1
|
Phylogenetic analyses of 5-hydroxytryptamine 3 (5-HT3) receptors in Metazoa. PLoS One 2023; 18:e0281507. [PMID: 36857360 PMCID: PMC9977066 DOI: 10.1371/journal.pone.0281507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023] Open
Abstract
The 5-hydroxytrptamine 3 (5-HT3) receptor is a member of the 'Cys-loop' family and the only pentameric ligand gated ion channel among the serotonin receptors. 5-HT3 receptors play an important role in controlling growth, development, and behaviour in animals. Several 5-HT3 receptor antagonists are used to treat diseases (e.g., irritable bowel syndrome, nausea and emesis). Humans express five different subunits (A-E) enabling a variety of heteromeric receptors to form but all contain 5HT3A subunits. However, the information available about the 5-HT3 receptor subunit occurrence among the metazoan lineages is minimal. In the present article we searched for 5-HT3 receptor subunit homologs from different phyla in Metazoa. We identified more than 1000 5-HT3 receptor subunits in Metazoa in different phyla and undertook simultaneous phylogenetic analysis of 526 5HT3A, 358 5HT3B, 239 5HT3C, 70 5HT3D, and 173 5HT3E sequences. 5-HT3 receptor subunits were present in species belonging to 11 phyla: Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Orthonectida, Platyhelminthes, Rotifera and Tardigrada. All subunits were most often identified in Chordata phylum which was strongly represented in searches. Using multiple sequence alignment, we investigated variations in the ligand binding region of the 5HT3A subunit protein sequences in the metazoan lineage. Several critical amino acid residues important for ligand binding (common structural features) are commonly present in species from Nematoda and Platyhelminth gut parasites through to Chordata. Collectively, this better understanding of the 5-HT3 receptor evolutionary patterns raises possibilities of future pharmacological challenges facing Metazoa including effects on parasitic and other species in ecosystems that contain 5-HT3 receptor ligands.
Collapse
|
2
|
Gibbs E, Chakrapani S. Structure, Function and Physiology of 5-Hydroxytryptamine Receptors Subtype 3. Subcell Biochem 2021; 96:373-408. [PMID: 33252737 DOI: 10.1007/978-3-030-58971-4_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-hydroxytryptamine receptor subtype 3 (5-HT3R) is a pentameric ligand-gated ion channel (pLGIC) involved in neuronal signaling. It is best known for its prominent role in gut-CNS signaling though there is growing interest in its other functions, particularly in modulating non-serotonergic synaptic activity. Recent advances in structural biology have provided mechanistic understanding of 5-HT3R function and present new opportunities for the field. This chapter gives a broad overview of 5-HT3R from a physiological and structural perspective and then discusses the specific details of ion permeation, ligand binding and allosteric coupling between these two events. Biochemical evidence is summarized and placed within a physiological context. This perspective underscores the progress that has been made as well as outstanding challenges and opportunities for future 5-HT3R research.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA. .,Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
3
|
Zarkadas E, Zhang H, Cai W, Effantin G, Perot J, Neyton J, Chipot C, Schoehn G, Dehez F, Nury H. The Binding of Palonosetron and Other Antiemetic Drugs to the Serotonin 5-HT3 Receptor. Structure 2020; 28:1131-1140.e4. [DOI: 10.1016/j.str.2020.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
|
4
|
Ikarashi Y, Sekiguchi K, Mizoguchi K. Serotonin Receptor Binding Characteristics of Geissoschizine Methyl Ether, an Indole Alkaloid in Uncaria Hook. Curr Med Chem 2019; 25:1036-1045. [PMID: 28322152 PMCID: PMC5898036 DOI: 10.2174/0929867324666170320114713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 01/08/2023]
Abstract
Background: Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symp-toms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. Objective: The aim of this article is to review the binding characteristics of GM to the 5-HT receptor sub-types in the brains using our own data and previous findings. Methods: Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. Results: GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was me-tabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cor-tex. Conclusion: These results suggest that GM is a pharmacologically important alkaloid that regulates vari-ous serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS.
Collapse
Affiliation(s)
- Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kyoji Sekiguchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| |
Collapse
|
5
|
Ruepp MD, Wei H, Leuenberger M, Lochner M, Thompson AJ. The binding orientations of structurally-related ligands can differ; A cautionary note. Neuropharmacology 2017; 119:48-61. [PMID: 28137449 PMCID: PMC5464333 DOI: 10.1016/j.neuropharm.2017.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 11/19/2022]
Abstract
Crystal structures can identify ligand-receptor interactions and assist the development of novel therapeutics, but experimental challenges sometimes necessitate the use of homologous proteins. Tropisetron is an orthosteric ligand at both 5-HT3 and α7 nACh receptors and its binding orientation has been determined in the structural homologue AChBP (pdbid: 2WNC). Co-crystallisation with a structurally-related ligand, granisetron, reveals an almost identical orientation (pdbid; 2YME). However, there is a >1000-fold difference in the affinity of tropisetron at 5-HT3 versus α7 nACh receptors, and α7 nACh receptors do not bind granisetron. These striking pharmacological differences prompt questions about which receptor the crystal structures most closely represent and whether the ligand orientations are correct. Here we probe the binding orientation of tropisetron and granisetron at 5-HT3 receptors by in silico modelling and docking, radioligand binding on cysteine-substituted 5-HT3 receptor mutants transiently expressed in HEK 293 cells, and synthetic modification of the ligands. For 15 of the 23 cysteine substitutions, the effects on tropisetron and granisetron were different. Structure-activity relationships on synthesised derivatives of both ligands were also consistent with different orientations, revealing that contrary to the crystallographic evidence from AChBP, the two ligands adopt different orientations in the 5-HT3 receptor binding site. Our results show that even quite structurally similar molecules can adopt different orientations in the same binding site, and that caution may be needed when using homologous proteins to predict ligand binding. The drugs granisetron and tropisetron are structurally similar. Crystals of them bound to AChBP suggest they have similar binding orientations. At 5-HT3R, the effects of mutagenesis indicate that their orientations differ. SAR on both of these drugs also supports different orientations.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Michele Leuenberger
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland; Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
6
|
Michaelson SD, Paulsen IM, Kozuska JL, Martin IL, Dunn SMJ. Importance of recognition loops B and D in the activation of human 5-HT₃ receptors by 5-HT and meta-chlorophenylbiguanide. Neuropharmacology 2013; 73:398-403. [PMID: 23810831 DOI: 10.1016/j.neuropharm.2013.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/14/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
The 5-HT₃ receptor is a cation selective member of the pentameric Cys-loop ligand-gated ion channels. While five subunits are known to exist, only two receptor subtypes have been significantly characterized: the homomeric receptor consisting of five A subunits and the heteromeric receptor containing both A and B subunits. The agonist recognition and activation of these receptors is orchestrated by six recognition loops three, A-C, on the principal subunit, and three, D-F, on the complementary subunit. In this study we have focused on the B loop of the principal subunit and loop D of the complementary subunit where aligned amino acids differ between the two subunits. A mutational analysis has been carried out using both 5-HT and m-chlorophenylbiguanide (mCPBG) to characterize receptor activation in the mutant receptors using two-electrode voltage clamp in Xenopus oocytes. The results show that the B loop W178I mutation of the 5-HT3A subunit markedly reduces the efficacy of mCPBG in both the homomeric and heteromeric receptors, while activation by 5-HT remains intact. Replacement of the D loop amino acid triplet RQY of the 5-HT3A subunit, with the aligned residues from the 5-HT3B subunit, QEV, converts 5-HT to a weak partial agonist in both the homomer and heteromer, but does not compromise activation by mCPBG. Exchange of the RQY triplet for the 5-HT3B subunit homologue, QEV, increases the Hill coefficient and decreases the EC₅₀ of this mutant when expressed with the wild type 5-HT3A subunit.
