. RET amplification might be induced by a high level of genomic instability in connection with progression of thyroid carcinogenesis and, subsequently, be associated with radiation-induced and/or high-grade malignant cases.
Collapse
Affiliation(s)
- Masahiro Nakashima
- Tissue and Histopathology Section, Division of Scientific Data Registry, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
de Groot JWB, Links TP, Plukker JTM, Lips CJM, Hofstra RMW. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev 2006; 27:535-60. [PMID: 16849421 DOI: 10.1210/er.2006-0017] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RET gene encodes a receptor tyrosine kinase that is expressed in neural crest-derived cell lineages. The RET receptor plays a crucial role in regulating cell proliferation, migration, differentiation, and survival through embryogenesis. Activating mutations in RET lead to the development of several inherited and noninherited diseases. Germline point mutations are found in the cancer syndromes multiple endocrine neoplasia (MEN) type 2, including MEN 2A and 2B, and familial medullary thyroid carcinoma. These syndromes are autosomal dominantly inherited. The identification of mutations associated with these syndromes has led to genetic testing to identify patients at risk for MEN 2 and familial medullary thyroid carcinoma and subsequent implementation of prophylactic thyroidectomy in mutation carriers. In addition, more than 10 somatic rearrangements of RET have been identified from papillary thyroid carcinomas. These mutations, as those found in MEN 2, induce oncogenic activation of the RET tyrosine kinase domain via different mechanisms, making RET an excellent candidate for the design of molecular targeted therapy. Recently, various kinds of therapeutic approaches, such as tyrosine kinase inhibition, gene therapy with dominant negative RET mutants, monoclonal antibodies against oncogene products, and nuclease-resistant aptamers that recognize and inhibit RET have been developed. The use of these strategies in preclinical models has provided evidence that RET is indeed a potential target for selective cancer therapy. However, a clinically useful therapeutic option for treating patients with RET-associated cancer is still not available.
Collapse
Affiliation(s)
- Jan Willem B de Groot
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Albor A, El-Hizawi S, Horn EJ, Laederich M, Frosk P, Wrogemann K, Kulesz-Martin M. The interaction of Piasy with Trim32, an E3-ubiquitin ligase mutated in limb-girdle muscular dystrophy type 2H, promotes Piasy degradation and regulates UVB-induced keratinocyte apoptosis through NFkappaB. J Biol Chem 2006; 281:25850-66. [PMID: 16816390 DOI: 10.1074/jbc.m601655200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein inhibitors of activated STATs (PIAS) family members are ubiquitin-protein isopeptide ligase-small ubiquitin-like modifier ligases for diverse transcription factors. However, the regulation of PIAS protein activity in cells is poorly understood. Previously, we reported that expression of Trim32, a RING domain ubiquitin-protein isopeptide ligase-ubiquitin ligase mutated in human limb-girdle muscular dystrophy type 2H (LGMD2H) and Bardet-Biedl syndrome, is elevated during mouse skin carcinogenesis, protecting keratinocytes from apoptosis induced by UVB and tumor necrosis factor-alpha (TNFalpha). Here we report that Trim32 interacts with Piasy and promotes Piasy ubiquitination and degradation. Ubiquitination of Piasy by Trim32 could be reproduced in vitro using purified components. Their interaction was induced by treatment with UVB/TNFalpha and involved redistribution of Piasy from the nucleus to the cytoplasm, where it accumulated in cytoplasmic granules that colocalized with Trim32. Piasy destabilization and ubiquitination required an intact RING domain in Trim32. The LGMD2H-associated missense point mutation prevented Trim32 binding to Piasy, and human Piasy failed to colocalize with human Trim32 in fibroblasts isolated from an LGMD2H patient. Trim32 expression increased the transcriptional activity of NFkappaB in epidermal keratinocytes, both under basal treatment and after UVB/TNFalpha treatment. Conversely, Piasy inhibited NFkappaB activity under the same conditions and sensitized keratinocytes to apoptosis induced by TNFalpha and UVB. Our results indicate that, by controlling Piasy stability, Trim32 regulates UVB-induced keratinocyte apoptosis through induction of NFkappaB and suggests loss of function of Trim32 in LGMD2H.
