1
|
Zimyanin V, Redemann S. Microtubule length correlates with spindle length in C. elegans meiosis. Cytoskeleton (Hoboken) 2024; 81:356-368. [PMID: 38450962 PMCID: PMC11333180 DOI: 10.1002/cm.21849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The accurate segregation of chromosomes during female meiosis relies on the precise assembly and function of the meiotic spindle, a dynamic structure primarily composed of microtubules. Despite the crucial role of microtubule dynamics in this process, the relationship between microtubule length and spindle size remains elusive. Leveraging Caenorhabditis elegans as a model system, we combined electron tomography and live imaging to investigate this correlation. Our analysis revealed significant changes in spindle length throughout meiosis, coupled with alterations in microtubule length. Surprisingly, while spindle size decreases during the initial stages of anaphase, the size of antiparallel microtubule overlap decreased as well. Detailed electron tomography shows a positive correlation between microtubule length and spindle size, indicating a role of microtubule length in determining spindle dimensions. Notably, microtubule numbers displayed no significant association with spindle length, highlighting the dominance of microtubule length regulation in spindle size determination. Depletion of the microtubule depolymerase KLP-7 led to elongated metaphase spindles with increased microtubule length, supporting the link between microtubule length and spindle size. These findings underscore the pivotal role of regulating microtubule dynamics, and thus microtubule length, in governing spindle rearrangements during meiotic division, shedding light on fundamental mechanisms dictating spindle architecture.
Collapse
Affiliation(s)
- Vitaly Zimyanin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
2
|
Yildiz S, Bildik G, Benlioglu C, Turan V, Dilege E, Ozel M, Kim S, Oktem O. Breast cancer treatment and ovarian function. Reprod Biomed Online 2023; 46:313-331. [PMID: 36400663 DOI: 10.1016/j.rbmo.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023]
Abstract
The aim of this study was to provide an update on ovarian function and the mechanisms of gonadal damage after exposure to chemotherapy in breast cancer survivors. The alkylating agents are toxic to both primordial and growing follicles. However, anti-metabolite drugs are more likely to destroy preantral and antral follicles. Younger patients are more likely to have a higher ovarian reserve, and therefore, more likely to retain some residual ovarian function after exposure to gonadotoxic regimens. However, there can be significant variability in ovarian reserve among patients of the same age. Furthermore, patients with critically diminished ovarian reserve may continue to menstruate regularly. Therefore age and menstrual status are not reliable indicators of good ovarian reserve and might give a false sense of security and result in an adverse outcome if the patient is consulted without considering more reliable quantitative markers of ovarian reserve (antral follicle count and anti-Müllerian hormone) and fertility preservation is not pursued. In contrast to well-documented ovarian toxicity of older chemotherapy regimens, data for newer taxane-containing protocols have only accumulated in the last decade and data are still very limited regarding the impact of targeted therapies on ovarian function.
Collapse
Affiliation(s)
- Sule Yildiz
- The Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Koç University Hospital, Koç University School of Medicine, Istanbul, Turkey
| | - Gamze Bildik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX 77054, USA
| | - Can Benlioglu
- Department of Obstetrics and Gynecology, Koç University Hospital, Istanbul, Turkey
| | - Volkan Turan
- Istanbul Tema Hospital, Assisted Reproduction Unit, Istanbul
| | - Ece Dilege
- Department of General Surgery, Koç University Hospital, Koç University School of Medicine, Istanbul, Turkey
| | - Melis Ozel
- Department of Gynecology and Obstetrics Klinikum Ingolstadt, Bavaria, Germany
| | - Samuel Kim
- Eden Centers for Advanced Fertility, Fullerton CA 92835, USA
| | - Ozgur Oktem
- The Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Koç University Hospital, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
3
|
Cheng J, Mi P, Li Y, Lu Y, Sun F. Melatonin prevents oocyte deterioration due to cotinine exposure in mice. Biol Reprod 2022; 107:635-649. [PMID: 35191979 DOI: 10.1093/biolre/ioac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Levels of cotinine, a major metabolite of nicotine, have been positively correlated with risks of cigarette smoking-related diseases. Melatonin is synthesized by the pineal gland and has been demonstrated to be beneficial to oocyte maturation due to its antioxidative activity. In this study, we investigated the effects of cotinine on mouse oocyte meiosis and the protective roles of melatonin in vitro and in vivo. The results showed that cotinine exposure caused defects in the first polar body extrusion and reduced parthenogenetic activation in in vitro-matured oocytes. Additionally, cotinine exposure increased the level of oxidative stress, which resulted in aberrant actin distribution, abnormal spindle morphology, chromosome misalignment, and even oocyte aneuploidy. Simultaneously, cotinine exposure decreased the mitochondrial membrane potential and antioxidant gene expression and increased apoptosis-related gene expression. However, all these toxic effects of cotinine could be reversed after the addition of melatonin, and the mechanism may be a decrease in reactive oxygen species production. In conclusion, cotinine causes poor oocyte quality, which could be rescued by melatonin supplementation during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Jinmei Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Panpan Mi
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yinchuan Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
4
|
Wu C, Wu T, Chen D, Wei S, Tang W, Xue L, Xiong J, Huang Y, Guo Y, Chen Y, Wu M, Wang S. The effects and mechanism of taxanes on chemotherapy-associated ovarian damage: A review of current evidence. Front Endocrinol (Lausanne) 2022; 13:1025018. [PMID: 36531475 PMCID: PMC9756165 DOI: 10.3389/fendo.2022.1025018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Chemotherapy is often a cause of premature ovarian insufficiency and infertility since the ovarian follicles are extremely sensitive to the effects of chemotherapeutic agents. Different chemotherapeutic agents with varying mechanisms of action may damage ovarian function differently. Taxanes are widely used in clinical cancer treatment, but the specific reproductive toxicological information is still controversial. This review described the impact and duration of taxanes on ovarian function in women and analyzed the possible reasons for different conclusions. Furthermore, the toxicity of taxanes on ovarian function and its possible mechanisms were discussed. The potential protective strategies and agents against ovarian damage induced by taxanes are also reviewed.
Collapse
Affiliation(s)
- Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
- *Correspondence: Shixuan Wang, ; Meng Wu,
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
- *Correspondence: Shixuan Wang, ; Meng Wu,
| |
Collapse
|
5
|
Nevoral J, Havránková J, Kolinko Y, Prokešová Š, Fenclová T, Monsef L, Žalmanová T, Petr J, Králíčková M. Exposure to alternative bisphenols BPS and BPF through breast milk: Noxious heritage effect during nursing associated with idiopathic infertility. Toxicol Appl Pharmacol 2021; 413:115409. [PMID: 33476676 DOI: 10.1016/j.taap.2021.115409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
There is increasing evidence that bisphenols BPS and BPF, which are analogues of BPA, have deleterious effects on reproduction even at extremely low doses. Indirect exposure via the maternal route (i.e. across the placenta and/or by breastfeeding) is underestimated, although it can be assumed to be a cause of idiopathic female infertility. Therefore, we hypothesised the deleterious effects of exposure to BPA analogues during breastfeeding on the ovarian and oocyte quality of offspring. A 15-day exposure period of pups was designed, whilst nursing dams (N ≥ 6 per experimental group) were treated via drinking water with a low (0.2 ng/g body weight/day) or moderate (20 ng/g body weight/day) dose of bisphenol, mimicking real exposure in humans. Thereafter, female pups were bred to 60 days and oocytes were collected. Immature oocytes were used in the in-vitro maturation assay; alternatively, in-vivo-matured oocytes were isolated and used for parthenogenetic activation. Both in-vitro- and in-vivo-matured oocytes were subjected to immunostaining of spindle microtubules (α-tubulin) and demethylation of histone H3 on the lysine K27 (H3K27me2) residue. Although very low doses of both BPS and BPF did not affect the quality of ovarian histology, spindle formation and epigenetic signs were affected. Notably, in-vitro-matured oocytes were significantly sensitive to both doses of BPS and BPF. Although no significant differences in spindle-chromatin quality were identified in ovulated and in-vivo-matured oocytes, developmental competence was significantly damaged. Taken together, our mouse model provides evidence that bisphenol analogues represent a risk to human reproduction, possibly leading to idiopathic infertility in women.