Collapse
Affiliation(s)
- S D Michaelson
- Department of Pharmacology, University of Alberta, 9-70 Medical Sciences Building, Edmonton, AB, Canada T6H 2H7
| | | | | | | | | |
Collapse
|
7
|
Abstract
5-Hydroxytryptamine type 3 (5-HT(3)) receptors are cation-selective Cys loop receptors found in both the central and peripheral nervous systems. There are five 5-HT(3) receptor subunits (A-E), and all functional receptors require at least one A subunit. Regions from noncontiguous parts of the subunit sequence contribute to the agonist-binding site, and the roles of a range of amino acid residues that form the binding pocket have been identified. Drugs that selectively antagonize 5-HT(3) receptors (the "setrons") are the current gold standard for treatment of chemotherapy-induced and postoperative nausea and vomiting and have potential for the treatment of a range of other conditions.
Collapse
Affiliation(s)
- Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
8
|
De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT3receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn 2012; 30:280-98. [DOI: 10.1080/07391102.2012.680029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Kozuska JL, Paulsen IM. The Cys-loop pentameric ligand-gated ion channel receptors: 50 years on. Can J Physiol Pharmacol 2012; 90:771-82. [PMID: 22493950 DOI: 10.1139/y2012-018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This year, 2011, the Department of Pharmacology at the University of Alberta celebrated its 50th anniversary. This timeframe covers nearly the entire history of Cys-loop pentameric ligand-gated ion channel (pLGIC) research. In this review we consider how major technological advancements affected our current understanding of pLGICs, and highlight the contributions made by members of our department. The individual at the center of our story is Susan Dunn; her passing earlier this year has robbed the Department of Pharmacology and the research community of a most insightful colleague. Her dissection of ligand interactions with the nAChR, together with their interpretation, was the hallmark of her extensive collaborations with Michael Raftery. Here, we highlight some electrophysiological studies from her laboratory over the last few years, using the technique that she introduced to the department in Edmonton, the 2-electrode voltage-clamp of Xenopus oocytes. Finally, we discuss some single-channel studies of the anionic GlyR and GABA(A)R that prefaced the introduction of this technique to her laboratory.
Collapse
Affiliation(s)
- Janna L Kozuska
- Department of Pharmacology, University of Alberta, 9-55 Medical Sciences Building, Edmonton, AB T6G2H7, Canada.
| | | |
Collapse
|
10
|
Lee TH, Kim KH, Lee SO, Lee KR, Son M, Jin M. Tetrahydroberberine, an isoquinoline alkaloid isolated from corydalis tuber, enhances gastrointestinal motor function. J Pharmacol Exp Ther 2011; 338:917-24. [PMID: 21659472 DOI: 10.1124/jpet.111.182048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Because delayed gastric emptying and impaired gastric accommodation are regarded as pathophysiological mechanisms underlying functional dyspepsia (FD), prokinetics and fundic relaxants have been suggested as a new treatment for FD. We isolated tetrahydroberberine (THB), an isoquinoline alkaloid (5,8,13,13a-tetrahydro-9,10-dimethoxy-6H-benzo[g]-1,3-benzodioxolo[5,6-a]quinolizine) from Corydalis tuber, and found that it has micromolar affinity for dopamine D(2) (pK(i) = 6.08) and 5-HT(1A) (pK(i) = 5.38) receptors but moderate to no affinity for other relevant serotonin receptors (i.e., 5-HT(1B), 5-HT(1D), 5-HT(3), and 5-HT(4); pK(i) < 5.00). Oral administration of THB not only resulted in significantly accelerated gastric emptying of normal rats in a bell-shaped relationship, with a maximal efficacy at a dose of 30 μg/kg, but also restored the delayed gastric emptying caused by apomorphine, which might be mediated by an antidopaminergic effect. Data from electromyography indicated enhanced motor function of the upper gastrointestinal tract by THB, which occurred through strengthening contractility and shortening the contraction interval. Furthermore, in rats stressed by repeated restraint, a significantly higher shift in the pressure-volume curve by THB (10 μg/kg, p < 0.05), which was inhibited by [O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY-100635), a 5-HT(1A) antagonist, and N(ω)-nitro-l-arginine methyl ester, a nitric-oxide synthase inhibitor but not a vasoactive intestinal peptide antagonist, was observed. Oral administration of THB resulted in a drastic increase of gastric accommodation in Beagle dogs. Area under the volume versus time curve was increased significantly by THB (30 μg/kg, p < 0.01) and comparable with that of sumatriptan (3 mg/kg), a potent fundic relaxant. Taken together, our data suggested that THB, with D(2) receptor antagonist and 5-HT(1A) receptor agonist properties, has significant potential as a therapeutic for treatment of FD.
Collapse
Affiliation(s)
- Tae Ho Lee
- R&D Center, Dong-A Pharmaceutical Co, Ltd, Yongin, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Machu TK. Therapeutics of 5-HT3 receptor antagonists: current uses and future directions. Pharmacol Ther 2011; 130:338-47. [PMID: 21356241 PMCID: PMC3103470 DOI: 10.1016/j.pharmthera.2011.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 12/14/2022]
Abstract
The 5-Hydroxytryptamine3 (5-HT3) receptor is a member of the cys-loop family of ligand gated ion channels, of which the nicotinic acetylcholine receptor is the prototype. All other 5-HT receptors identified to date are metabotropic receptors. The 5-HT3 receptor is present in the central and peripheral nervous systems, as well as a number of non-nervous tissues. As an ion channel that is permeable to the cations, Na(+), K(+), and Ca(2+), the 5-HT3 receptor mediates fast depolarizing responses in pre- and post-synaptic neurons. As such, 5-HT3 receptor antagonists that are used clinically block afferent and efferent synaptic transmission. The most well established physiological roles of the 5-HT3 receptor are to coordinate emesis and regulate gastrointestinal motility. Currently marketed 5-HT3 receptor antagonists are indicated for the treatment of chemotherapy, radiation, and anesthesia-induced nausea and vomiting, as well as irritable bowel syndrome. Other therapeutic uses that have been explored include pain and drug addiction. The 5-HT3 receptor is one of a number of receptors that play a role in mediating nausea and vomiting, and as such, 5-HT3 receptor antagonists demonstrate the greatest anti-emetic efficacy when administered in combination with other drug classes.
Collapse
Affiliation(s)
- Tina K Machu
- Dept. of Medical Education and Dept. of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX 76107-2699, USA.
