1
|
Mansourian M, Firoozabadi SMP, Hassan ZM. The effect of 900 MHz electromagnetic fields on biological pathways induced by electrochemotherapy. Electromagn Biol Med 2021; 40:158-168. [PMID: 33306410 DOI: 10.1080/15368378.2020.1856681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022]
Abstract
Electrochemotherapy (ECT) is a new and promising treatment strategy for cancer treatment. The aim of this work is to investigate the effect of 900 MHz radiofrequency electromagnetic fields (RF-EMFs) on the mechanisms of ECT (low voltage, high frequency) including cell permeability in vitro, and tumor hypoxia, immune system response in vivo, and on volume of tumors treated with ECT (70 V/cm, 5 kHz). The 4T1 cells were exposed to RF-EMFs at 17, 162, or 349 µW/cm2 power densities, using GSM900 simulator, 10 min. The cells were then put in individual groups, comprising of no treatment, chemotherapy, electric pulses (EPs), or ECT. The cell viability was evaluated. The mice with 4T1 tumor cells were exposed to RF field 10 min/day until the tumor volume reached about 8 mm. Then, the mice tumors were treated with ECT. Tumor hypoxia and immune system response was analyzed through immunohistochemistry (IHC) assay and ELISA technique, respectively. The volume of tumors was also calculated for 24 days following the treatment. The results showed that RF fields at 349 µW/cm2 could increase tumor hypoxia induced by ECT and cause a significant increase of Interferon-gamma (IFN-γ) in comparison with group ECT alone. However, 900 MHz radiations did not affect the volume of tumors treated to ECT (70 V/cm, 5 kHz) significantly. In this study, 900 MHz EMF could improve some biological pathways induced by ECT. Such a positive effect could utilize in some other treatments to increase efficacy, which should be investigated in further research.
Collapse
Affiliation(s)
- Mahsa Mansourian
- Department of Medical Physics, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| | - S M P Firoozabadi
- Department of Medical Physics, Faculty of Medical Science, Biomedical Engineering, Tarbiat Modares University , Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
2
|
Azzam EI. What does radiation biology tell us about potential health effects at low dose and low dose rates? JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:S28-S39. [PMID: 31216522 DOI: 10.1088/1361-6498/ab2b09] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The health risks to humans exposed to low dose and low dose rate ionising radiation remain ambiguous and are the subject of debate. The need to establish risk assessment standards based on the mechanisms underlying low dose/low fluence radiation exposures has been recognised by scholarly and regulatory bodies as critical for reducing the uncertainty in predicting adverse health risks of human exposure to low doses of radiation. Here, a brief review of laboratory-based evidence of molecular and biochemical changes induced by low doses and low dose rates of radiation is presented. In particular, two phenomena, namely bystander effects and adaptive responses that may impact low-level radiation health risks, are discussed together with the need for further studies. The expansion of this knowledge by considering the important variables that affect the radiation response (e.g. genetic susceptibility, time after exposure), and using the latest advances in experimental models and bioinformatics tools, may guide epidemiological studies towards reducing the uncertainty in predicting the potential health hazards of exposure to low-dose radiation.
Collapse
Affiliation(s)
- Edouard I Azzam
- Departments of Radiology, RUTGERS New Jersey Medical School, Newark, NJ 07103, United States of America
| |
Collapse
|
3
|
Spivak IM, Kuranova ML, Mavropulo-Stolyarenko GR, Surma SV, Shchegolev BF, Stefanov VE. Cell response to extremely weak static magnetic fields. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916030180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
4
|
Sannino A, Zeni O, Romeo S, Massa R, Gialanella G, Grossi G, Manti L, Vijayalaxmi, Scarfì MR. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage. JOURNAL OF RADIATION RESEARCH 2014; 55:210-7. [PMID: 23979077 PMCID: PMC3951069 DOI: 10.1093/jrr/rrt106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 03/19/2024]
Abstract
The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response.