Collapse
Affiliation(s)
- Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Yaroslav Kolinko
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Šárka Prokešová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ladan Monsef
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Žalmanová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
6
|
Ma N, Chen G, Chen J, Cui M, Yin Y, Liao Q, Tang M, Feng X, Li X, Zhang S, Ma D, Chen G, Li K, Ai J. Transient impact of paclitaxel on mouse fertility and protective effect of gonadotropin‑releasing hormone agonist. Oncol Rep 2020; 44:1917-1928. [PMID: 33000247 PMCID: PMC7551385 DOI: 10.3892/or.2020.7740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/13/2020] [Indexed: 02/01/2023] Open
Abstract
Paclitaxel (PXL) is a chemotherapeutic agent widely used in solid tumors. However, whether PXL causes premature ovarian insufficiency in women of reproductive age remains controversial. The aim of the present study was to answer how and for how long PXL affects fertility, and to identify the protective effect of gonadotropin-releasing hormone agonist (GnRHa) in mice. A single dose of PXL was administered to 7-week-old female ICR mice. Mice were treated with GnRHa for 1 estrous cycle prior to chemotherapy, and for another following chemotherapy. On the days 1, 6, 11 and 16 following the administration of PXL, mice were assessed by ovarian histology, ovarian stimulation and mating experiment. Multiple doses of PXL were also administered to verify the duration of the gonadotoxicity of PXL. It was determined that PXL only destroyed antral follicles on day 1 following chemotherapy without reducing primordial follicles. In vitro experiments revealed that PXL impaired oocytes in metaphase, excluding those at the germinal vesicle stage. The number and quality of retrieved metaphaseII(MII) oocytes in PXL-exposed mice were reduced on day 1 following chemotherapy, which was recovered on day 11. MII oocytes from mice pretreated with GnRHa recovered on day 6 following chemotherapy. Following 3 estrous cycles in mice after the last dose of the 3-dose paclitaxel administration, follicles in all stages and retrieved MII oocytes were recovered. It was concluded that the impairment caused by PXL on follicles and oocytes in mice lasted for <3 estrous cycles, which was shortened by pretreatment of GnRHa.
Collapse
Affiliation(s)
- Nieying Ma
- Reproductive Medical Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ge Chen
- Reproductive Medical Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jing Chen
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengge Cui
- Reproductive Medical Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ye Yin
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiuyue Liao
- Reproductive Medical Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Minghui Tang
- Reproductive Medical Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xue Feng
- Reproductive Medical Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xi Li
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sijia Zhang
- Reproductive Medical Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jihui Ai
- Reproductive Medical Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
7
|
Kim YY, Kim WO, Liu HC, Rosenwaks Z, Kim JW, Ku SY. Effects of paclitaxel and cisplatin on in vitro ovarian follicle development. Arch Med Sci 2019; 15:1510-1519. [PMID: 31749880 PMCID: PMC6855155 DOI: 10.5114/aoms.2019.81730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Despite its importance in pre-chemotherapy counselling, specific reproductive toxicological information about cisplatin and paclitaxel is very rare. This study aimed to investigate the concentrations at which cisplatin and paclitaxel, alone or combined, affect the in vitro development of ovarian follicles. Their differential effects on the oocytes and surrounding granulosa cells was also evaluated. MATERIAL AND METHODS Ovarian follicles were cultured in vitro using gonadotropins and treated with 10-8-10-10 M of cisplatin, paclitaxel, or both. At day 13, granulosa cells and oocytes were retrieved and used for imaging and functional analyses. RESULTS Follicular survival and growth was significantly suppressed in all treatment groups at 10-9 M or higher concentrations, and additive effects were observed in the combination group (p < 0.01). Oocyte-specific genes such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) were more suppressed in the paclitaxel group than in the cisplatin group. Granulosa cell-specific gene suppression and its electron microscopic alteration were more prominent in the cisplatin group than in the paclitaxel group. X-linked inhibitor of apoptosis protein (XIAP) expression of granulosa cells was also further down-regulated in the cisplatin group. CONCLUSIONS These data provide an insight into the critical concentrations regarding in vitro follicular development and the differential effects of chemotherapeutic effects on oocytes and granulosa cells. Further studies are necessary to develop more efficient pre-chemotherapeutic fertility-sparing medical treatment that can evade oocyte-specific damage.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Woo Oh Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Hung Ching Liu
- Department of Obstetrics and Gynecology, Cornell Weill Medical College, New York, USA
| | - Zev Rosenwaks
- Department of Obstetrics and Gynecology, Cornell Weill Medical College, New York, USA
| | - Jae Won Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
8
|
Pacchierotti F, Masumura K, Eastmond DA, Elhajouji A, Froetschl R, Kirsch-Volders M, Lynch A, Schuler M, Tweats D, Marchetti F. Chemically induced aneuploidy in germ cells. Part II of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 848:403023. [PMID: 31708072 DOI: 10.1016/j.mrgentox.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.
Collapse
Affiliation(s)
- Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - David A Eastmond
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, USA
| | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bio-Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|
9
|
Abstract
Aneugenic effects of the chemicals with antitumor activity were studied in mouse oocytes in vivo by cytogenetic analysis. In control mice, no oocytes with numerical chromosome aberrations were found. Colchicine (0.2-4 mg/kg), paclitaxel (2.5-7.5 mg/kg), and etoposide (10-60 mg/kg) produced a significant dose-dependent aneugenic effects (induction of up to 25% aneuploid oocytes) and increased the yield of oocytes arrested in the meiotic MI stage and with premature separation of sister chromatid. Paclitaxel induced up to 20% polyploid chromosomes. Doxorubicin (2.5 mg/kg), melphalan (10 mg/kg), and cisplatin (5-10 mg/kg) exhibited weak aneugenic activity (induction of up to 5% aneuploid oocytes). Cyclophosphamide (10-80 mg/kg) had minor effect on the studied parameters. Methotrexate (25-200 mg/kg) exhibited no aneugenic activity, but significantly increased the level of polyploid cells. The observed aneugenic effects included hypo- and hyperploidy in various proportions or hypoploidy, but no solely hyperhaploidy.
Collapse
|
10
|
Marchetti F, Massarotti A, Yauk CL, Pacchierotti F, Russo A. The adverse outcome pathway (AOP) for chemical binding to tubulin in oocytes leading to aneuploid offspring. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:87-113. [PMID: 26581746 DOI: 10.1002/em.21986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) has launched the Adverse Outcome Pathway (AOP) Programme to advance knowledge of pathways of toxicity and improve the use of mechanistic information in risk assessment. An AOP links a molecular initiating event (MIE) to an adverse outcome (AO) through intermediate key events (KE). Here, we present the scientific evidence in support of an AOP whereby chemicals that bind to tubulin cause microtubule depolymerization resulting in spindle disorganization followed by altered chromosome alignment and segregation and the generation of aneuploidy in female germ cells, ultimately leading to aneuploidy in the offspring. Aneuploidy, an abnormal number of chromosomes that is not an exact multiple of the haploid number, is a well-known cause of human disease and represents a major cause of infertility, pregnancy failure, and serious genetic disorders in the offspring. Among chemicals that induce aneuploidy in female germ cells, a large majority impairs microtubule dynamics and spindle function. Colchicine, a prototypical chemical that binds to tubulin and causes microtubule depolymerization, is used here to illustrate the AOP. This AOP is specific to female germ cells exposed during the periovulation period. Although the majority of the data come from rodent studies, the available evidence suggests that the MIE and KEs are conserved across species and would occur in human oocytes. The development of AOPs related to mutagenicity in germ cells is expected to aid the identification of potential hazards to germ cell genomic integrity and support regulatory efforts to protect population health.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Alberto Massarotti
- Dipartimento Di Scienze Del Farmaco, Università Degli Studi Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Francesca Pacchierotti
- Division of Health Protection Technologies, Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Rome, Italy
| | | |
Collapse
|
11
|
Chasombat J, Nagai T, Parnpai R, Vongpralub T. Pretreatment of in vitro matured bovine oocytes with docetaxel before vitrification: Effects on cytoskeleton integrity and developmental ability after warming. Cryobiology 2015; 71:216-23. [PMID: 26192345 DOI: 10.1016/j.cryobiol.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/16/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
The stabilization of spindle fibersis important for successful vitrification of bovine oocytes because microtubules and other cytoskeleton fibers (CSF) can be damaged during vitrification, resulting in failure of fertilization after thawing. Docetaxel, a stabilizing agent, could potentially reduce CSF damage of bovine oocytes induced during vitrification. However, there have been no reports on the effects of docetaxel on their vitrification. Experiment 1 was conducted to investigate the effects of various doses of docetaxel (0.0, 0.05, 0.5, 5.0 and 50 μM) in preincubation medium of in vitro matured (IVM) bovine oocytes on their developmental ability after in vitro fertilization (IVF). The results show that 0.05 μM docetaxel had no adverse effect on embryo development, while docetaxel at a concentration of ⩾0.5 μM inhibited development. Experiments 2 and 3 were conducted to investigate the effects of preincubation of IVM bovine oocytes with 0.05 μM docetaxel for 30 min prior to vitrification-warming on CSF integrity (Experiment 2), and on oocyte survival and viability after IVF (Experiment 3). When preincubated with 0.05 μM docetaxel for 30 min before vitrification, post-thawed oocytes had less CSF damage and higher survival rates compared with those untreated with docetaxel before vitrification. Surviving oocytes also had higher rates of cleavage and development to the blastocyst stage after IVF. In conclusion, preincubation of IVM bovine oocytes with 0.05 μM docetaxel for 30 min before vitrification was effective at preventing CSF damage during vitrification, and improving oocyte viability after warming and subsequent cleavage and blastocyst formation after IVF.