| |
Collapse
|
12
|
Carneiro K, Donnet C, Rejtar T, Karger BL, Barisone GA, Díaz E, Kortagere S, Lemire JM, Levin M. Histone deacetylase activity is necessary for left-right patterning during vertebrate development. BMC DEVELOPMENTAL BIOLOGY 2011; 11:29. [PMID: 21599922 PMCID: PMC3113753 DOI: 10.1186/1471-213x-11-29] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 05/20/2011] [Indexed: 01/23/2023]
Abstract
Background Consistent asymmetry of the left-right (LR) axis is a crucial aspect of vertebrate embryogenesis. Asymmetric gene expression of the TGFβ superfamily member Nodal related 1 (Nr1) in the left lateral mesoderm plate is a highly conserved step regulating the situs of the heart and viscera. In Xenopus, movement of maternal serotonin (5HT) through gap-junctional paths at cleavage stages dictates asymmetry upstream of Nr1. However, the mechanisms linking earlier biophysical asymmetries with this transcriptional control point are not known. Results To understand how an early physiological gradient is transduced into a late, stable pattern of Nr1 expression we investigated epigenetic regulation during LR patterning. Embryos injected with mRNA encoding a dominant-negative of Histone Deacetylase (HDAC) lacked Nr1 expression and exhibited randomized sidedness of the heart and viscera (heterotaxia) at stage 45. Timing analysis using pharmacological blockade of HDACs implicated cleavage stages as the active period. Inhibition during these early stages was correlated with an absence of Nr1 expression at stage 21, high levels of heterotaxia at stage 45, and the deposition of the epigenetic marker H3K4me2 on the Nr1 gene. To link the epigenetic machinery to the 5HT signaling pathway, we performed a high-throughput proteomic screen for novel cytoplasmic 5HT partners associated with the epigenetic machinery. The data identified the known HDAC partner protein Mad3 as a 5HT-binding regulator. While Mad3 overexpression led to an absence of Nr1 transcription and randomized the LR axis, a mutant form of Mad3 lacking 5HT binding sites was not able to induce heterotaxia, showing that Mad3's biological activity is dependent on 5HT binding. Conclusion HDAC activity is a new LR determinant controlling the epigenetic state of Nr1 from early developmental stages. The HDAC binding partner Mad3 may be a new serotonin-dependent regulator of asymmetry linking early physiological asymmetries to stable changes in gene expression during organogenesis.
Collapse
Affiliation(s)
- Katia Carneiro
- Department of Biology Center for Regenerative and Developmental Biology Tufts University, Medford, MA 02155 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Moura Barbosa AJ, De Rienzo F, Ramos MJ, Menziani MC. Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors. Eur J Med Chem 2010; 45:4746-60. [DOI: 10.1016/j.ejmech.2010.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/18/2010] [Accepted: 07/20/2010] [Indexed: 11/25/2022]
|
14
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
15
|
Nyce HL, Stober ST, Abrams CF, White MM. Mapping spatial relationships between residues in the ligand-binding domain of the 5-HT3 receptor using a molecular ruler. Biophys J 2010; 98:1847-55. [PMID: 20441748 DOI: 10.1016/j.bpj.2010.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/11/2010] [Accepted: 01/14/2010] [Indexed: 12/24/2022] Open
Abstract
The serotonin 5-HT(3) receptor (5-HT(3)R) is a member of the Cys-loop ligand-gated ion channel family. We used a combination of site-directed mutagenesis, homology modeling, and ligand-docking simulations to analyze antagonist-receptor interactions. Mutation of E236, which is near loop C of the binding site, to aspartate prevents expression of the receptor on the cell surface, and no specific ligand binding can be detected. On the other hand, mutation to glutamine, asparagine, or alanine produces receptors that are expressed on the cell surface, but decreases receptor affinity for the competitive antagonist d-tubocurarine (dTC) 5-35-fold. The results of a double-mutant cycle analysis employing a panel of dTC analogs to identify specific points of interactions between the dTC analogs and E236 are consistent with E236 making a direct physical interaction with the 12 -OH of dTC. dTC is a rigid molecule of known three-dimensional structure. Together with previous studies linking other regions of dTC to specific residues in the binding site, these data allow us to define the relative spatial arrangement of three different residues in the ligand-binding site: R92 (loop D), N128 (loop A), and E236 (near loop C). Molecular modeling employing these distance constraints followed by molecular-dynamics simulations produced a dTC/receptor complex consistent with the experimental data. The use of the rigid ligands as molecular rulers in conjunction with double-mutant cycle analysis provides a means of mapping the relative positions of various residues in the ligand-binding site of any ligand-receptor complex, and thus is a useful tool for delineating the architecture of the binding site.
Collapse
Affiliation(s)
- Heather L Nyce
- Department of Biochemistry, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
16
|
Koo BN, Kim MK, Yang J, Min KT. The role of residues in binding loop A in desflurane and propofol modulation of recombinant 5-HT3A receptor. Neurosci Lett 2009; 465:147-50. [DOI: 10.1016/j.neulet.2009.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/04/2009] [Accepted: 09/05/2009] [Indexed: 10/20/2022]
|
17
|
Hazai E, Joshi P, Skoviak EC, Suryanarayanan A, Schulte MK, Bikadi Z. A comprehensive study on the 5-hydroxytryptamine3A receptor binding of agonists serotonin and m-chlorophenylbiguanidine. Bioorg Med Chem 2009; 17:5796-805. [DOI: 10.1016/j.bmc.2009.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 01/07/2023]
|
18
|
Morelli E, Gemma S, Budriesi R, Campiani G, Novellino E, Fattorusso C, Catalanotti B, Coccone SS, Ros S, Borrelli G, Persico M, Fiorini I, Nacci V, Ioan P, Chiarini A, Hamon M, Cagnotto A, Mennini T, Fracasso C, Colovic M, Caccia S, Butini S. Specific Targeting of Peripheral Serotonin 5-HT3 Receptors. Synthesis, Biological Investigation, and Structure−Activity Relationships. J Med Chem 2009; 52:3548-62. [DOI: 10.1021/jm900018b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Elena Morelli
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Roberta Budriesi
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Caterina Fattorusso
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Bruno Catalanotti
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Salvatore Sanna Coccone
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Sindu Ros
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Giuseppe Borrelli
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Marco Persico
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Isabella Fiorini
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Vito Nacci
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Pierfranco Ioan
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Alberto Chiarini
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Michel Hamon
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Alfredo Cagnotto
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Tiziana Mennini
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Claudia Fracasso
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Milena Colovic
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Silvio Caccia
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico, Università di Siena, Via Aldo Moro 53100 Siena, Italy, Dipartimento di Chimica delle Sostanze Naturali (DCSN) e Dipartimento di Chimica Farmaceutica e Tossicologica (DCFT), Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy, Neurobiologie
| |
Collapse
|
19
|
Barnes NM, Hales TG, Lummis SC, Peters JA. The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology 2009; 56:273-84. [PMID: 18761359 PMCID: PMC6485434 DOI: 10.1016/j.neuropharm.2008.08.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 12/15/2022]
Abstract
The 5-hydroxytryptamine type-3 (5-HT3) receptor is a cation-selective ion channel of the Cys-loop superfamily. 5-HT3 receptor activation in the central and peripheral nervous systems evokes neuronal excitation and neurotransmitter release. Here, we review the relationship between the structure and the function of the 5-HT3 receptor. 5-HT3A and 5-HT3B subunits are well established components of 5-HT3 receptors but additional HTR3C, HTR3D and HTR3E genes expand the potential for molecular diversity within the family. Studies upon the relationship between subunit structure and the ionic selectivity and single channel conductances of 5-HT3 receptors have identified a novel domain (the intracellular MA-stretch) that contributes to ion permeation and selectivity. Conventional and unnatural amino acid mutagenesis of the extracellular domain of the receptor has revealed residues, within the principle (A-C) and complementary (D-F) loops, which are crucial to ligand binding. An area requiring much further investigation is the subunit composition of 5-HT3 receptors that are endogenous to neurones, and their regional expression within the central nervous system. We conclude by describing recent studies that have identified numerous HTR3A and HTR3B gene polymorphisms that impact upon 5-HT3 receptor function, or expression, and consider their relevance to (patho)physiology.