Collapse
Affiliation(s)
- Anna Sannino
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
| | - Olga Zeni
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
| | - Stefania Romeo
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
| | - Rita Massa
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
- Department of Physics, University of Naples Federico II, CMSA via Cintia, 80126, Napoli, Italy
| | - Giancarlo Gialanella
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
- Department of Physics, University of Naples Federico II, CMSA via Cintia, 80126, Napoli, Italy
| | - Gianfranco Grossi
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
- Department of Physics, University of Naples Federico II, CMSA via Cintia, 80126, Napoli, Italy
- Centre of Radioprotection and Health Physics, University of Naples Federico II, via Cintia, 80126, Napoli, Italy
| | - Lorenzo Manti
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
- Department of Physics, University of Naples Federico II, CMSA via Cintia, 80126, Napoli, Italy
| | - Vijayalaxmi
- Department of Radiology, University of Texas Health Science Centre, 7703 Floyd Curl Drive – MC 7800, San Antonio, TX 78229-3900, USA
| | - Maria Rosaria Scarfì
- CNR – Institute for Electromagnetic Sensing of the Environment, via Diocleziano 328, 80124, Napoli, Italy
- National Institute of Nuclear Physics, Section of Napoli, via Cintia, 80126, Napoli, Italy
| |
Collapse
|
5
|
Vijayalaxmi, Cao Y, Scarfi MR. Adaptive response in mammalian cells exposed to non-ionizing radiofrequency fields: A review and gaps in knowledge. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00004-0. [PMID: 24548818 DOI: 10.1016/j.mrrev.2014.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 11/19/2022]
Abstract
Adaptive response is a phenomenon in which cells which were pre-exposed to extremely low and non-toxic doses of a genotoxic agent became resistant to the damage induced by subsequent exposure to a higher and toxic dose of the same, similar (in action) or another genotoxic agent. Such response has been well documented in scientific literature in cells exposed in vitro and in vivo to low doses of physical (especially, ionizing radiation) and chemical mutagens. The existence of similar phenomenon in mammalian cells exposed in vitro and in vivo to non-ionizing radiofrequency fields has been reported in several research publications. In in vitro studies, human blood lymphocytes exposed to radiofrequency fields and then treated with a genotoxic mutagen or subjected to ionizing radiation showed significantly decreased genetic damage. Similar studies in tumor cells showed significantly increased viability, decreased apoptosis, increased mitochondrial membrane potential, decreased intracellular free Ca2+ and, increased Ca2+-Mg2+-ATPase activity. In in vivo studies, exposure of rodents to radiofrequency fields and then to lethal/sub-lethal doses of γ-radiation showed survival advantage, significantly decreased damage in hematopoietic tissues, decreased genetic damage in blood leukocytes and bone marrow cells, increased numbers of colony forming units in bone marrow, increased levels of colony stimulating factor and interleukin-3 in the serum and increased expression of genes related to cell cycle. These observations suggested the ability of radiofrequency fields to induce adaptive response and also indicated some potential mechanisms for the induction of such response. Several gaps in knowledge that need to be investigated were discussed.
Collapse
|
6
|
Lavelle C, Foray N. Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology. Int J Biochem Cell Biol 2014; 49:84-97. [PMID: 24486235 DOI: 10.1016/j.biocel.2014.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Genomic DNA in eukaryotic cells is basically divided into chromosomes, each consisting of a single huge nucleosomal fiber. It is now clear that chromatin structure and dynamics play a critical role in all processes involved in DNA metabolism, e.g. replication, transcription, repair and recombination. Radiation is a useful tool to study the biological effects of chromatin alterations. Conversely, radiotherapy and radiodiagnosis raise questions about the influence of chromatin integrity on clinical features and secondary effects. This review focuses on the link between DNA damage and chromatin structure at different scales, showing how a comprehensive multiscale vision is required to understand better the effect of radiations on DNA. Clinical aspects related to high- and low-dose of radiation and chromosomal instability will be discussed. At the same time, we will show that the analysis of the radiation-induced DNA damage distribution provides good insight on chromatin structure. Hence, we argue that chromatin "structuralists" and radiobiological "clinicians" would each benefit from more collaboration with the other. We hope that this focused review will help in this regard.