Collapse
Affiliation(s)
- Jakkhaphan Chasombat
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Takashi Nagai
- Food and Fertilizer Technology Center, Taipei 10648, Taiwan; NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Thevin Vongpralub
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
12
|
The teratogenic effects of imatinib mesylate on rat fetuses. Toxicol Rep 2015; 2:654-663. [PMID: 28962401 PMCID: PMC5598385 DOI: 10.1016/j.toxrep.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/09/2023] Open
Abstract
Imatinib mesylate, a selective tyrosine kinase inhibitor, is the first line treatment against chronic myelogenous leukemia and gastrointestinal stromal tumors. The aim of the present study is to investigate the effects of imatinib mesylate on the pregnant rats and their fetuses. Pregnant rats were divided into three groups; the first group served as a control group. The second and third groups were orally administered imatinib at doses of 36 mg/kg body weight or 54 mg/kg b.wt. on gestation days (SDs) 6 through 13 or SDs 13 through 19, respectively. All animals were sacrificed on the 20th day of gestation. Treatment with imatinib caused a reduction of maternal body weight gain, uterine and placental weights, increased rate of abortion and fetal resorptions. High dose of imatinib caused fetal congenital deformities represented in harelip, contraction of the fore limbs, and paralysis of the hind limbs, exencephaly, encephalocoele and distended abdominal wall, besides occurrence of wavy ribs and absence of other ribs in addition to skeletal growth retardation and lack of ossification of the most skeletal elements. The present work concluded that imatinib is teratogenic when given orally to pregnant rats at 54 mg/kg b.wt. and causes direct maternal or developmental toxicity.
Collapse
|
13
|
Lopes F, Smith R, Anderson RA, Spears N. Docetaxel induces moderate ovarian toxicity in mice, primarily affecting granulosa cells of early growing follicles. Mol Hum Reprod 2014; 20:948-59. [PMID: 25080441 PMCID: PMC4172173 DOI: 10.1093/molehr/gau057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in cancer therapy have focused attention on the quality of life of cancer survivors. Since infertility is a major concern following chemotherapy, it is important to characterize the drug-specific damage to the reproductive system to help find appropriate protective strategies. This study investigates the damage on neonatal mouse ovary maintained in vitro for 6 days, and exposed for 24 h (on Day 2) to clinically relevant doses of Docetaxel (DOC; low: 0.1 µM, mid: 1 µM, high: 10 µM). Furthermore, the study explores the putative protective action exerted by Tri-iodothyronine (T3; 10−7 M). At the end of culture, morphological analyses and follicle counts showed that DOC negatively impacts on early growing follicles, decreasing primary follicle number and severely affecting health at the transitional and primary stages. Poor follicle health was mainly due to effects on granulosa cells, indicating that the effects of DOC on oocytes were likely to be secondary to granulosa cell damage. DOC damages growing follicles specifically, with no direct effect on the primordial follicle reserve. Immunostaining and western blotting showed that DOC induces activation of intrinsic, type II apoptosis in ovarian somatic cells; increasing the levels of cleaved caspase 3, cleaved caspase 8, Bax and cleaved poly(ADP-ribose) polymerase, while also inducing movement of cytochrome C from mitochondria into the cytosol. T3 did not prevent the damage induced by the low dose of DOC. These results demonstrated that DOC induces a gonadotoxic effect on the mouse ovary through induction of somatic cell apoptosis, with no evidence of direct effects on the oocyte, and that the damaging effect is not mitigated by T3.
Collapse
Affiliation(s)
- Federica Lopes
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rowena Smith
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Norah Spears
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
14
|
Roness H, Kalich-Philosoph L, Meirow D. Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents. Hum Reprod Update 2014; 20:759-74. [PMID: 24833728 DOI: 10.1093/humupd/dmu019] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Current options for female fertility preservation in the face of cytotoxic treatments include embryo, oocyte and ovarian tissue cryopreservation. However these methods are limited by the patient age, status or available timeframe before treatment and they necessitate invasive procedures. Agents which can prevent or attenuate the ovotoxic effects of treatment would provide significant advantages over the existing fertility preservation techniques, and would allow patients to retain their natural fertility without the necessity for costly, invasive and risky procedures. Recent studies have contributed to our understanding of the mechanisms involved in cytotoxicity-induced ovarian follicle loss and highlight a number of agents that may be able to prevent or reduce this loss. METHODS This paper reviews the relevant literature (research articles published in English up to December 2013) on the mechanisms of cytotoxic-induced ovarian damage and the implications for fertility preservation. We present a comprehensive discussion of the potential agents that have been shown to preserve the ovarian follicle reserve in the face of cytotoxic treatments, including an analysis of their respective advantages and risks, and mechanisms of action. RESULTS Multiple molecular pathways are involved in the cellular response to cytotoxic treatments, and specific cellular reactions depend on variables including the drug class and dose, cell type, and cell stage. A number of agents acting on different elements of these pathways have demonstrated potential for preventing or reducing ovarian follicle loss, although in most cases, the studies are still very preliminary. CONCLUSIONS Advances in our understanding of the mechanisms and pathways involved in both cytotoxic ovarian damage and follicle growth and development have opened up new directions for fertility preservation. In order to bring these agents from the lab to the clinic, it will be vital to accurately evaluate the efficacy of each agent and additionally to demonstrate that co-treatment with these agents will not interfere with the anti-cancer activity of the chemotherapy drugs, or produce genetically comprised embryos.
Collapse
Affiliation(s)
- Hadassa Roness
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Lital Kalich-Philosoph
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel The Safdie Institute for AIDS and Immunology Research, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Ramat-Gan 52900, Israel
| | - Dror Meirow
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Effect of meiotic status, cumulus cells and cytoskeleton stabilizer on the developmental competence of ovine oocytes following vitrification. Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2014.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Mailhes JB, Marchetti F. Advances in understanding the genetic causes and mechanisms of female germ cell aneuploidy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Song G, Gao H, Yuan Z. Effect of leuprolide acetate on ovarian function after cyclophosphamide-doxorubicin-based chemotherapy in premenopausal patients with breast cancer: results from a phase II randomized trial. Med Oncol 2013; 30:667. [PMID: 23904400 DOI: 10.1007/s12032-013-0667-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/12/2013] [Indexed: 01/02/2023]
Abstract
Previous studies provided inconclusive evidence for the effectiveness of gonadotropin-releasing hormone analogue on ovarian function protection against chemotherapy-induced genotoxicity in premenopausal patients. This study was designed to examine the efficacy of leuprolide acetate on ovarian function preservation in patients with breast cancer. A total of 220 patients were recruited in this prospective clinical trial and were assigned randomly to receive cyclophosphamide-doxorubicin-based chemotherapy only or chemotherapy plus leuprolide acetate. Resumption of menses or premenopausal levels of both follicle-stimulating hormone (FSH) and estradiol (E2) within 12 months after the end of chemotherapy were considered as effective ovarian preservation. A total of 183 patients were considered evaluable (94 in chemotherapy-only group and 89 in chemotherapy plus leuprolide acetate group). At the end of follow-up, 27 patients in chemotherapy group and 15 in chemotherapy plus leuprolide acetate group resumed menses; seven patients in chemotherapy group and 14 in chemotherapy plus leuprolide acetate group restored premenopausal levels of FSH and E2. The median time to resume menses was 9.2 months for patients in chemotherapy plus leuprolide acetate group and was not reached in chemotherapy-only group. In addition, our results demonstrated that age and chemotherapy doses made no significant difference in the occurrence of premature menopause. The leuprolide acetate treatment simultaneously with cyclophosphamide-doxorubicin-based chemotherapy reduced the risk of developing premature menopause in premenopausal patients with breast cancer.