Collapse
Affiliation(s)
- Nicholas M. Barnes
- Cellular and Molecular Neuropharmacology Research Group, Department of Pharmacology, Division of Neuroscience, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim G. Hales
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | - Sarah C.R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - John A. Peters
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, The University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
20
|
Kim MK, Min KT, Koo BN. Amino acid residues involved in agonist binding and its linking to channel gating, proximal to transmembrane domain of 5-HT 3Areceptor for halothane modulation. Korean J Anesthesiol 2009; 56:66-73. [DOI: 10.4097/kjae.2009.56.1.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mi Kyeong Kim
- Department of Anesthesiology and Pain Medicine, Kyung Hee University College of Medicine, Seoul, Korea
| | - Kyeong Tae Min
- Department of Anesthesiology and Pain Medicine, Research Institute of Anesthesia and Pain, Yonsei University College of Medicine, Seoul, Korea
| | - Bon Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Research Institute of Anesthesia and Pain, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Price KL, Bower KS, Thompson AJ, Lester HA, Dougherty DA, Lummis SCR. A hydrogen bond in loop A is critical for the binding and function of the 5-HT3 receptor. Biochemistry 2008; 47:6370-7. [PMID: 18498149 PMCID: PMC2649372 DOI: 10.1021/bi800222n] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding sites of Cys-loop receptors are formed from at least six loops (A-F). Here we have used mutagenesis, radioligand binding, voltage clamp electrophysiology, and homology modeling to probe the role of two residues in loop A of the 5-HT3 receptor: Asn128 and Glu129. The data show that substitution of Asn128, with a range of alternative natural and unnatural amino acids, changed the EC50 (from approximately 10-fold more potent to approximately 10-fold less potent than that of the wild type), increased the maximal peak current for mCPBG compared to 5-HT (R max) 2-19-fold, and decreased n H, indicating this residue is involved in receptor gating; we propose Asn128 faces away from the binding pocket and plays a role in facilitating transitions between conformational states. Substitutions of Glu129 resulted in functional receptors only when the residue could accept a hydrogen bond, but with both these and other substitutions, no [(3)H]granisetron binding could be detected, indicating a role in ligand binding. We propose that Glu129 faces into the binding pocket, where, through its ability to hydrogen bond, it plays a critical role in ligand binding. Thus, the data support a modified model of the 5-HT3 receptor binding site and show that loop A plays a critical role in both the ligand binding and function of this receptor.
Collapse
Affiliation(s)
- Kerry L Price
- Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
22
|
Meyers NL, Hickling RI. Pharmacology and metabolism of renzapride : a novel therapeutic agent for the potential treatment of irritable bowel syndrome. Drugs R D 2008; 9:37-63. [PMID: 18095752 DOI: 10.2165/00126839-200809010-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Renzapride (ATL-1251), a novel benzamide, is currently under clinical development for the treatment of irritable bowel syndrome (IBS). Previous in vitro and in vivo experimental studies have characterized renzapride as a full serotonin 5-HT(4) receptor agonist on the gut and a 5-HT(3) receptor antagonist. Clinical studies have confirmed the therapeutic efficacy, tolerability and safety of renzapride in patients with constipation-predominant IBS. This study set out to characterize the pharmacological profile of renzapride and its potential metabolic products at both 5-HT and other monoamine receptors in the gut. METHODS The affinity of renzapride, its (+) and (-) enantiomers, and its primary metabolite, renzapride N-oxide and its enantiomers, for serotonin receptors was assessed by means of in vitro radioligand binding inhibition studies. After membranes prepared from animal tissue or membranes of cell lines transfected with cloned human receptors had been incubated with radiolabelled ligand with high affinity for a specific receptor, renzapride was added to competitively inhibit this binding. Levels of bound radioligand were measured by filtration and counting of the bound radioactivity. In instances where >50% inhibition of radioligand binding had occurred, the inhibition constant (K(i)) was calculated. Metabolism of renzapride by liver microsomes was assessed by incubating 10 micromol/L renzapride with human liver microsome samples for 60 minutes at 37 degrees C. After the reaction was stopped, the samples were centrifuged and the supernatant analysed for metabolites by high-pressure liquid chromatography (HPLC). The potential inhibitory effects of renzapride on cytochrome P450 (CYP) enzymes were assessed by incubating renzapride at various concentrations over a 1-500 micromol/L concentration range with microsomes genetically engineered to express a single CYP. RESULTS Renzapride was selective for serotonergic receptors and, in particular, had high affinity for human 5-HT(3) and guinea-pig 5-HT(4) receptors (K(i) 17 and 477 nm, respectively). Inhibitory properties at 5-HT(2B) receptors were also identified for renzapride, as well as some affinity for 5-HT(2A) and 5-HT(2C) receptors. Renzapride N-oxide and its enantiomers demonstrated much lower affinity for all 5-HT receptors compared with renzapride. Renzapride was metabolized by liver microsomes to a limited extent and there was no significant non-microsomal metabolism of renzapride. Renzapride did not inhibit the major CYP drug-metabolizing enzymes CYP2C9, CYP2D6, CYP1A2, CYP2A6, CYP2C19, CYP2E1 or CYP3A4 at concentrations consistent with use in a clinical setting. CONCLUSIONS These results confirm and extend earlier studies in animal and human receptors that show renzapride is a potent and generally full 5-HT(4) receptor agonist and 5-HT(3) receptor antagonist. The results reported in the present study indicate that the metabolites of renzapride are minor and are unlikely to contribute to its therapeutic profile or lead to interaction of renzapride with other drugs that inhibit the major drug-metabolizing enzymes in the liver at therapeutic doses. These data contribute to the understanding of the pharmacological actions and metabolic fate of renzapride in vivo.
Collapse
|
23
|
Local Anesthetics Have Different Mechanisms and Sites of Action at Recombinant 5-HT3 Receptors. Reg Anesth Pain Med 2007. [DOI: 10.1097/00115550-200711000-00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Sullivan NL, Thompson AJ, Price KL, Lummis SCR. Defining the roles of Asn-128, Glu-129 and Phe-130 in loop A of the 5-HT3 receptor. Mol Membr Biol 2007; 23:442-51. [PMID: 17060161 PMCID: PMC2649376 DOI: 10.1080/09687860600831539] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The ligand binding pocket of Cys-loop receptors consists of a number of binding loops termed A-F. Here we examine the 5-HT3 receptor loop A residues Asn-128, Glu-129 and Phe-130 using modelling, mutagenesis, radioligand binding and functional studies on HEK 293 cells. Replacement of Asn-128 results in receptors that have wild type [3H]granisetron binding characteristics but large changes (ranging from a five-fold decrease to a 1500-fold increase) in the 5-HT EC50 when compared to wild type receptors. Phe-130 mutant receptors show both increases and decreases in Kd and EC50 values, depending on the amino acid substituted. The most critical of these residues appears to be Glu-129; its replacement with a range of other amino acids results in non-binding and non-functional receptors. Lack of binding and function in some, but not all, of these receptors is due to poor membrane expression. These data suggest that Glu-129 is important primarily for receptor expression, although it may also play a role in ligand binding; Phe-130 is important for both ligand binding and receptor function, and Asn-128 plays a larger role in receptor function than ligand binding. In light of these results, we have created two new homology models of the 5-HT3 receptor, with alternative positions of loop A. In our preferred model Glu-129 and Phe-130 contribute to the binding site, while the location of Asn-128 immediately behind the binding pocket could contribute to the conformation changes that result in receptor gating. This study provides a new model of the 5-HT3 receptor binding pocket, and also highlights the importance of experimental data to support modelling studies.