Collapse
Affiliation(s)
- Christophe Lavelle
- Genome Structure and Instability, National Museum of Natural History, Paris, France; CNRS UMR7196, Paris, France; INSERM U1154, Paris, France; Nuclear Architecture and Dynamics, CNRS GDR 3536, Paris, France.
| | - Nicolas Foray
- Nuclear Architecture and Dynamics, CNRS GDR 3536, Paris, France; INSERM, UMR1052, Radiobiology Group, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
7
|
Zeni O, Sannino A, Romeo S, Massa R, Sarti M, Reddy AB, Prihoda TJ, Vijayalaxmi, Scarfì MR. Induction of an adaptive response in human blood lymphocytes exposed to radiofrequency fields: Influence of the universal mobile telecommunication system (UMTS) signal and the specific absorption rate. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:29-35. [DOI: 10.1016/j.mrgentox.2012.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/02/2012] [Accepted: 03/20/2012] [Indexed: 01/18/2023]
|
8
|
Sannino A, Sarti M, Reddy SB, Prihoda TJ, Vijayalaxmi, Scarfì MR. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation. Radiat Res 2009; 171:735-42. [PMID: 19580480 DOI: 10.1667/rr1687.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incidence of micronuclei was evaluated to assess the induction of an adaptive response to non-ionizing radiofrequency (RF) radiation in peripheral blood lymphocytes collected from five different human volunteers. After stimulation with phytohemagglutinin for 24 h, the cells were exposed to an adaptive dose of 900 MHz RF radiation used for mobile communications (at a peak specific absorption rate of 10 W/kg) for 20 h and then challenged with a single genotoxic dose of mitomycin C (100 ng/ml) at 48 h. Lymphocytes were collected at 72 h to examine the frequency of micronuclei in cytokinesis-blocked binucleated cells. Cells collected from four donors exhibited the induction of adaptive response (i.e., responders). Lymphocytes that were pre-exposed to 900 MHz RF radiation had a significantly decreased incidence of micronuclei induced by the challenge dose of mitomycin C compared to those that were not pre-exposed to 900 MHz RF radiation. These preliminary results suggested that the adaptive response can be induced in cells exposed to non-ionizing radiation. A similar phenomenon has been reported in cells as well as in animals exposed to ionizing radiation in several earlier studies. However, induction of adaptive response was not observed in the remaining donor (i.e., non-responder). The incidence of micronuclei induced by the challenge dose of mitomycin C was not significantly different between the cells that were pre-exposed and unexposed to 900 MHz RF radiation. Thus the overall data indicated the existence of heterogeneity in the induction of an adaptive response between individuals exposed to RF radiation and showed that the less time-consuming micronucleus assay can be used to determine whether an individual is a responder or non-responder.
Collapse
Affiliation(s)
- Anna Sannino
- CNR-Institute for Electromagnetic Sensing of Environment, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Ushakov VL, Shcheglov VS, Belyaev IY, Harms–ringdahl M. Combined Effects of Circularly Polarized Microwaves and Ethidium Bromide onE. coliCELLS. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368379909022579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
The effect of radio-adaptive doses on HT29 and GM637 cells. Radiat Oncol 2008; 3:12. [PMID: 18433479 PMCID: PMC2387149 DOI: 10.1186/1748-717x-3-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 04/23/2008] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The shape of the dose-response curve at low doses differs from the linear quadratic model. The effect of a radio-adaptive response is the centre of many studies and well known inspite that the clinical applications are still rarely considered. METHODS We studied the effect of a low-dose pre-irradiation (0.03 Gy - 0.1 Gy) alone or followed by a 2.0 Gy challenging dose 4 h later on the survival of the HT29 cell line (human colorectal cancer cells) and on the GM637 cell line (human fibroblasts). RESULTS 0.03 Gy given alone did not have a significant effect on both cell lines, the other low doses alone significantly reduced the cell survival. Applied 4 h before the 2.0 Gy fraction, 0.03 Gy led to a significant induced radioresistance in GM637 cells, but not in HT29 cells, and 0.05 Gy led to a significant hyperradiosensitivity in HT29 cells, but not in GM637 cells. CONCLUSION A pre-irradiation with 0.03 Gy can protect normal fibroblasts, but not colorectal cancer cells, from damage induced by an irradiation of 2.0 Gy and the application of 0.05 Gy prior to the 2.0 Gy fraction can enhance the cell killing of colorectal cancer cells while not additionally damaging normal fibroblasts. If these findings prove to be true in vivo as well this may optimize the balance between local tumour control and injury to normal tissue in modern radiotherapy.