Collapse
Affiliation(s)
- Guiping Song
- Department of Pharmacy, Jiangyin Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangyin, Jiangsu, China.
| | | | | |
Collapse
|
18
|
Pavelka N, Rancati G. Never in Neutral: A Systems Biology and Evolutionary Perspective on how Aneuploidy Contributes to Human Diseases. Cytogenet Genome Res 2013; 139:193-205. [DOI: 10.1159/000348303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Jiménez-Trigos E, Naturil-Alfonso C, Vicente JS, Marco-Jiménez F. Post-Warming Competence ofIn VivoMatured Rabbit Oocytes Treated with Cytoskeletal Stabilization (Taxol) and Cytoskeletal Relaxant (Cytochalasin B) Before Vitrification. Reprod Domest Anim 2012; 48:15-9. [DOI: 10.1111/j.1439-0531.2012.02018.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Prevention of paclitaxel and cisplatin induced ovarian damage in rats by a gonadotropin-releasing hormone agonist. Fertil Steril 2010; 93:1609-14. [DOI: 10.1016/j.fertnstert.2009.02.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 01/02/2023]
|
21
|
Terada Y, Schatten G, Hasegawa H, Yaegashi N. Essential Roles of the Sperm Centrosome in Human Fertilization: Developing the Therapy for Fertilization Failure due to Sperm Centrosomal Dysfunction. TOHOKU J EXP MED 2010; 220:247-58. [DOI: 10.1620/tjem.220.247] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yukihiro Terada
- Department of Obstetrics and Gynecology, Tohoku University School of Medicine
| | - Gerald Schatten
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine
| | - Hisataka Hasegawa
- Department of Obstetrics and Gynecology, Tohoku University School of Medicine
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University School of Medicine
| |
Collapse
|
22
|
Li GP, Yang S, Liu Y, Sessions BR, White KL, Bunch TD. Nicotine combined with okadaic acid or taxol adversely affects bovine oocyte maturation and subsequent embryo development. Fertil Steril 2009; 92:798-805. [DOI: 10.1016/j.fertnstert.2008.07.1702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/25/2008] [Accepted: 07/09/2008] [Indexed: 11/25/2022]
|
23
|
Liu X, Kramer JA, Hu Y, Schmidt JM, Jiang J, Wilson AGE. Development of a High-Throughput Human HepG2 Dual Luciferase Assay for Detection of Metabolically Activated Hepatotoxicants and Genotoxicants. Int J Toxicol 2009; 28:162-76. [DOI: 10.1177/1091581809337166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hepatic toxicity remains a major concern for drug failure; therefore, a thorough examination of chemically induced liver toxicity is essential for a robust safety evaluation. Current hypotheses suggest that the metabolic activation of a drug to a reactive intermediate is an important process. In this article, we describe a new high-throughput GADD45β reporter assay developed for assessing potential liver toxicity. Most importantly, this assay utilizes a human cell line and incorporates metabolic activation and thus provides significant advantage over other comparable assays used to determine hepatotoxicity. Our assay has low compound requirement and relies upon 2 reporter genes cotransfected into the HepG2 cells. The gene encoding Renilla luciferase is fused to the CMV promoter and provides a control for cell numbers. The firefly luciferase gene is fused to the GADD45β promoter and used to report an increase in DNA damage. A dual luciferase assay is performed by measuring the firefly and Renilla luciferase activities in the same sample. Results are expressed as the ratio of the 2 luciferase activities; increases over the control are interpreted as evidence of stress responses. This mammalian dual luciferase reporter has been characterized with, and without, metabolic activation using positive and negative control agents. Our data demonstrate that this assay provides for an assessment of potential toxic metabolites, is adaptable to a high-throughput platform, and yields data that accurately and reproducibly detect hepatotoxicants.
Collapse
Affiliation(s)
- Xuemei Liu
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - Jeffrey A. Kramer
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - Yi Hu
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - James M. Schmidt
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - Jianghong Jiang
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - Alan G. E. Wilson
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| |
Collapse
|
24
|
Wang J, Sawyer JR, Chen L, Chen T, Honma M, Mei N, Moore MM. The Mouse Lymphoma Assay Detects Recombination, Deletion, and Aneuploidy. Toxicol Sci 2009; 109:96-105. [DOI: 10.1093/toxsci/kfp037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Development of a highthroughput yeast-based assay for detection of metabolically activated genotoxins. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 653:63-9. [DOI: 10.1016/j.mrgentox.2008.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 11/20/2022]
|
26
|
Enhanced polarizing microscopy as a new tool in aneuploidy research in oocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 651:131-40. [DOI: 10.1016/j.mrgentox.2007.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/28/2007] [Indexed: 12/11/2022]
|
27
|
Mtango NR, Potireddy S, Latham KE. Oocyte quality and maternal control of development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:223-90. [PMID: 18703408 DOI: 10.1016/s1937-6448(08)00807-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oocyte is a unique and highly specialized cell responsible for creating, activating, and controlling the embryonic genome, as well as supporting basic processes such as cellular homeostasis, metabolism, and cell cycle progression in the early embryo. During oogenesis, the oocyte accumulates a myriad of factors to execute these processes. Oogenesis is critically dependent upon correct oocyte-follicle cell interactions. Disruptions in oogenesis through environmental factors and changes in maternal health and physiology can compromise oocyte quality, leading to arrested development, reduced fertility, and epigenetic defects that affect long-term health of the offspring. Our expanding understanding of the molecular determinants of oocyte quality and how these determinants can be disrupted has revealed exciting new insights into the role of oocyte functions in development and evolution.
Collapse
Affiliation(s)
- Namdori R Mtango
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
28
|
Trichlorfon effects on mouse oocytes following in vivo exposure. Mutat Res 2007; 651:125-30. [PMID: 18069051 DOI: 10.1016/j.mrgentox.2007.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 10/28/2007] [Indexed: 11/20/2022]
Abstract
Trichlorfon (TCF) is a widely used pesticide, which according to some epidemiological and experimental data, is suspected of being aneugenic in human and mouse cells. In particular, in vitro studies in mouse oocytes showed the induction of aneuploidy and polyploidy at the first meiotic division and of severe morphological alterations of the second meiotic spindle. We have tested the hypothesis that an acute treatment of mice with TCF might similarly affect chromosome segregation in maturing oocytes. Superovulated MF-1 mice were intraperitoneally injected with 400mg/kg TCF or orally administered with 600mg/kg TCF either at the time of or 4h after human chorionic gonadotrophin (HCG) injection. Oocytes were harvested 17h after HCG and metaphase II chromosomes were cytogenetically analyzed. No significant increase of aneuploid or polyploid cells was detected at any treatment condition. A significant (p<0.001) decrease of metaphases showing premature chromatid separation or premature anaphase II in all TCF-treated groups with respect to controls suggested that TCF treatment may have delayed the first meiotic division. To evaluate possible effects of the pesticide upon the second meiotic division, a group of females orally treated with 600mg/kg TCF at resumption of meiosis was mated with untreated males and zygotes were collected for cytogenetic analysis. No evidence of aneuploidy induction was obtained, but the frequency of polyploid zygotes was increased fivefold over the control level (p<0.01). Such polyploid embryos might have arisen from fertilization of oocytes that were either meiotically delayed and still in metaphase I at fertilization or progressed through anaphase II without cytokinesis. These findings show that in vivo studies on aneuploidy induction in oocytes may yield results different from those obtained by in vitro experiments and that both kinds of data may be necessary for risk assessment of environmentally relevant exposures.
Collapse
|
29
|
Eichenlaub-Ritter U, Adler ID, Carere A, Pacchierotti F. Gender differences in germ-cell mutagenesis and genetic risk. ENVIRONMENTAL RESEARCH 2007; 104:22-36. [PMID: 17156773 DOI: 10.1016/j.envres.2006.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 10/16/2006] [Accepted: 10/16/2006] [Indexed: 05/12/2023]
Abstract
Current international classification systems for chemical mutagens are hazard-based rather than aimed at assessing risks quantitatively. In the past, germ-cell tests have been mainly performed with a limited number of somatic cell mutagens, and rarely under conditions aimed at comparing gender-specific differences in susceptibility to mutagen exposures. There are profound differences in the genetic constitution, and in hormonal, structural, and functional aspects of differentiation and control of gametogenesis between the sexes. A critical review of the literature suggests that these differences may have a profound impact on the relative susceptibility, stage of highest sensitivity and the relative risk for the genesis of gene mutation, as well as structural and numerical chromosomal aberrations in male and female germ cells. Transmission of germ-cell mutations to the offspring may also encounter gender-specific influences. Gender differences in susceptibility to chemically derived alterations in imprinting patterns may pose a threat for the health of the offspring and may also be transmitted to future generations. Recent reports on different genetic effects from high acute and from chronic low-dose exposures challenge the validity of conclusions drawn from standard methods of mutagenicity testing. In conclusion, research is urgently needed to identify genetic hazards for a larger range of chemical compounds, including those suspected to disturb proper chromosome segregation. Alterations in epigenetic programming and their health consequences will have to be investigated. More attention should be paid to gender-specific genetic effects. Finally, the database for germ-cell mutagens should be enlarged using molecular methodologies, and genetic epidemiology studies should be performed with these techniques to verify human genetic risk.