Collapse
Affiliation(s)
- Nora L Sullivan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
25
|
Zhu LP, Ye DY, Tang Y. Structure-based 3D-QSAR studies on thiazoles as 5-HT3 receptor antagonists. J Mol Model 2006; 13:121-31. [PMID: 16953442 DOI: 10.1007/s00894-006-0131-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Structure-based 3D-QSAR studies were performed on 20 thiazoles against their binding affinities to the 5-HT(3) receptor with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The thiazoles were initially docked into the binding pocket of a human 5-HT(3A) receptor homology model, constructed on the basis of the crystal structure of the snail acetylcholine binding protein (AChBP), using the GOLD program. The docked conformations were then extracted and used to build the 3D-QSAR models, with cross-validated r2omega values 0.785 and 0.744 for CoMFA and CoMSIA, respectively. An additional five molecules were used to validate the models further, giving satisfactory predictive r2 values of 0.582 and 0.804 for CoMFA and CoMSIA, respectively. The results would be helpful for the discovery of new potent and selective 5-HT(3) receptor antagonists.
Collapse
Affiliation(s)
- Li-Ping Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | | | | |
Collapse
|
26
|
Ogawa M, Tatsumi R, Fujio M, Katayama J, Magata Y. Synthesis and evaluation of [125I]I-TSA as a brain nicotinic acetylcholine receptor α7 subtype imaging agent. Nucl Med Biol 2006; 33:311-6. [PMID: 16631079 DOI: 10.1016/j.nucmedbio.2005.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/20/2005] [Accepted: 12/26/2005] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) alpha7 subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for alpha7 nAChRs. Therefore we synthesized (R)-3'-(5-[125I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one ([125I]I-TSA) and evaluated its potential for the in vivo detection of alpha7 nAChR in brain. METHODS In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [(125)I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 mul, i.c.v.) or nonradioactive I-TSA (50 micromol/kg, i.v.). RESULTS I-TSA exhibited a high affinity and selectivity for the alpha7 nAChR (K(i) for alpha7 nAChR = 0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus (alpha7 nAChR-rich region) and was rather rapid in the cerebellum (alpha7 nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. CONCLUSION Despite its high affinity and selectivity, [125I]I-TSA does not appear to be a suitable tracer for in vivo alpha7 nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed.
Collapse
Affiliation(s)
- Mikako Ogawa
- Laboratory of Genome Bio-Photonics, Photon Medical Research Center, Hamamatsu Medical University, Hamamatsu 431-3192, Japan
| | | | | | | | | |
Collapse
|
27
|
Ilegems E, Pick H, Deluz C, Kellenberger S, Vogel H. Ligand Binding Transmits Conformational Changes across the Membrane-Spanning Region to the Intracellular Side of the 5-HT3 Serotonin Receptor. Chembiochem 2005; 6:2180-5. [PMID: 16254942 DOI: 10.1002/cbic.200500191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erwin Ilegems
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Dietz BM, Mahady GB, Pauli GF, Farnsworth NR. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2005; 138:191-7. [PMID: 15921820 PMCID: PMC5805132 DOI: 10.1016/j.molbrainres.2005.04.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 03/24/2005] [Accepted: 04/18/2005] [Indexed: 11/25/2022]
Abstract
Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABA(A) receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT(5a) receptor, but only weak binding affinity to the 5-HT(2b) and the serotonin transporter. Subsequent binding studies focused on the 5-HT(5a) receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep-wake cycle. The PE extract inhibited [(3)H]lysergic acid diethylamide (LSD) binding to the human 5-HT(5a) receptor (86% at 50 microg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC(50) curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC(50) of 15.7 ng/ml for the high-affinity state and 27.7 microg/ml for the low-affinity state. The addition of GTP (100 microM) resulted in a right-hand shift of the binding curve with an IC(50) of 11.4 microg/ml. Valerenic acid, the active constituent of both extracts, had an IC(50) of 17.2 microM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT(5a) receptor.
Collapse
Affiliation(s)
- Birgit M Dietz
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
29
|
Yan D, White MM. Spatial orientation of the antagonist granisetron in the ligand-binding site of the 5-HT3 receptor. Mol Pharmacol 2005; 68:365-71. [PMID: 15914697 DOI: 10.1124/mol.105.011957] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The serotonin type 3 receptor (5-HT(3)R) is a member of the cys-loop ligand-gated ion channel (LGIC) superfamily. Like almost all membrane proteins, high-resolution structural data are unavailable for this class of receptors. We have taken advantage of the high degree of homology between LGICs and the acetylcholine binding protein (AChBP) from the freshwater snail Lymnea stagnalis, for which high-resolution structural data are available, to create a structural model for the extracellular (i.e., ligand-binding) domain of the 5-HT(3)R and to perform a series of ligand docking experiments to delineate the architecture of the ligand-binding site. Structural models were created using homology modeling with the AChBP as a template. Docking of the antagonist granisetron was carried out using a Lamarckian genetic algorithm to produce models of ligand-receptor complexes. Two energetically similar conformations of granisetron in the binding site were obtained from the docking simulations. In one model, the indazole ring of granisetron is near Trp90 and the tropane ring is near Arg92; in the other, the orientation is reversed. We used double-mutant cycle analysis to determine which of the two orientations is consistent with experimental data and found that the data are consistent with the model in which the indazole ring of granisetron interacts with Arg92 and the tropane ring interacts with Trp90. The combination of molecular modeling with double-mutant cycle analysis offers a powerful approach for the delineation of the architecture of the ligand-binding site.
Collapse
Affiliation(s)
- Dong Yan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | | |
Collapse
|
30
|
Thompson AJ, Price KL, Reeves DC, Chan SL, Chau PL, Lummis SCR. Locating an antagonist in the 5-HT3 receptor binding site using modeling and radioligand binding. J Biol Chem 2005; 280:20476-82. [PMID: 15781467 DOI: 10.1074/jbc.m413610200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have used a homology model of the extracellular domain of the 5-HT(3) receptor to dock granisetron, a 5-HT(3) receptor antagonist, into the binding site using AUTODOCK. This yielded 13 alternative energetically favorable models. The models fell into 3 groups. In model type A the aromatic rings of granisetron were between Trp-90 and Phe-226 and its azabicyclic ring was between Trp-183 and Tyr-234, in model type B this orientation was reversed, and in model type C the aromatic rings were between Asp-229 and Ser-200 and the azabicyclic ring was between Phe-226 and Asn-128. Residues located no more than 5 A from the docked granisetron were identified for each model; of 26 residues identified, 8 were found to be common to all models, with 18 others being represented in only a subset of the models. To identify which of the docking models best represents the ligand-receptor complex, we substituted each of these 26 residues with alanine and a residue with similar chemical properties. The mutant receptors were expressed in human embryonic kidney (HEK)293 cells and the affinity of granisetron determined using radioligand binding. Mutation of 2 residues (Trp-183 and Glu-129) ablated binding, whereas mutation of 14 other residues caused changes in the [(3)H]granisetron binding affinity in one or both mutant receptors. The data showed that residues both in and close to the binding pocket can affect antagonist binding and overall were found to best support model B.
Collapse
Affiliation(s)
- Andrew J Thompson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Maksay G, Simonyi M, Bikádi Z. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists. J Comput Aided Mol Des 2005; 18:651-64. [PMID: 15849995 DOI: 10.1007/s10822-004-6259-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5 degrees was performed between -10 degrees and 15 degrees to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with -10 degrees rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation-pi interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via pi-cation-pi interactions of its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.