Collapse
Affiliation(s)
- Amador Albor
- Department of Dermatology and Program in Cell and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Musholt TJ, Brehm C, Hanack J, von Wasielewski R, Musholt PB. Identification of Differentially Expressed Genes in Papillary Thyroid Carcinomas With and Without Rearrangements of the Tyrosine Kinase Receptors RET and/or NTRK1. J Surg Res 2006; 131:15-25. [PMID: 16256137 DOI: 10.1016/j.jss.2005.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 08/07/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
BACKGROUND The transforming capacities of RET and/or NTRK1 chimeric oncogenes as well as the molecular background of non-rearranged papillary thyroid carcinomas (PTCs) remain to be elucidated. To assess altered gene expression, we examined PTCs with and without tyrosine kinase receptor rearrangements by mRNA differential display (DD). MATERIALS AND METHODS Six of 13 PTCs examined harbored RET chimeras (3x RET/PTC1, 1x RET/PTC3) and/or NTRK1 chimeras (2x trk, 1x TRK-T3, 2 unknown TRK hybrids). The method of DD analysis was refined by a novel fragment-recovery technique using a high-performance fluorescence scanner. RESULTS Of 500 up- or down-regulated mRNA transcripts, 19 selected fragments were recovered, cloned, sequenced, and identified. The accuracy and high degree of reproducibility of the method was demonstrated. Differential expression of gene products with potential association to cell proliferation or tumor progression was observed, such as 14-3-3beta and Rab27a. Moreover, several gene products with unknown functions were demonstrated in PTCs bearing RET or NTRK1 hybrids versus rearrangement-negative PTCs, including a homologue of the Ig kappa light chain constant region. CONCLUSIONS Candidate transcripts with presumed tumorigenic potential in other solid tumors may prove to be relevant in the progression of PTCs, too. Most promising is the isolation of several differentially expressed, yet unknown, genes that may open new insights in the pathogenesis or progression of PTC.
Collapse
Affiliation(s)
- Thomas J Musholt
- Endocrine Surgery, Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | | | |
Collapse
|
38
|
Brzeziańska E, Karbownik M, Migdalska-Sek M, Pastuszak-Lewandoska D, Włoch J, Lewiński A. Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma in the Polish population. Mutat Res 2006; 599:26-35. [PMID: 16483615 DOI: 10.1016/j.mrfmmm.2005.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/22/2005] [Accepted: 12/29/2005] [Indexed: 10/25/2022]
Abstract
Among different genetic factors involved in the pathogenesis of the papillary thyroid carcinoma (PTC), rearrangements of RET protooncogene (RET/PTC), as well as rearrangements of NTRK1 protooncogene are best known. The resulting hybrid oncogenes are found in PTCs with variable frequency, depending on the examined population. The relationship between these chromosomal aberrations and clinical outcome of PTCs remains still controversial. The study aimed at estimating the frequency of rearrangements of RET and/or NTRK1 protooncogenes in PTC in the Polish population, and at evaluating the possible relationships between the presence of RET and/or NTRK1 oncogenes and such parameters, as patient's age, gender, histopathological variant of tumor and clinical staging. Expression analysis of RET and NTRK1 was performed by duplex reverse transcription-polymerase chain reaction (duplex RT-PCR) and OneStep RT-PCR, respectively, in tumor tissues obtained from 33 patients with PTC. Rearrangements of the RET protooncogene (RET/PTC1, RET/PTC2 and RET/PTC3) were detected in 7 out of 33 PTC (21%), and rearrangements of NTRK1 [Trk-T1 and Trk(TPM3)] were detected in 4 out of 33 examined samples (12%). In none of the examined cases, did the RET and NTRK1 rearrangements occur in the same sample. No correlations were found between RET/PTC or Trk oncogenic sequences and patient's age, gender, the histopathological variant of PTC and the assignment to particular stage in clinical staging systems (TNM Staging, the University of Chicago clinical class, and Ohio State University Staging). Our study is the first one in which the frequency of NTRK1 rearrangements in PTC was reported for the Polish population. On the other hand, the frequency of RET rearrangements in PTC, as found by us, was similar to the previously reported results for the Polish population. Our results do not confirm the relationship between the structural aberrations in question and the clinical outcome of PTC.