Collapse
|
30
|
Pacchierotti F, Adler ID, Eichenlaub-Ritter U, Mailhes JB. Gender effects on the incidence of aneuploidy in mammalian germ cells. ENVIRONMENTAL RESEARCH 2007; 104:46-69. [PMID: 17292877 DOI: 10.1016/j.envres.2006.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/01/2006] [Accepted: 12/03/2006] [Indexed: 05/13/2023]
Abstract
Aneuploidy occurs in 0.3% of newborns, 4% of stillbirths, and more than 35% of all human spontaneous abortions. Human gametogenesis is uniquely and gender-specific susceptible to errors in chromosome segregation. Overall, between 1% and 4% of sperm and as many as 20% of human oocytes have been estimated by molecular cytogenetic analysis to be aneuploid. Maternal age remains the paramount aetiological factor associated with human aneuploidy. The majority of extra chromosomes in trisomic offspring appears to be of maternal origin resulting from nondisjunction of homologous chromosomes during the first meiotic division. Differences in the recombination patterns between male and female meiosis may partly account for the striking gender- and chromosome-specific differences in the genesis of human aneuploidy, especially in aged oocytes. Nondisjunction of entire chromosomes during meiosis I as well as premature separation of sister chromatids or homologues prior to meiotic anaphase can contribute to aneuploidy. During meiosis, checkpoints at meiotic prophase and the spindle checkpoint at M-phase can induce meiotic arrest and/or cell death in case of disturbances in pairing/recombination or spindle attachment of chromosomes. It has been suggested that gender differences in aneuploidy may result from more permissive checkpoints in females than males. Furthermore, age-related loss of chromosome cohesion in oocytes as a cause of aneuploidy may be female-specific. Comparative data about the susceptibility of human male and female germ cells to aneuploidy-causing chemicals is lacking. Increases of aneuploidy frequency in sperm have been shown after exposure to therapeutic drugs, occupational agents and lifestyle factors. Conversely, data on oocyte aneuploidy caused by exogenous agents is limited because of the small numbers of oocytes available for analysis combined with potential maternal age effects. The vast majority of animal studies on aneuploidy induction in germ cells represent cause and effect data. Specific studies designed to evaluate possible gender differences in induction of germ cell aneuploidy have not been found. However, the comparison of rodent data available from different laboratories suggests that oocytes are more sensitive than male germ cells when exposed to chemicals that effect the meiotic spindle. Only recently, in vitro experiments, analyses of transgenic animals and knockdown of expression of meiotic genes have started to address the molecular mechanisms underlying chromosome missegregation in mammalian germ cells whereby striking differences between genders could be shown. Such information is needed to clarify the extent and the mechanisms of gender effects, including possible differential susceptibility to environmental agents.
Collapse
Affiliation(s)
- F Pacchierotti
- Section of Toxicology and Biomedical Sciences, ENEA CR Casaccia, Rome, Italy
| | | | | | | |
Collapse
|
31
|
Kuznetsov S, Pellegrini M, Shuda K, Fernandez-Capetillo O, Liu Y, Martin BK, Burkett S, Southon E, Pati D, Tessarollo L, West SC, Donovan PJ, Nussenzweig A, Sharan SK. RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females. ACTA ACUST UNITED AC 2007; 176:581-92. [PMID: 17312021 PMCID: PMC2064017 DOI: 10.1083/jcb.200608130] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RAD51C is a member of the RecA/RAD51 protein family, which is known to play an important role in DNA repair by homologous recombination. In mice, it is essential for viability. Therefore, we have generated a hypomorphic allele of Rad51c in addition to a null allele. A subset of mice expressing the hypomorphic allele is infertile. This infertility is caused by sexually dimorphic defects in meiotic recombination, revealing its two distinct functions. Spermatocytes undergo a developmental arrest during the early stages of meiotic prophase I, providing evidence for the role of RAD51C in early stages of RAD51-mediated recombination. In contrast, oocytes can progress normally to metaphase I after superovulation but display precocious separation of sister chromatids, aneuploidy, and broken chromosomes at metaphase II. These defects suggest a possible late role of RAD51C in meiotic recombination. Based on the marked reduction in Holliday junction (HJ) resolution activity in Rad51c-null mouse embryonic fibroblasts, we propose that this late function may be associated with HJ resolution.
Collapse
Affiliation(s)
- Sergey Kuznetsov
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Eichenlaub-Ritter U, Winterscheidt U, Vogt E, Shen Y, Tinneberg HR, Sorensen R. 2-methoxyestradiol induces spindle aberrations, chromosome congression failure, and nondisjunction in mouse oocytes. Biol Reprod 2007; 76:784-93. [PMID: 17229934 DOI: 10.1095/biolreprod.106.055111] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
2-Methoxyestradiol (2-ME) is a metabolite of 17beta-estradiol and a natural component of follicular fluid. Local concentrations of 2-ME may be increased by exposure to environmental pollutants that activate the expression of enzymes in the metabolic pathway from 17beta-estradiol to 2-ME. It has been suspected that this may have adverse effects on spindle formation in maturing oocytes, which would affect embryo quality. To study the dose-response patterns, we exposed denuded mouse oocytes to 2-ME during in vitro maturation. Meiotic progression, spindle morphology, centrosome integrity, and chromosome congression were examined by immunofluorescence and noninvasive polarizing microscopy (PolScope). Chromosomal constituents were assessed after spreading and C-banding. 2-ME sustained MAD2L1 expression at the centromeres and increased the number of meiosis I-blocked oocytes in a dose-dependent manner. 2-ME also caused dramatic dose-dependent increases in the hyperploidy of metaphase II oocytes. Some of these meiosis II oocytes contained anaphase I-like chromosomes, which suggests that high concentrations of the catecholestradiol interfere with the physical separation of chromosomes. Noninvasive PolScope analysis and tubulin immunofluorescence revealed that perturbations in spindle organization, which resulted in severe disturbances of the chromosome alignment at the spindle equator (congression failure), were caused by 2-ME at meiosis I and II. Pericentrin-positive centrosomes failed to align at the spindle poles, and multipolar spindles and prominent arrays of cytoplasmic microtubule asters were induced in 2-ME-exposed metaphase II oocytes. In conclusion, a micromolar level of 2-ME is aneugenic for mammalian oocytes. Therefore, exposure to 2-ME and conditions that increase the intrinsic local concentration of 2-ME in the ovary may affect fertility and increase risks for chromosomal aberrations in the oocyte and embryo.
Collapse
Affiliation(s)
- Ursula Eichenlaub-Ritter
- University of Bielefeld, Faculty of Biology, Institute of Gene Technology/Microbiology, D-33501 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Mailhes JB, Marchetti F. Mechanisms and chemical induction of aneuploidy in rodent germ cells. Cytogenet Genome Res 2005; 111:384-91. [PMID: 16192721 DOI: 10.1159/000086916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/07/2005] [Indexed: 11/19/2022] Open
Abstract
The objective of this review is to suggest that the advances being made in our understanding of the molecular events surrounding chromosome segregation in non-mammalian and somatic cell models be considered when designing experiments for studying aneuploidy in mammalian germ cells. Accurate chromosome segregation requires the temporal control and unique interactions among a vast array of proteins and cellular organelles. Abnormal function and temporal disarray among these, and others to be identified, biochemical reactions and cellular organelles have the potential for predisposing cells to aneuploidy. Although numerous studies have demonstrated that certain chemicals (mainly those that alter microtubule function) can induce aneuploidy in mammalian germ cells, it seems relevant to point out that such data can be influenced by gender, meiotic stage, and time of cell-fixation post-treatment. Additionally, a consensus has not been reached regarding which of several germ cell aneuploidy assays most accurately reflects the human condition. More recent studies have shown that certain kinase, phosphatase, proteasome, and topoisomerase inhibitors can also induce aneuploidy in rodent germ cells. We suggest that molecular approaches be prudently incorporated into mammalian germ cell aneuploidy research in order to eventually understand the causes and mechanisms of human aneuploidy. Such an enormous undertaking would benefit from collaboration among scientists representing several disciplines.