Collapse
|
11
|
Dimova EG, Bryant PE, Chankova SG. Adaptive response: some underlying mechanisms and open questions. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
de Toledo SM, Asaad N, Venkatachalam P, Li L, Howell RW, Spitz DR, Azzam EI. Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: the role of growth architecture and oxidative metabolism. Radiat Res 2007; 166:849-57. [PMID: 17149977 DOI: 10.1667/rr0640.1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 08/02/2006] [Indexed: 11/03/2022]
Abstract
To investigate low-dose/low-dose-rate effects of low-linear energy transfer (LET) ionizing radiation, we used gamma-irradiated cells adapted to grow in a three-dimensional architecture that mimics cell growth in vivo. We determined the cellular, molecular and biochemical changes in these cells. Quiescent normal human fibroblasts were irradiated with single acute or chronic doses (1-10 cGy) of (137)Cs gamma rays. Whereas exposure to an acute dose of 10 cGy increased micronucleus formation, protraction of the dose over 48 h reduced micronucleus frequency to a level similar to or lower than what occurs spontaneously. The protracted treatment also up-regulated the cellular content of the antioxidant glutathione. These changes correlated with modulation of phospho-TP53 (serine 15), a stress marker that was regulated by doses as low as 1 cGy. The DNA damage that occurred after exposure to an acute dose of 10 cGy was protected against in two ways: (1) up-regulation of cellular antioxidant enzyme activity by ectopic overexpression of MnSOD, catalase or glutathione peroxidase, and (2) inhibition of superoxide anion generation by flavin-containing oxidases. These results support a significant role for oxidative metabolism in mediating low-dose radiation effects and demonstrate that cell culture in three dimensions is ideal to investigate radiation-induced adaptive responses. Expression of connexin 43, a constitutive protein of gap junctions, and the G(1) checkpoint were more sensitive to regulation by gamma rays in cells maintained in a three-dimensional than in a two-dimensional configuration.
Collapse
Affiliation(s)
- Sonia M de Toledo
- Department of Radiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07101, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Whitehead TD, Brownstein BH, Parry JJ, Thompson D, Cha BA, Moros EG, Rogers BE, Roti Roti JL. Expression of the Proto-oncogeneFosafter Exposure to Radiofrequency Radiation Relevant to Wireless Communications. Radiat Res 2005; 164:420-30. [PMID: 16187744 DOI: 10.1667/rr3446.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study the expression levels of the proto-oncogene Fos were measured after exposure to radiofrequency (RF) radiation at two relatively high specific absorption rates (SARs) of 5 and 10 W/kg for three types of modulated signals: 847.74 MHz code division multiple access (CDMA), 835.62 MHz frequency division multiple access (FDMA), and 836.55 MHz time division multiple access (TDMA). This work was undertaken to confirm a previous report by Goswami et al. (Radiat. Res. 151, 300-309, 1999) that CDMA and FDMA radiation caused small but statistically significant increases in Fos levels as cells entered plateau phase during exposure. No effects on Myc or Jun levels were observed in that study. Therefore, in the present study, analyses were restricted to Fos expression during the transition from exponential growth to plateau phase. Fos expression was measured using the real-time polymerase chain reaction (RT-PCR) technique. Serum-stimulated C3H 10T(1/2) cells were used as a positive control for Fos expression. Possible influences of final cell number or pH variability on Fos expression were evaluated. Expression of Fos mRNA in C3H 10T(1/2) cells was not significantly different from that found after sham exposure at either SAR level for any signal modulation. Therefore, the results of Goswami et al. could not be confirmed.