Collapse
Affiliation(s)
- Gábor Maksay
- Molecular Pharmacology Group, Institute for Biomolecular Chemistry, Chemical Research Centre, Hungarian Academy of Sciences, PO Box 17, 1525 Budapest, Hungary
| | | | | |
Collapse
|
32
|
Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A, Koenig G. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 2004; 47:1081-92. [PMID: 15555642 DOI: 10.1016/j.neuropharm.2004.07.040] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/02/2004] [Accepted: 07/28/2004] [Indexed: 10/25/2022]
Abstract
An essential element of the signalling cascade leading to synaptic plasticity is the intracellular second messenger molecule guanosine 3',5'-cyclic monophosphate (cGMP). Using the novel, potent, and selective inhibitor Bay 60-7550, we show that the enzyme 3',5'-cyclic nucleotide phosphodiesterase type 2 (PDE2) is responsible for the degradation of newly synthesized cGMP in cultured neurons and hippocampal slices. Inhibition of PDE2 enhanced long-term potentiation of synaptic transmission without altering basal synaptic transmission. Inhibition of PDE2 also improved the performance of rats in social and object recognition memory tasks, and reversed MK801-induced deficits in spontaneous alternation in mice in a T-maze. Our data provide strong evidence that inhibition of PDE2 can improve memory functions by enhancing neuronal plasticity.
Collapse
Affiliation(s)
- Frank G Boess
- Bayer Healthcare AG, Pharma Research CNS, 42096 Wuppertal-Elberfeld, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kaiser R, Tremblay PB, Sezer O, Possinger K, Roots I, Brockmöller J. Investigation of the association between 5-HT3A receptor gene polymorphisms and efficiency of antiemetic treatment with 5-HT3 receptor antagonists. ACTA ACUST UNITED AC 2004; 14:271-8. [PMID: 15115912 DOI: 10.1097/00008571-200405000-00001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Acute cytostatic drug induced nausea and vomiting is provoked by a release of endogenous serotonin that mediates its effect by binding to the 5-hydroxytryptamine type 3 (5-HT3) receptors. The most effective antiemetic drugs are the 5-HT3 receptor antagonists. Nevertheless about 30% of the patients do not respond satisfactorily. Five 5-HT3 receptor genes (5-HT(3A-E)) with high sequence homology have been identified. Two subunits, the 5-HT3A and 5-HT3B are expressed in anatomical structures known to be involved in the mechanism of acute cytostatic drug induced emesis. METHODS We included 242 cancer patients at their first day of chemotherapy to investigate the influence of genetic polymorphisms of the 5-HT3A receptor gene on the intensity of nausea and vomiting which was documented using standardized interviews and visual analog scales. RESULTS Sequencing of the entire 5-HT3A receptor gene of all patients revealed 21 polymorphisms, two of them were amino acid substitutions (Ala33Thr, Met257Ile). Linkage disequilibrium analysis revealed that 15 polymorphisms of the 5-HT3A receptor gene are partially linked to each other. However, none of the haplotypes was significantly associated with the intensity of cytostatic induced nausea and vomiting. CONCLUSION Polymorphisms and haplotype analysis of the 5-HT3A receptor gene may not serve as a pharmacogenetic predictor of the antiemetic treatment with 5-HT3 receptor antagonists in cancer patients.
Collapse
Affiliation(s)
- Rolf Kaiser
- Institute of Clinical Pharmacology, University Medical Center Charité, Humboldt University of Berlin, D-10098 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Hu XQ, Zhang L, Stewart RR, Weight FF. Arginine 222 in the pre-transmembrane domain 1 of 5-HT3A receptors links agonist binding to channel gating. J Biol Chem 2003; 278:46583-9. [PMID: 12970351 DOI: 10.1074/jbc.m308974200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-gated ion channels are integral membrane proteins that mediate fast synaptic transmission. Molecular biological techniques have been extensively used for determining the structure-function relationships of ligand-gated ion channels. However, the transduction mechanisms that link agonist binding to channel gating remain poorly understood. Arginine 222 (Arg-222), located at the distal end of the extracellular N-terminal domain immediately preceding the first transmembrane domain (TM1), is conserved in all 5-HT3A receptors and alpha7-nicotinic acetylcholine receptors that have been cloned. To elucidate the possible role of Arg-222 in the function of 5-HT3A receptors, we mutated the arginine residue to alanine (Ala) and expressed both the wild-type and the mutant receptor in human embryonic kidney 293 cells. Functional studies of expressed wild-type and mutant receptors revealed that the R222A mutation increased the apparent potency of the full agonist, serotonin (5-HT), and the partial agonist, 2-Me-5-HT, 5- and 12-fold, respectively. In addition, the mutation increased the efficacy of 2-Me-5-HT and converted it from a partial agonist to a full agonist. Furthermore, this mutation also converted the 5-HT3 receptor antagonist/very weak partial agonist, apomorphine, to a potent agonist. Kinetic analysis revealed that the R222A mutation increased the rate of receptor activation and desensitization but did not affect rate of deactivation. The results suggest that the pre-TM1 amino acid residue Arg-222 may be involved in the transduction mechanism linking agonist binding to channel gating in 5-HT3A receptors.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism/NIH, Park Building Room 150, Bethesda, MD 20892-8115, USA.
| | | | | | | |
Collapse
|
35
|
Sixma TK, Smit AB. Acetylcholine binding protein (AChBP): a secreted glial protein that provides a high-resolution model for the extracellular domain of pentameric ligand-gated ion channels. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:311-34. [PMID: 12695308 DOI: 10.1146/annurev.biophys.32.110601.142536] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acetylcholine binding protein (AChBP) has recently been identified from molluskan glial cells. Glial cells secrete it into cholinergic synapses, where it plays a role in modulating synaptic transmission. This novel mechanism resembles glia-dependent modulation of glutamate synapses, with several key differences. AChBP is a homolog of the ligand binding domain of the pentameric ligand-gated ion-channels. The crystal structure of AChBP provides the first high-resolution structure for this family of Cys-loop receptors. Nicotinic acetylcholine receptors and related ion-channels such as GABAA, serotonin 5HT3, and glycine can be interpreted in the light of the 2.7 A AChBP structure. The structural template provides critical details of the binding site and helps create models for toxin binding, mutational effects, and molecular gating.
Collapse
Affiliation(s)
- Titia K Sixma
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
36
|
Maksay G, Bikádi Z, Simonyi M. Binding Interactions of Antagonists with 5‐Hydroxytryptamine3AReceptor Models. J Recept Signal Transduct Res 2003; 23:255-70. [PMID: 14626451 DOI: 10.1081/rrs-120025568] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homology modeling was performed on the N-terminal extracellular regions of human, mouse, and guinea pig 5-hydroxytryptamine type 3A receptors (5-HT3R) based on the 24% sequence homology with and on the crystal structure of the snail acetylcholine binding protein (AChBP). Docking of 5-HT3 antagonists granisetron, tropisetron, ondansetron, dolasetron ('setrons), and (+)-tubocurarine suggests an aromatic binding cleft behind a hydrophilic vestibule. Several intra- and interface interactions, H-bonds, and salt bridges stabilize the pentameric structure and the binding cleft. The planar rings of antagonists are intercalated between aromatic side-chains (W183-Y234, Y143-Y153). S227 donates H-bonds to the carbonyl groups of 'setrons. The tertiary ammonium ions interact with E236, N128 or E129, and/or W90 (cation-pi interaction). This offers a molecular explanation of the pharmacophore models of 5-HT3R antagonists. Docking artifacts suggest some ambiguities in the binding loops A and C of the 5-HT3AR models. Lower potencies of (+)-tubocurarine for human, and those of tropisetron for guinea pig 5-HT3ARs can be attributed to steric differences of I/S230 in the binding cleft and to distinct binding interactions with E229 and S227, respectively. Ligand binding interferes with crucial intra- and interface interactions along the binding cleft.