Collapse
Affiliation(s)
- J B Mailhes
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | |
Collapse
|
34
|
Nakamura S, Terada Y, Rawe VY, Uehara S, Morito Y, Yoshimoto T, Tachibana M, Murakami T, Yaegashi N, Okamura K. A trial to restore defective human sperm centrosomal function. Hum Reprod 2005; 20:1933-7. [PMID: 15831510 DOI: 10.1093/humrep/deh899] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In human fertilization, sperm centrosome function is essential for male and female pronuclear movement and fusion. In this study, we investigated the possibility of restoring human sperm centrosomal function in sperm exhibiting abnormalities in microtubule organization. METHODS Semen was obtained from both a fertile donor and a patient with dysplasia of the fibrous sheath (DFS). Following heterologous ICSI using human sperm, we examined microtubules and chromatin configuration in bovine oocytes. Sperm were treated with dithiothreitol (DTT) prior to ICSI, while the oocytes were treated with the cytoskeletal stabilizer paclitaxel after ICSI. RESULTS The combination of DTT and paclitaxel treatment induced microtubule organization in dead sperm from the fertile donor following heterologous ICSI. This treatment, however, was not effective for DFS sperm. In addition, expression of centrin, a protein functioning within the sperm centrosome, was reduced in DFS sperm from that of the normal levels observed in fertile donor sperm. CONCLUSION These results indicate that sperm centrosomal function could be induced by the treatment of sperm with DTT before ICSI and of oocytes with paclitaxel after ICSI. DFS sperm are likely to exhibit such severe dysfunction of sperm centrosome that cannot be compensated for by this treatment; therefore, this method may be a practical way to discern the degree of sperm centrosomal dysfunction.
Collapse
Affiliation(s)
- Soichi Nakamura
- Department of Obstetrics and Gynecology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yucebilgin MS, Terek MC, Ozsaran A, Akercan F, Zekioglu O, Isik E, Erhan Y. Effect of chemotherapy on primordial follicular reserve of rat: an animal model of premature ovarian failure and infertility. Aust N Z J Obstet Gynaecol 2005; 44:6-9. [PMID: 15089860 DOI: 10.1111/j.1479-828x.2004.00143.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To determine the effect of paclitaxel and cisplatin in the reduction of primordial follicular reserve in rat. MATERIAL AND METHODS Thirty young female rats were divided randomly into three groups of 10 rats each. Paclitaxel 7.5 mg/kg and cisplatin 5 mg/kg were administered intraperitoneally in a single dose sterile technique to paclitaxel (n=10), and cisplatin (n=10) groups, and sterile saline solution was given to a control group (n=10). To assess the effects of chemotherapeutic agents on the primordial follicles, the rats were oophorectomised 7 days after the administration of chemotherapeutic agents. Haematoxylin and eosin staining was used to determine the number of primordial follicles. Primordial follicles were identified by the presence of an oocyte encapsulated partially or completely by a single layer of flattened follicular cells without a theca layer at the ovarian cortex. RESULTS The number of primordial follicles in the control group was 23.1 +/- 16.1 follicles. The number of primordial follicles were decreased significantly in both paclitaxel and cisplatin groups compared to control group (10.3 +/- 13.0 and 13.9 +/- 15.2 follicles, respectively) (P=0.001 and P=0.01, respectively). The difference in the number of primordial follicles between the paclitaxel and cisplatin groups was insignificant (P=0.465). CONCLUSION The administration of high dose paclitaxel and cisplatin to young rats causes the depletion of primordial follicles. However, no significant difference was observed between the two agents.
Collapse
Affiliation(s)
- Mehmet Sait Yucebilgin
- Department of Obstetrics and Gynecology, Ege University Faculty of Medicine, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
36
|
Comparison Of The Effect Of Cytochalasin B And Paclitaxel (Taxol Tm) On Cryopreservation Of Icr Mouse Oocytes. Taiwan J Obstet Gynecol 2005. [DOI: 10.1016/s1028-4559(09)60106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Mailhes JB, Hilliard C, Fuseler JW, London SN. Okadaic acid, an inhibitor of protein phosphatase 1 and 2A, induces premature separation of sister chromatids during meiosis I and aneuploidy in mouse oocytes in vitro. Chromosome Res 2004; 11:619-31. [PMID: 14516070 DOI: 10.1023/a:1024909119593] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent advances in understanding some of the molecular aspects of chromosome segregation during mitosis and meiosis provide a background for investigating potential mechanisms of aneuploidy in mammalian germ cells. Numerous protein kinases and phosphatases have important functions during mitosis and meiosis. Alterations in these enzyme activities may upset the normal temporal sequence of biochemical reactions and cellular organelle modifications required for orderly chromosome segregation. Protein phosphatases 1 (PP1) and 2A (PP2A) play integral roles in regulating oocyte maturation (OM) and the metaphase-anaphase transitions. Mouse oocytes were transiently exposed in vitro to different dosages (0, 0.01, 0.1, or 1.0 microg/ml) of the PP1 and PP2A phosphatase inhibitor okadaic acid (OA) during meiosis I and oocytes were cytogenetically analyzed. Significant (p < 0.05) OA dose-response increases in the frequencies of metaphase I (MI) arrested oocytes, MI oocytes with 80 chromatids instead of the normal 20 tetrads, and anaphase I telophase I (AI-TI) oocytes with two groups of an unequal number of chromatids were found. Analysis of MII oocytes revealed significant (p < 0.05) increases in the frequencies of premature sister chromatid separation, single-unpaired chromatids, and hyperploidy. Besides showing that OA is aneugenic, these data suggest that OA-induced protein phosphatase inhibition upsets the normal kinase-phosphatase equilibrium during mouse OM, resulting in precocious removal of cohesion proteins from chromosomes.
Collapse
Affiliation(s)
- John B Mailhes
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, PO Box 33932, Shreveport, Louisiana 71130, USA.
| | | | | | | |
Collapse
|
38
|
Beker-van Woudenberg AR, van Tol HTA, Roelen BAJ, Colenbrander B, Bevers MM. Estradiol and Its Membrane-Impermeable Conjugate (Estradiol-Bovine Serum Albumin) During In Vitro Maturation of Bovine Oocytes: Effects on Nuclear and Cytoplasmic Maturation, Cytoskeleton, and Embryo Quality. Biol Reprod 2004; 70:1465-74. [PMID: 14724136 DOI: 10.1095/biolreprod.103.025684] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In various cell types, there is increasing evidence for nongenomic steroid effects, i.e., effects that are not mediated via the classical steroid receptors. However, little is known about the involvement of the nongenomic pathway of estradiol (E2) on mammalian oocyte in vitro maturation (IVM). The aim of this study was to investigate whether the effects of E2 on bovine oocyte IVM are mediated via a plasma membrane receptor (nongenomic). First, we investigated the expression of estradiol (classical) receptor alpha (ERalpha) and beta (ERbeta) mRNA in oocytes and cumulus cells (CC). We also studied the effects of different exposure times to E2 (before and after germinal vesicle breakdown, GVBD) on nuclear maturation. To study the possible involvement of the putative estradiol plasma membrane receptor on the IVM of oocytes, we used E2 conjugated with bovine serum albumin (E2-BSA), which cannot cross the plasma membranes. Our results demonstrate that oocytes expressed ERbeta mRNA, while CC expressed both ERalpha and ERbeta mRNA. Exposure to E2 during the first 8 h of culture (before GVBD) induced a block at the metaphase I stage (MI). However, the presence of E2 after GVBD induced an increase of oocytes with nuclear aberrations. Meiotic spindle organization was severely affected by E2 during IVM and multipolar spindle was the most frequently observed aberration. Exposure of oocytes to E2-BSA did not affect nuclear maturation, blastocyst formation rate, nor embryo quality. Our results suggest that the detrimental effects of E2 on in vitro nuclear maturation of bovine oocyte are not exerted via a plasma membrane receptor.