Collapse
Affiliation(s)
- Timothy D Whitehead
- Washington University School of Medicine, Radiation Oncology Department, Radiation and Cancer Biology Division, St. Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Schaffer M, Schwarz SB, Kulka U, Busch M, Dühmke E. Adaptive doses of irradiation-an approach to a new therapy concept for bladder cancer? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2004; 43:271-276. [PMID: 15455244 DOI: 10.1007/s00411-004-0256-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 08/05/2004] [Indexed: 05/24/2023]
Abstract
Radiation adaptive response in terms of induced radioresistance or hyperradiosensitivity, has been studied in HCV29 (human bladder epithelium) and RT4 (human bladder carcinoma) cell lines. After pre-irradiation doses of 0.05 Gy or 0.1 Gy, HCV29 cells showed induced radioresistance, whereas after pre-irradiation doses of 0.05 Gy, 0.1 Gy, 0.2 Gy, and 0.5 Gy, the RT4 cells clearly showed hyperradiosensitivity. On the basis of these results, an approach has been developed that may lead to a concept for a new radiotherapeutic regimen of bladder cancer that includes protection of normal cells, on the one hand, and the potential of tumor cell damage, on the other hand. These findings need to be confirmed in further studies for the benefit of the patients.
Collapse
Affiliation(s)
- Moshe Schaffer
- Department of Radiation Therapy and Radiation Oncology, University of Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
15
|
Przewloka MR, Pardington PE, Yannone SM, Chen DJ, Cary RB. In vitro and in vivo interactions of DNA ligase IV with a subunit of the condensin complex. Mol Biol Cell 2003; 14:685-97. [PMID: 12589063 PMCID: PMC150001 DOI: 10.1091/mbc.e01-11-0117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Several findings have revealed a likely role for DNA ligase IV, and interacting protein XRCC4, in the final steps of mammalian DNA double-strand break repair. Recent evidence suggests that the human DNA ligase IV protein plays a critical role in the maintenance of genomic stability. To identify protein-protein interactions that may shed further light on the molecular mechanisms of DSB repair and the biological roles of human DNA ligase IV, we have used the yeast two-hybrid system in conjunction with traditional biochemical methods. These efforts have resulted in the identification of a physical association between the DNA ligase IV polypeptide and the human condensin subunit known as hCAP-E. The hCAP-E polypeptide, a member of the Structural Maintenance of Chromosomes (SMC) super-family of proteins, coimmunoprecipitates from cell extracts with DNA ligase IV. Immunofluorescence studies reveal colocalization of DNA ligase IV and hCAP-E in the interphase nucleus, whereas mitotic cells display colocalization of both polypeptides on mitotic chromosomes. Strikingly, the XRCC4 protein is excluded from the area of mitotic chromosomes, suggesting the formation of specialized DNA ligase IV complexes subject to cell cycle regulation. We discuss our findings in light of known and hypothesized roles for ligase IV and the condensin complex.
Collapse
Affiliation(s)
- Marcin R Przewloka
- Los Alamos National Laboratory, Biosciences Division, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|
16
|
Tyrsina EG, Sarimov RM, Alipov ED. The role of chromatin structural changes in acquired radioresistance of cells. DOKL BIOCHEM BIOPHYS 2002; 387:320-3. [PMID: 12577612 DOI: 10.1023/a:1021744214436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- E G Tyrsina
- Research Institute of Carcinogenesis, Blokhin Russian Research Center of Oncology, Russian Academy of Medical Sciences, Kashirskoe sh. 24, Moscow, 115478 Russia
| | | | | |
Collapse
|
17
|
Belyaev IY, Czene S, Harms-Ringdahl M. Changes in chromatin conformation during radiation-induced apoptosis in human lymphocytes. Radiat Res 2001; 156:355-64. [PMID: 11554847 DOI: 10.1667/0033-7587(2001)156[0355:ciccdr]2.0.co;2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Human peripheral lymphocytes in G(0) phase were irradiated with 1-5 Gy of gamma rays. The biochemical and morphological changes characteristic of apoptosis were examined for 72 h after irradiation. In parallel, changes in chromatin conformation were studied by the method of anomalous viscosity time dependence (AVTD) and by measurements of nuclear halo size. An immediate and dose-dependent relaxation of chromatin, which became saturated at doses above 2-3 Gy, was revealed by the AVTD method. The state of relaxed chromatin lasted up to 12-24 h after irradiation, a response considerably longer than the time attributable to repair of radiation-induced DNA breaks. Measurements of nuclear halo size also indicated the initial relaxation of chromatin in the irradiated cells and its subsequent condensation. This condensation of chromatin as revealed with AVTD correlated well with nuclear condensation, as measured with dual fluorescence staining, and with DNA fragmentation, as measured by conventional and pulsed-field gel electrophoresis (PFGE). Late apoptotic cells did not contribute significantly to the AVTD signal, showing that the chromatin of these cells was completely condensed and fragmented.