Collapse
Affiliation(s)
- Ewa Brzeziańska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Poland
| | | | | | | | | | | |
Collapse
|
39
|
Mologni L, Sala E, Riva B, Cesaro L, Cazzaniga S, Redaelli S, Marin O, Pasquato N, Donella-Deana A, Gambacorti-Passerini C. Expression, purification, and inhibition of human RET tyrosine kinase. Protein Expr Purif 2005; 41:177-85. [PMID: 15802236 DOI: 10.1016/j.pep.2005.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 12/28/2004] [Indexed: 11/19/2022]
Abstract
Tyrosine kinases are emerging as frequent targets of primary oncogenic events and therefore represent an optimal focus of therapeutical intervention. Genetic alterations that cause dysregulated activation of the RET tyrosine kinase are responsible for a significant fraction of thyroid carcinomas. In an effort towards therapeutic RET inactivation, we have developed a method for expression and purification of recombinant RET catalytic domain for structural purposes and for use in the screening of potential inhibitors of RET kinase activity. His-tagged RET kinase domain was purified from Sf9 insect cell lysate using a two-step chromatographic protocol and characterised. Purified recombinant RET phosphorylated itself and exogenous substrates at physiological pH. A specific peptide substrate, derived from RET activation loop, was identified and experimentally validated. These reagents were used to develop a rapid ELISA-based kinase assay for screening potential inhibitors. Novel RET inhibitors were identified using this assay.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Clinical Medicine, University of Milano-Bicocca, Monza, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rhoden KJ, Johnson C, Brandao G, Howe JG, Smith BR, Tallini G. Real-time quantitative RT-PCR identifies distinct c-RET, RET/PTC1 and RET/PTC3 expression patterns in papillary thyroid carcinoma. J Transl Med 2004; 84:1557-70. [PMID: 15502856 DOI: 10.1038/labinvest.3700198] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
RET/PTC1 and RET/PTC3 are the markers for papillary thyroid carcinoma. Their reported prevalence varies broadly. Nonrearranged c-RET has also been detected in a variable proportion of papillary carcinomas. The published data suggest that a wide range in expression levels may contribute to the different frequency of c-RET and, particularly, of RET/PTC detection. However, quantitative expression analysis has never been systematically carried out. We have analyzed by real-time RT-PCR 25 papillary carcinoma and 12 normal thyroid samples for RET/PTC1, RET/PTC3 and for RET exons 10-11 and 12-13, which are adjacent to the rearrangement site. The variability in mRNA levels was marked and four carcinoma groups were identified: one lacking RET/PTC rearrangement with balanced RET exon levels similar to those of the normal samples (7/25 cases, 28%), the second (6/25 cases, 24%) with balanced RET expression and very low levels of RET/PTC1, the third with unbalanced RET exons 10-11 and 12-13 expression, high RET/PTC1 levels but no RET/PTC3 (7/25 cases, 28%), and the fourth with unbalanced RET expression, high RET/PTC1 levels and low levels of RET/PTC3 (5/25 cases, 20%). Papillary carcinomas with high RET/PTC1 expression showed an association trend for large tumor size (P=0.063). Our results indicate that the variability in c-RET and RET/PTC mRNA levels contributes to the apparent inconsistencies in their reported detection rates and should be taken into account not only for diagnostic purposes but also to better understand the role of c-RET activation in thyroid tumorigenesis.
Collapse
Affiliation(s)
- Kerry J Rhoden
- JB Pierce Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
41
|
Nikiforov YE. The molecular pathways induced by radiation and leading to thyroid carcinogenesis. Cancer Treat Res 2004; 122:191-206. [PMID: 16209046 DOI: 10.1007/1-4020-8107-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
42
|
Musholt PB, Imkamp F, von Wasielewski R, Schmid KW, Musholt TJ. RET rearrangements in archival oxyphilic thyroid tumors: New insights in tumorigenesis and classification of Hürthle cell carcinomas? Surgery 2003; 134:881-9; discussion 889. [PMID: 14668719 DOI: 10.1016/j.surg.2003.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oncocytic carcinomas (Hürthle cell carcinomas [HCCs]) are commonly considered a subgroup of follicular thyroid carcinomas (FTCs). Recent characterization of a subgroup of "Hürthle cell" papillary thyroid carcinomas (PTCs) was based on the identification of PTC-specific RET hybrid oncogenes in HCCs. METHODS We examined 27 HCCs, 4 oxyphilic FTCs, 5 oxyphilic PTCs, 2 poorly differentiated carcinomas arising from HCCs (HCC-UTCs), and 16 oxyphilic adenomas. Total RNA was extracted from paraffin-embedded thyroid neoplasms by a novel macrodissection technique that uses a cylindric punch. After reverse transcription-polymerase chain reaction-based screening for RET rearrangements, the samples were tested for all known RET/PTC 1 to 11 hybrids with the use of artificially constructed chimeric sequences as controls. RESULTS The elimination of C cells by punching dissection significantly reduced RET wild-type expression. RET hybrid oncogenes (7x RET/PTC1, 1x RET/PTC1L, 2x RET/PTC3, 5 uncharacterized RET/PTCx) were demonstrated in 7 of 27 HCCs, in 0 of 4 oxyphilic FTCs, in 4 of 5 oxyphilic PTCs, in 1 of 2 HCC-UTCs, and in 3 of 16 oxyphilic adenomas. CONCLUSION Our results suggest that the expression of rearranged RET hybrid oncogenes (1) is present in a similar percentage of HCCs when compared with the literature on nonoxyphilic PTCs, (2) defines PTC-like HCCs better than histomorphologic characterization, (3) excludes HCCs as a subgroup of FTCs, and (4) may play a role in the early tumorigenesis of oncocytic tumors.
Collapse
Affiliation(s)
- Petra B Musholt
- Department of Visceral & Transplantation Surgery, Hannover University Medical School, Clinical Chemistry, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|