Collapse
Affiliation(s)
- Anna R Beker-van Woudenberg
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Lattanzi ML, Santos CB, Mudry MD, Baranao JL. Exposure of bovine oocytes to the endogenous metabolite 2-methoxyestradiol during in vitro maturation inhibits early embryonic development. Biol Reprod 2003; 69:1793-800. [PMID: 12890717 DOI: 10.1095/biolreprod.103.020743] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Catecholestrogens are endogenous metabolites that have been shown to modulate granulosa, theca, and luteal cell function in some species. The present study was aimed at determining the possible role of these steroids on oocyte maturation. Cumulus-enclosed bovine oocytes were matured for 24 h, fertilized, and then cultured for 8 days. Whereas estradiol was without effect, addition of catecholestrogens (2-hydroxyestradiol, 4-hydroxyestradiol, and 2-methoxyestradiol [2-MOE2]) to the maturation medium did not affect the cleavage rate but was associated with a decrease in blastocyst production on Day 8. Although 2-MOE2 was also able to inhibit blastocyst formation when added during embryo culture, the effects were less pronounced than those seen when the steroid was added only during maturation. In agreement with the known ability of 2-MOE2 to bind tubulin at the colchicine site, marked alterations were observed in the spindle assembly of oocytes exposed to 2-MOE2 during maturation, which lead to gross chromosomal aberrations after fertilization and consequent developmental arrest at the morula stage. Moreover, that the blastocyst rate was not affected when meiosis was blocked with roscovitine during 2-MOE2 exposure is consistent with the idea that altered nuclear maturation is the cause of the low developmental competence. Because 2-MOE2 could be increased in follicular fluid in response to aryl hydrocarbon-receptor ligands, such as some environmental contaminants, our results show that abnormally high intraovarian levels of catecholestrogens could have a deleterious effect on oocyte maturation and early embryonic development arising from the alterations in the meiotic spindle.
Collapse
Affiliation(s)
- Mariano L Lattanzi
- Instituto de Biología y Medicina Experimental, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
40
|
Eichenlaub-Ritter U, Shen Y, Tinneberg HR. Manipulation of the oocyte: possible damage to the spindle apparatus. Reprod Biomed Online 2002; 5:117-24. [PMID: 12419035 DOI: 10.1016/s1472-6483(10)61613-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oocytes are structured, polarized cells. For high developmental potential, it is essential that the distribution of organelles and molecules, and the function of meiotic spindles remain intact during handling of oocytes in assisted reproduction. Spindles are dynamic cell organelles. Spindle formation depends on activity of motor proteins, energy supply and temperature. Disturbances in spindle function may predispose oocytes to aneuploidy or maturation arrest. Thus, perturbation of the cytoskeletal integrity of oocytes may critically influence the fate of the embryo. Recently, enhanced polarizing microscopy has been developed for non-invasive analysis of spindle morphology in living mammalian oocytes. Chemically induced dynamic alterations have been characterized in the spindle in individual mouse oocytes and it has been shown that spindle aberrations are predictive of risks for non-disjunction. Spindle imaging identified adverse, irreversible effects of handling in living human oocytes (for instance, the extreme susceptibility of human oocytes to cooling). Also, oocyte immaturity may be detected. Selection of metaphase II oocytes and an injection site for intracytoplasmic sperm injection (ICSI) that avoids spindle damage may increase the yield of euploid embryos. The detection of genetic, environmentally induced, or treatment-related defects in oocyte maturation by non-invasive spindle imaging can improve quality control and assist in the selection of morphologically normal oocytes for assisted reproduction.
Collapse
Affiliation(s)
- Ursula Eichenlaub-Ritter
- Universität Bielefeld, Fakultät für Biologie, Gentechnologie/Mikrobiologie, D-33501 Bielefeld, Germany.
| | | | | |
Collapse
|
41
|
Sun QY, Lai L, Wu GM, Park KW, Day BN, Prather RS, Schatten H. Microtubule assembly after treatment of pig oocytes with taxol: correlation with chromosomes, gamma-tubulin, and MAP kinase. Mol Reprod Dev 2001; 60:481-90. [PMID: 11746959 DOI: 10.1002/mrd.1113] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, taxol was used as a tool to study the correlation of microtubule assembly with chromosomes, gamma-tubulin and phosphorylated mitogen-activated protein (MAP) kinase in pig oocytes at different maturational stages. Taxol treatment did not affect meiotic resumption and chromosome condensation but inhibited/disrupted chromosome alignment at the metaphase plate and bipolar spindle formation and thus meiotic progression. Microtubules were co-localized with chromosomes and were found to emanate from the chromosomes in taxol-treated oocytes, suggesting that chromosomes may serve as a source of microtubule organization. In addition, the concentric emanation of microtubules within the chromosome-surrounded area in taxol-treated oocytes suggests that microtubule emanation from the chromosomes may be directed by other microtubule-organizing material. The formation of one large spindle or >/=2 spindles in oocytes after taxol removal shows that minus end microtubule-organizing material can be normally located on both sides of chromosomes only when the chromosomes are aligned on the metaphase plate. The co-localization of gamma-tubulin and phosphorylated MAP kinase with microtubule assembly in both control and taxol-treated oocytes suggests that these two proteins are associated microtubule-nucleating material in pig oocytes. However, Western blot analysis showed that neither cytoplasmic microtubule aster formation nor extensive microtubule assembly in the chromosome region induced by taxol was caused by super-activation of MAP kinase. Taxol also induced microtubule assembly depending on chromosome distribution in the first polar body. The results suggest that chromosomes are always co-localized with microtubules and that emanation of microtubules from the chromosomes may be regulated/directed by microtubule-organizing material including gamma-tubulin and phosphorylated MAP kinase in pig oocytes.
Collapse
Affiliation(s)
- Q Y Sun
- Department of Veterinary Pathobiology, W123 Veterinary Medicine Building, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Gücer F, Balkanli-Kaplan P, Doganay L, Yüce MA, Demiralay E, Sayin NC, Yardim T. Effect of paclitaxel on primordial follicular reserve in mice. Fertil Steril 2001; 76:628-9. [PMID: 11532495 DOI: 10.1016/s0015-0282(01)01959-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- F Gücer
- Department of Obstetrics and Gynecology, Faculty of Medicine, Trakya University, Edirne, Turkey.
| | | | | | | | | | | | | |
Collapse
|
43
|
Park SE, Chung HM, Cha KY, Hwang WS, Lee ES, Lim JM. Cryopreservation of ICR mouse oocytes: improved post-thawed preimplantation development after vitrification using Taxol, a cytoskeleton stabilizer. Fertil Steril 2001; 75:1177-84. [PMID: 11384646 DOI: 10.1016/s0015-0282(01)01809-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To establish an effective cryopreservation method. DESIGN In vitro model study. SETTING Infertility Medical Center, Pochon CHA University. ANIMAL(S) Four-week-old ICR mice superovulated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin. INTERVENTION(S) Vitrified-thawed oocytes were fertilized and subsequently cultured in vitro. MAIN OUTCOME MEASURE(S) Post-thawed development, chromosome/spindle normalities, and blastocyst quality. RESULT(S) More cumulus-enclosed oocytes were fertilized and developed to the 8-cell stage after vitrification and thawing than denuded oocytes. However, cryopreserved oocytes of both types had lower spindle and chromosome normalities than fresh oocytes, which resulted in reduced developmental competence after thawing. The addition of 1 microM of Taxol, a cytoskeleton stabilizer, to vitrification solution greatly promoted the blastocyst formation of vitrified-thawed oocytes, compared with no addition (24.0% vs. 58.6%). No difference in blastocyst quality, which was evaluated by blastomere and inner cell mass cell numbers and inner cell mass cell per trophoblast ratio, was found between fresh oocytes and oocytes vitrified with Taxol. CONCLUSION(S) A vitrification solution consisting of 5.5 M ethylene glycol, 1.0 M sucrose, 10% fetal bovine serum, and 1 microM Taxol greatly improved post-thawed development of vitrified oocytes.
