1
|
Fernández-Cabezudo MJ, George JA, Bashir G, Mohamed YA, Al-Mansori A, Qureshi MM, Lorke DE, Petroianu G, Al-Ramadi BK. Involvement of Acetylcholine Receptors in Cholinergic Pathway-Mediated Protection Against Autoimmune Diabetes. Front Immunol 2019; 10:1038. [PMID: 31156627 PMCID: PMC6529936 DOI: 10.3389/fimmu.2019.01038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Type I diabetes (T1D) is a T cell-driven autoimmune disease that results in the killing of pancreatic β-cells and, consequently, loss of insulin production. Using the multiple low-dose streptozotocin (MLD-STZ) model of experimental autoimmune diabetes, we previously reported that pretreatment with a specific acetylcholinesterase inhibitor (AChEI), paraoxon, prevented the development of hyperglycemia in C57BL/6 mice. This correlated with an inhibition of T cell infiltration into the pancreatic islets and a reduction in pro-inflammatory cytokines. The cholinergic anti-inflammatory pathway utilizes nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs, respectively) expressed on a variety of cell types. In this study, we carried out a comparative analysis of the effect of specific antagonists of nAChRs or mAChRs on the development of autoimmune diabetes. Co-administration of mecamylamine, a non-selective antagonist of nAChRs maintained the protective effect of AChEI on the development of hyperglycemia. In contrast, co-administration of atropine, a non-selective antagonist of mAChRs, mitigated AChEI-mediated protection. Mice pretreated with mecamylamine had an improved response in glucose tolerance test (GTT) than mice pretreated with atropine. These differential effects of nAChR and mAChR antagonists correlated with the extent of islet cell infiltration and with the structure and functionality of the β-cells. Taken together, our data suggest that mAChRs are essential for the protective effect of cholinergic stimulation in autoimmune diabetes.
Collapse
Affiliation(s)
- Maria J Fernández-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Junu A George
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Alreem Al-Mansori
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed M Qureshi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Dietrich E Lorke
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Georg Petroianu
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
2
|
Lippiello P, Bencherif M, Hauser T, Jordan K, Letchworth S, Mazurov A. Nicotinic receptors as targets for therapeutic discovery. Expert Opin Drug Discov 2015; 2:1185-203. [PMID: 23496128 DOI: 10.1517/17460441.2.9.1185] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) represent a class of therapeutic targets with the potential to impact numerous diseases and disorders where significant unmet medical needs remain. The latter include cognitive and neurodegenerative diseases; psychotic disorders, such as schizophrenia; acute nociceptive, neuropathic and inflammatory pain; affective disorders, such as depression and inflammation, where nAChR subtypes modulate key cellular pathways involved in anti-inflammatory processes as well as cell survival. Our increased understanding of the heterogeneity of nAChR targets is defining the relationship of biologic effects to specific receptor subtypes, which in turn, will allow further refinement of desired therapeutic activities. Both preclinical and clinical evidence support the notion that novel compounds targeting specific nAChR subtypes will offer increased potency and efficacy, longer lasting effects, fewer side effects and a more rapid onset of action and less dependence, compared with existing therapies. Clinical proof-of-concept is rapidly emerging and will solidify the position of this new therapeutic approach.