Collapse
Affiliation(s)
- I Y Belyaev
- Department of Genetic and Cellular Toxicology, Stockholm University, Stockholm, S-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
18
|
Belyaev IY, Eriksson S, Nygren J, Torudd J, Harms-Ringdahl M. Effects of ethidium bromide on DNA loop organisation in human lymphocytes measured by anomalous viscosity time dependence and single cell gel electrophoresis. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:348-56. [PMID: 10434054 DOI: 10.1016/s0304-4165(99)00076-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of ethidium bromide (EtBr) on human lymphocytes were studied by the method of anomalous viscosity time dependence (AVTD) and by the comet assay. EtBr at low concentrations increased the maximum viscosity and time of radial migration as measured with AVTD at neutral conditions of lysis. A pronounced relaxation of DNA loops was observed with the neutral comet assay. The maximal comet length corresponded to 2 Mb DNA loops. At high concentrations of EtBr, 2 mg/ml, significant reduction in AVTD below control level was seen that suggested hypercondensation of chromatin. The hypercondensation was directly observed with the neutral comet assay. EtBr did not induce DNA strand breaks as measured by the alkaline comet assay. The hypercondensed nuclei could be decondensed by irradiation with gamma-rays or exposure to light. The data provide evidence that EtBr at high concentrations resulted in hypercondensation of chromatin below control level. The comet assay confirmed that the increase in AVTD peaks deals with relaxation of loops and AVTD decrease is caused by chromatin condensation. The prediction of the AVTD theory for a correlation between time of radial migration and condensation of chromatin was verified. Further, the data show that the comet assay at neutral conditions of lysis is rather sensitive to DNA loop relaxation in the absence of DNA damage. Finally, donor specificity was found for the hypercondensation.
Collapse
Affiliation(s)
- I Y Belyaev
- Department of Molecular Genome Research, Stockholm University, S-106 91, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Alipov YD, Harms-Ringdahl M. Effects of zero magnetic field on the conformation of chromatin in human cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1336:465-73. [PMID: 9367174 DOI: 10.1016/s0304-4165(97)00059-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of zero magnetic field on human VH-10 fibroblasts and lymphocytes were studied by the method of anomalous viscosity time dependencies (AVTD). A decrease of about 20% in the AVTD peaks was observed within 40 to 80 min of exposure of fibroblasts. This decrease was transient and disappeared 120 min after beginning of exposure. Similar kinetics for the effect of zero field was observed when cells were exposed 20 min and then kept at an ambient field. A 20% decrease of the AVTD peaks (p < 0.005 to 0.05) 40 to 70 min after 20 min exposure to zero field was reproduced in four independent experiments (out of four) with human lymphocytes from the same healthy donor. Contrary to the effects of zero field, irradiation of lymphocytes or fibroblasts with gamma-rays resulted in significant increase of the AVTD peaks immediately after irradiation. We concluded that zero field and gamma-rays caused hypercondensation and decondensation of chromatin, correspondingly. The effect of ethidium bromide served as a positive control and supported this conclusion. The effects of zero field on human lymphocytes were more significant in the beginning of G1-phase than in G0-phase. Thus, human fibroblasts and lymphocytes were shown to respond to zero magnetic field.
Collapse
|