Collapse
Affiliation(s)
- Gábor Maksay
- Department of Molecular Pharmacology, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
37
|
Schreiter C, Hovius R, Costioli M, Pick H, Kellenberger S, Schild L, Vogel H. Characterization of the ligand-binding site of the serotonin 5-HT3 receptor: the role of glutamate residues 97, 224, AND 235. J Biol Chem 2003; 278:22709-16. [PMID: 12660235 DOI: 10.1074/jbc.m301801200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-gated ion channels of the Cys loop family are receptors for small amine-containing neurotransmitters. Charged amino acids are strongly conserved in the ligand-binding domain of these receptor proteins. To investigate the role of particular residues in ligand binding of the serotonin 5-HT3AS receptor (5-HT3R), glutamate amino acid residues at three different positions, Glu97, Glu224, and Glu235, in the extracellular N-terminal domain were substituted with aspartate and glutamine using site-directed mutagenesis. Wild type and mutant receptor proteins were expressed in HEK293 cells and analyzed by electrophysiology, radioligand binding, fluorescence measurements, and immunochemistry. A structural model of the ligand-binding domain of the 5-HT3R based on the acetylcholine binding protein revealed the position of the mutated amino acids. Our results demonstrate that mutations of Glu97, distant from the ligand-binding site, had little effect on the receptor, whereas mutations Glu224 and Glu235, close to the predicted binding site, are indeed important for ligand binding. Mutations E224Q, E224D, and E235Q decreased EC50 and Kd values 5-20-fold, whereas E235D was functionally expressed at a low level and had a more than 100-fold increased EC50 value. Comparison of the fluorescence properties of a fluorescein-labeled antagonist upon binding to wild type 5-HT3R and E235Q, allowed us to localize Glu235 within a distance of 1 nm around the ligand-binding site, as proposed by our model.
Collapse
Affiliation(s)
- Christoph Schreiter
- Laboratory of Physical Chemistry of Polymers and Membranes, Institute of Biomolecular Sciences, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
Kikuchi C, Suzuki H, Hiranuma T, Koyama M. New tetrahydrobenzindoles as potent and selective 5-HT(7) antagonists with increased In vitro metabolic stability. Bioorg Med Chem Lett 2003; 13:61-4. [PMID: 12467617 DOI: 10.1016/s0960-894x(02)00842-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chemical modifications of compound 1 (DR4004), a potent, selective antagonist of the 5-HT(7) receptor, were conducted with the aim of improving its metabolic stability. Halogenation of putative sites of oxidative metabolism afforded compounds 7-10, which retained high affinity and selectivity for the 5-HT(7) receptor, and showed increased in vitro metabolic stability. Compound 10 (DR4485) showed oral bioavailability, and should be a useful tool for evaluating the therapeutic potential of 5-HT(7) antagonists.
Collapse
Affiliation(s)
- Chika Kikuchi
- Pharmaceutical Research Center, Meiji Seika Kaisha Ltd., 760Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | |
Collapse
|
39
|
Broad LM, Felthouse C, Zwart R, McPhie GI, Pearson KH, Craig PJ, Wallace L, Broadmore RJ, Boot JR, Keenan M, Baker SR, Sher E. PSAB-OFP, a selective alpha 7 nicotinic receptor agonist, is also a potent agonist of the 5-HT3 receptor. Eur J Pharmacol 2002; 452:137-44. [PMID: 12354563 DOI: 10.1016/s0014-2999(02)02273-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
5-Hydroxytryptamine 3 (5-HT(3)) and alpha 7 nicotinic receptors share high sequence homology and pharmacological cross-reactivity. An assessment of the potential role of alpha 7 receptors in many neurophysiological processes, and hence their therapeutic value, requires the development of selective alpha 7 receptor agonists. We used a recently reported selective alpha 7 receptor agonist, (R)-(-)-5'Phenylspiro[1-azabicyclo[2.2.2] octane-3,2'-(3'H)furo[2,3-b]pyridine (PSAB-OFP) and confirmed its activity on human recombinant alpha 7 receptors. However, PSAB-OFP also displayed high affinity binding to 5-HT(3) receptors. To assess the functional activity of PSAB-OFP on 5-HT(3) receptors we studied recombinant human 5-HT(3) receptors expressed in Xenopus oocytes, as well as native mouse 5-HT(3) receptors expressed in N1E-115 neuroblastoma cells, using whole-cell patch clamp and Ca(2+) imaging. Our results show that PSAB-OFP is an equipotent, partial agonist of both alpha 7 and 5-HT(3) receptors. We conclude that it will be necessary to identify the determinant of this overlapping pharmacology in order to develop more selective alpha 7 receptor ligands.
Collapse
Affiliation(s)
- Lisa M Broad
- Eli Lilly and Company Limited, Lilly Research Centre, Erl Wood Manor, Sunninghill Road, Surrey, GU20 6PH, Windlesham, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Boyd GW, Low P, Dunlop JI, Robertson LA, Vardy A, Lambert JJ, Peters JA, Connolly CN. Assembly and cell surface expression of homomeric and heteromeric 5-HT3 receptors: the role of oligomerization and chaperone proteins. Mol Cell Neurosci 2002; 21:38-50. [PMID: 12359150 DOI: 10.1006/mcne.2002.1160] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of differing subunit combinations of 5-HT3 receptors to form functional cell surface receptors was analyzed by a variety of approaches. The results revealed that 5-HT3 receptor assembly occurred within the endoplasmic reticulum (ER) and involved the interaction with chaperone proteins. The 5-HT3A subunit could assemble into functional homomeric receptors that were expressed on the cell surface. In contrast, the 5-HT3B subunit did not exhibit 5-hydroxytryptamine binding or function, could not assemble, and was efficiently retained and degraded within the ER. However, upon the coexpression of the 5-HT3A subunit, 5-HT3B could be "rescued" from the ER and transported to the cell surface to form functional heteromeric receptors with distinct functional characteristics. In support of the existence of homomeric 5-HT3 receptors in vivo, recombinantly expressed 5-HT3A receptors were capable of clustered cell surface expression in cortical neurons.
Collapse
Affiliation(s)
- Gary W Boyd
- Department of Pharmacology and Neuroscience, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Venkataraman P, Joshi P, Venkatachalan SP, Muthalagi M, Parihar HS, Kirschbaum KS, Schulte MK. Functional group interactions of a 5-HT3R antagonist. BMC BIOCHEMISTRY 2002; 3:16. [PMID: 12079499 PMCID: PMC116678 DOI: 10.1186/1471-2091-3-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Accepted: 06/13/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND Lerisetron, a competitive serotonin type 3 receptor (5-HT3R) antagonist, contains five functional groups capable of interacting with amino acids in the 5-HT3R binding site. Site directed mutagenesis studies of the 5-HT3AR have revealed several amino acids that are thought to form part of the binding domain of this receptor. The specific functional groups on the ligand that interact with these amino acids are, however, unknown. Using synthetic analogs of lerisetron as molecular probes in combination with site directed mutagenesis, we have identified some of these interactions and have proposed a model of the lerisetron binding site. RESULTS Two analogs of lerisetron were synthesized to probe 5-HT3R functional group interactions with this compound. Analog 1 lacks the N1 benzyl group of lerisetron and analog 2 contains oxygen in place of the distal piperazine nitrogen. Both analogs show significantly decreased binding affinity to wildtype 5-HT3ASRs. Mutations at W89, R91, Y142 and Y152 produced significant decreases in binding compared to wildtype receptors. Binding affinities of analogs 1 and 2 were altered only by mutations at W89, and Y152. CONCLUSIONS Based on the data obtained for lerisetron and analogs 1 and 2, we have proposed a tentative model of the lerisetron binding pocket of the 5-HT3ASR. According to this model, The N-benzyl group interacts in a weak interaction with R91 while the benzimidazole group interacts with W89. Our data support an interaction of the distal amino nitrogen with Y142 and Y152.