Collapse
Affiliation(s)
- Pm Lippiello
- Targacept, Inc., 200 East 1st Street, Suite 300, Winston-Salem, NC 27101, USA +1 336 480 2100 ; +1 336 480 2107 ;
| | | | | | | | | | | |
Collapse
|
3
|
Marrero MB, Lucas R, Salet C, Hauser TA, Mazurov A, Lippiello PM, Bencherif M. An alpha7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. J Pharmacol Exp Ther 2010; 332:173-80. [PMID: 19786623 DOI: 10.1124/jpet.109.154633] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Type 2 diabetes has become a pervasive public health problem. The etiology of the disease has not been fully defined but appears to involve abnormalities in peripheral and central nervous system pathways, as well as prominent inflammatory components. Because nicotinic acetylcholine receptors (nAChRs) are known to interact with anti-inflammatory pathways and have been implicated in control of appetite and body weight, as well as lipid and energy metabolism, we examined their role in modulating biological parameters associated with the disease. In a model of type 2 diabetes, the homozygous leptin-resistant db/db obese mouse, we measured the effects of a novel alpha7 nAChR-selective agonist [5-methyl-N-[2-(pyridin-3-ylmethyl)-1-azabicyclo[2.2.2]oct-3-yl]thiophene-2-carboxamide (TC-7020)] on body mass, glucose and lipid metabolism, and proinflammatory cytokines. Oral administration of TC-7020 reduced weight gain and food intake, reduced elevated glucose and glycated hemoglobin levels, and lowered elevated plasma levels of triglycerides and the proinflammatory cytokine tumor necrosis factor-alpha. These changes were reversed by the alpha7-selective antagonist methyllycaconitine, confirming the involvement of alpha7 nAChRs. Prevention of weight gain, decreased food intake, and normalization of glucose levels were also blocked by the Janus kinase 2 (JAK2) inhibitor alpha-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG-490), suggesting that these effects involve linkage of alpha7 nAChRs to the JAK2-signal transducer and activator of transcription 3 signaling pathway. The results show that alpha7 nAChRs play a central role in regulating biological parameters associated with diabetes and support the potential of targeting these receptors as a new therapeutic strategy for treatment.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Blood Glucose/metabolism
- Cell Line
- Cloning, Molecular
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/metabolism
- Electrophysiological Phenomena
- Energy Metabolism/drug effects
- Female
- Humans
- Ligands
- Lipid Metabolism/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Structure
- Nicotinic Agonists/chemistry
- Nicotinic Agonists/pharmacology
- Obesity/blood
- Obesity/metabolism
- Obesity/prevention & control
- Oocytes/metabolism
- Patch-Clamp Techniques
- Quinuclidines/chemistry
- Quinuclidines/pharmacology
- Rats
- Receptors, Leptin/genetics
- Receptors, Nicotinic/biosynthesis
- Receptors, Nicotinic/metabolism
- Receptors, Nicotinic/physiology
- Thiophenes/chemistry
- Thiophenes/pharmacology
- Tumor Necrosis Factor-alpha/blood
- Weight Gain/drug effects
- Xenopus laevis
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- Mario B Marrero
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Miao FJP, Green PG, Levine JD. Mechanosensitive duodenal afferents contribute to vagal modulation of inflammation in the rat. J Physiol 2004; 554:227-35. [PMID: 14678504 PMCID: PMC1664747 DOI: 10.1113/jphysiol.2003.056804] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Noxious stimuli inhibit inflammation by activating neuroendocrine stress axes, an effect that is potently attenuated by ongoing activity in subdiaphragmatic vagal afferents. Because this vagal afferent activity is carried in the coeliac and coeliac accessory branches of the subdiaphragmatic vagus, we tested the hypothesis that the activity arises from vagal afferents that innervate a proximal segment of the gastrointestinal tract. Surgical removal of the duodenum, but not the stomach, produces a marked (six orders of magnitude) leftward shift in the dose-response curve for intraplantar capsaicin-induced inhibition of synovial plasma extravasation induced by the potent inflammatory mediator bradykinin, in the knee joint; this is similar in magnitude to the inhibition produced by subdiaphragmatic or by coeliac plus coeliac accessory branch vagotomy. Fasting, to unload mechanically sensitive polymodal afferents in the proximal gastrointestinal tract, produces a similar leftward shift in the dose-response curve for the inhibitory effect of capsaicin, an effect that is reversed by balloon distension in the duodenum in fasted rats, while balloon distension postvagotomy had no effect. These results suggest that activation of mechanically sensitive vagal afferents in the duodenum contributes vagal afferent activity that modulates neuroendocrine control of the inflammatory response.
Collapse
Affiliation(s)
- Frederick Jia-Pei Miao
- NIH Pain Center, University of California at San Francisco, San Francisco, CA 94143-0440, USA
| | | | | |
Collapse
|