Collapse
Affiliation(s)
- S E Park
- Infertility Medical Center of CHA General Hospital, College of Medicine, Pochon CHA University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
44
|
Tateno H, Kamiguchi Y. Meiotic stage-dependent induction of chromosome aberrations in Chinese hamster primary oocytes exposed to topoisomerase II inhibitor etoposide. Mutat Res 2001; 476:139-48. [PMID: 11336991 DOI: 10.1016/s0027-5107(01)00101-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To investigate the chromosomal effects of topoisomerase II (topo-II)-interactive drugs on mammalian primary oocytes, female Chinese hamsters were treated with etoposide (VP-16) at various intervals pre- and post-human chorionic gonadotropin (hCG) injections. Chromosome analysis of oocytes at metaphase II (M II) showed that treatment with VP-16 at 50h pre-hCG had no effect, but the treatments between 24h pre-hCG and 2h post-hCG often caused structural chromosome aberrations. Although treatment at 4h post-hCG had no effect, subsequent treatments at 6 and 8h post-hCG produced a significant increase in structural chromosome aberrations. No effect was found following treatment at 10h post-hCG. The incidence of aneuploidy following exposure to VP-16 was also dependent on the time of hCG injection. Taking the time course of meiotic progression in primary oocytes following hCG injection and pharmacokinetics of VP-16 into consideration, it is likely that meiotic stages from late dictyate to diakinesis are highly sensitive to VP-16, while stages at dictyate and from metaphase I (M I) to telophase I (telo I) are relatively insensitive to the drug. Moreover, the effect of VP-16 on structural chromosome aberrations and aneuploidy was dose-dependent. Chromosome analysis at M I detected a frequent occurrence of structural chromosome aberrations in treated oocytes. This suggests that structural aberrations may be caused by disruption of cleavable complexes during chromosome condensation. Detection of chromosome bridges during anaphase I/telophase I (ana I/telo I) may support the hypothesis that induction of aneuploidy by VP-16 is due to failure in decatenation of recombinant homologous chromosomes.
Collapse
Affiliation(s)
- H Tateno
- Department of Biological Sciences, Asahikawa Medical College, 2-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan.
| | | |
Collapse
|
45
|
Dode MA, Adona PR. Developmental capacity of Bos indicus oocytes after inhibition of meiotic resuption by 6-dimethylaminopurine. Anim Reprod Sci 2001; 65:171-80. [PMID: 11267797 DOI: 10.1016/s0378-4320(00)00207-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several reports have suggested that a treatment before in vitro maturation might improve oocyte competence and increase its developmental potential. Therefore, the objectives of the present study were to establish the kinetics of IVM in Zebu oocytes, to assess the effect of 6-dimethylaminopurine (6-DMAP), a phosphorylation inhibitor, on meiotic resumption, and to verify the developmental potential of the blocked oocytes after removal of the inhibitory conditions. To establish the kinetics of in vitro maturation 1422 oocytes were obtained from Nellore cows ovaries and matured in presence and absence of gonadotropins. Samples of oocytes were taken from culture at 0, 6, 9, 12, 15, 18, 21 and 24h, and the oocytes were fixed, stained and evaluated for nuclear morphology. Germinal vesicle break down (GVBD) occurred between 6 and 12h of culture in both groups. By 21h the majority of the oocytes had reached metaphase II in presence (71%) and absence (62%) of gonadotropins. In order to examine the inhibitory effect of 6-DMAP, 585 oocytes were cultured for 12, 18 and 24h in the presence or absence of 2mM of 6-DMAP. At each time point the oocytes were evaluated for nuclear morphology. To test the reversibility of meiotic inhibition 366 oocytes were incubated for 0, 12, 18 and 24h in the presence of 6-DMAP and then were transferred to the maturation medium and cultured for further 24h. A total of 429 oocytes were used to evaluate the developmental potential after meiotic inhibition. The oocytes were cultured in the presence of 6-DMAP for 0, 12, 18 and 24h, and then were matured, fertilized and cultured in vitro. Culture of bovine oocytes in the presence of 6-DMAP up to 24h completely blocked GVBD with more than 90% of the oocytes at GV stage. The inhibitory effect of 6-DMAP was fully reversible since maturation rates were similar (P>0.05) among all treatment groups. The evaluation of embryo development after various periods of meiotic blockage showed that inhibition, regardless the time period, had no effect (P>0.05) on penetration and cleavage rates. However, the proportion of embryos at blastocyst stage was reduced after inhibition for 12 (20.2%), 18 (20.1%) and 24h (19.0%) compared with the control group (35.6%). 6-DMAP has a reversible effect on maintenance of meiotic arrest, but reduced further embryo development.
Collapse
Affiliation(s)
- M A Dode
- Embrapa Gado de Corte, Rodovia BR 262 km 4, Caixa Postal 154, CEP, Campo Grande, MS, Brazil.
| | | |
Collapse
|
46
|
Abstract
This chapter summarizes the most relevant methodologies available for evaluation of cytogenetic damage induced in vivo in mammalian germ cells. Protocols are provided for the following endpoints: numerical and structural chromosome aberrations in secondary oocytes or first-cleavage zygotes, reciprocal translocations in primary spermatocytes, chromosome counting in secondary spermatocytes, numerical and structural chromosome aberrations, and sister chromatid exchanges (SCE) in spermatogonia, micronuclei in early spermatids, aneuploidy in mature sperm. The significance of each methodology is discussed. The contribution of novel molecular cytogenetic approaches to the detection of chromosome damage in rodent germ cells is also considered.
Collapse
Affiliation(s)
- A Russo
- DBSF-Department of Structural and Functional Biology, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
47
|
Combelles CM, Carabatsos MJ, London SN, Mailhes JB, Albertini DF. Centrosome-specific perturbations during in vitro maturation of mouse oocytes exposed to cocaine. Exp Cell Res 2000; 260:116-26. [PMID: 11010816 DOI: 10.1006/excr.2000.5011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies indicating that cocaine may perturb meiotic chromosome segregation in mammalian oocytes prompted an analysis of the effects of cocaine on mouse oocytes matured in vitro under defined exposure conditions. Cumulus-enclosed mouse oocytes were matured in vitro in the continuous presence of cocaine and assessed for meiotic cell cycle progression and centrosome-microtubule organization using a combination of cytogenetic and fluorescence microscopic techniques. Both of these approaches demonstrated that cocaine had little effect on meiotic cell cycle progression to metaphase of meiosis-2 except at the highest dose tested (1000 microg/ml) where progression from metaphase-1 to metaphase-2 was inhibited. Cytogenetic analyses further showed that bivalent segregation was moderately affected and the incidence of premature centromere separation was significantly decreased following cocaine treatment. Under conditions of cocaine exposure, striking changes in meiotic spindle structure and cytoplasmic centrosome organization were observed. A 36% reduction in spindle length was associated with a loss of nonacetylated microtubules and fragmentation of spindle pole centrosomes. Moreover, in oocytes exposed to cocaine during maturation, a doubling in cytoplasmic centrosome number was observed. These results are discussed with respect to the relative roles of chromosomes and centrosomes in establishing and maintaining functional microtubule organization during meiosis in oocytes.
Collapse
Affiliation(s)
- C M Combelles
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
48
|
Carabatsos MJ, Combelles CM, Messinger SM, Albertini DF. Sorting and reorganization of centrosomes during oocyte maturation in the mouse. Microsc Res Tech 2000; 49:435-44. [PMID: 10842370 DOI: 10.1002/(sici)1097-0029(20000601)49:5<435::aid-jemt5>3.0.co;2-h] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In animal oocytes, the centrosome exists as an acentriolar aggregate of centrosomal material that is regulated in a dynamic manner throughout the process of meiotic maturation. Recently, it has been demonstrated that in female meiotic systems spindle assembly is likely regulated by chromosomal and microtubule/microtubule-associated influences. The purpose of this study was to analyze the distribution of the integral centrosomal protein, pericentrin, during the course of meiotic maturation. The function of the centrosome during meiotic progression was evaluated by exposing oocytes to pharmacological agents that perturb cytoplasmic homeostasis (cycloheximide, nocodazole, cytochalasin D, taxol, and vanadate). Pericentrin was localized to the spindle poles during metaphase of meiosis-I as O- and C-shaped structures. At anaphase, these structures fragment, become displaced from the spindle poles, and associate with the lateral spindle margin. The metaphase spindle at meiosis-II had incomplete pericentrin rings at both spindle poles. Vanadate treatment, a known inhibitor of dynein-ATPase, resulted in meiotic arrest, constriction of the spindle pole, and an aggregation of pericentrin at the spindle poles. After taxol exposure, pericentrin incorporation into both spindle poles and cytoplasmic centrosomes was increased. Treatment of oocytes with cycloheximide, nocodazole, and cytochalasin D, influenced early events associated with chromosome capture and spindle assembly and altered the number and distribution of cytoplasmic centrosomes. Thus, although pericentrin incorporation is not required for meiotic spindle formation, the dynamic reorganization of pericentrin and changes in centrosome microtubule nucleating capacity are involved in critical cell cycle transitions during meiotic maturation.
Collapse
Affiliation(s)
- M J Carabatsos
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Department of Anatomy and Cell Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|