Collapse
Affiliation(s)
- Padmavati Venkataraman
- Department of Neurobiology and Physiology Northwestern University Evanston, IL 60208-3520, USA
| | - Prasad Joshi
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Srinivasan P Venkatachalan
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Mani Muthalagi
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Harish S Parihar
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Karen S Kirschbaum
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Marvin K Schulte
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71209, USA
| |
Collapse
|
42
|
Venkataraman P, Venkatachalan SP, Joshi PR, Muthalagi M, Schulte MK. Identification of critical residues in loop E in the 5-HT3ASR binding site. BMC BIOCHEMISTRY 2002; 3:15. [PMID: 12079500 PMCID: PMC117120 DOI: 10.1186/1471-2091-3-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Accepted: 06/13/2002] [Indexed: 12/21/2022]
Abstract
BACKGROUND The serotonin type 3 receptor (5-HT3R) is a member of a superfamily of ligand gated ion channels. All members of this family share a large degree of sequence homology and presumably significant structural similarity. A large number of studies have explored the structure-function relationships of members of this family, particularly the nicotinic and GABA receptors. This information can be utilized to gain additional insights into specific structural and functional features of other receptors in this family. RESULTS Thirteen amino acids in the mouse 5-HT3ASR that correspond to the putative E binding loop of the nicotinic alpha7 receptor were chosen for mutagenesis. Due to the presence of a highly conserved glycine in this region, it has been suggested that this binding loop is comprised of a hairpin turn and may form a portion of the ligand-binding site in this ion channel family. Mutation of the conserved glycine (G147) to alanine eliminated binding of the 5-HT3R antagonist [3H]granisetron. Three tyrosine residues (Y140, Y142 and Y152) also significantly altered the binding of 5-HT3R ligands. Mutations in neighboring residues had little or no effect on binding of these ligands to the 5-HT3ASR. CONCLUSION Our data supports a role for the putative E-loop region of the 5-HT3R in the binding of 5-HT, mCPBG, d-tc and lerisetron. 5-HT and mCPBG interact with Y142, d-tc with Y140 and lerisetron with both Y142 and Y152. Our data also provides support for the hypothesis that this region of the receptor is present in a loop structure.
Collapse
Affiliation(s)
| | - Srinivasan P Venkatachalan
- College of Pharmacy, Department of Basic Pharmaceutical Sciences The University of Louisiana at Monroe 700 University Ave. Monroe, LA 71209, USA
| | - Prasad R Joshi
- College of Pharmacy, Department of Basic Pharmaceutical Sciences The University of Louisiana at Monroe 700 University Ave. Monroe, LA 71209, USA
| | - Mani Muthalagi
- College of Pharmacy, Department of Basic Pharmaceutical Sciences The University of Louisiana at Monroe 700 University Ave. Monroe, LA 71209, USA
| | - Marvin K Schulte
- College of Pharmacy, Department of Basic Pharmaceutical Sciences The University of Louisiana at Monroe 700 University Ave. Monroe, LA 71209, USA
| |
Collapse
|
43
|
Boileau AJ, Newell JG, Czajkowski C. GABA(A) receptor beta 2 Tyr97 and Leu99 line the GABA-binding site. Insights into mechanisms of agonist and antagonist actions. J Biol Chem 2002; 277:2931-7. [PMID: 11711541 DOI: 10.1074/jbc.m109334200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of residues that line neurotransmitter-binding sites and catalyze allosteric transitions that result in channel gating is crucial for understanding ligand-gated ion channel function. In this study, we used the substituted cysteine accessibility method and two-electrode voltage clamp to identify novel gamma-aminobutyric acid (GABA)-binding site residues and to elucidate the secondary structure of the Trp(92)-Asp(101) region of the beta(2) subunit. Each residue was mutated individually to cysteine and expressed with wild-type alpha(1) subunits in Xenopus oocytes. GABA-gated currents (I(GABA)) were measured before and after exposure to the sulfhydryl reagent, N-biotinylaminoethyl methanethiosulfonate (MTS). V93C, D95C, Y97C, and L99C are accessible to derivatization. This pattern of accessibility is consistent with beta(2)Val(93)-Leu(99) adopting a beta-strand conformation. Both GABA and SR95531 protect Y97C and L99C from modification, indicating that these two residues line the GABA-binding site. In D95C-containing receptors, application of MTS in the presence of SR95531 causes a greater effect on I(GABA) than MTS alone, suggesting that binding of a competitive antagonist can cause movements in the binding site. In addition, we present evidence that beta(2)L99C homomers form spontaneously open channels. Thus, mutation of a binding site residue can alter channel gating, which implies that Leu(99) may be important for coupling agonist binding to channel gating.
Collapse
Affiliation(s)
- Andrew J Boileau
- Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
44
|
Supplisson S, Chesnoy-Marchais D. Glycine receptor beta subunits play a critical role in potentiation of glycine responses by ICS-205,930. Mol Pharmacol 2000; 58:763-70. [PMID: 10999946 DOI: 10.1124/mol.58.4.763] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sensitivity of various types of recombinant glycine receptors (GlyRs) to ICS-205,930 was studied by fast perfusion in Xenopus laevis oocytes. This compound has previously been shown to potentiate glycine responses in rat spinal neurons between 10 nM and 1 microM, independently of its 5-HT(3) antagonist properties. In contrast, submicromolar concentrations of ICS-205,930 failed to affect responses of homomeric GlyRs formed from human alpha1 or alpha2 subunits, and micromolar concentrations (1-20 microM) acted differentially on the two types of homomeric receptors, potentiating the responses to glycine (10-20 microM) of alpha1 homomeric GlyRs and inhibiting the responses of alpha2 homomeric GlyRs. GlyRs beta subunits markedly influenced the modulations induced by ICS-205,930. In oocytes expressing alpha1/beta or alpha2/beta heteromeric GlyRs, low concentrations of ICS-205,930 (20 nM-1 microM) induced a potentiation of glycine responses that was counteracted by an inhibitory effect at higher concentrations. Thus, GlyRs beta subunits reduce by 2 orders of magnitude the concentration range potentiating alpha1-containing GlyRs and are required for potentiation of alpha2-containing GlyRs. These results reveal a new high-affinity potentiating site on GlyRs, to which beta subunits participate. The difference in ICS sensitivity between alpha1 and alpha2 GlyRs cannot be explained by their difference in TM2 segment and extracellular domains partly conserved between glycine and 5-HT(3) receptors are probably involved in the interaction of some 5-HT(3) antagonists with GlyRs.
Collapse
Affiliation(s)
- S Supplisson
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR-8544, Ecole Normale Supérieure, Paris, France
| | | |
Collapse
|
45
|
Chesnoy-Marchais D, Lévi S, Acher F. Glycinergic potentiation by some 5-HT(3) receptor antagonists: insight into selectivity. Eur J Pharmacol 2000; 402:205-13. [PMID: 10958886 DOI: 10.1016/s0014-2999(00)00531-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of various 5-HT(3) receptor antagonists to potentiate spinal glycine responses was investigated. Whereas (3-alpha-tropanyl)-1H-indole-3-carboxylate (ICS 205930), (3-alpha-tropanyl)-3,5-dichlorobenzoate (MDL 72222) and 1-methyl-N-(3-alpha-tropanyl)-1H-indazole-3-carboxamide (LY 278584) exhibited this property, even in identified motoneurones, several other chemically similar 5-HT(3) receptor antagonists did not. Introducing a methyl group on the nitrogen of the azabicyclo moiety of ICS 205930 greatly reduced the ability to potentiate glycine responses. Neither endo-1-methyl-N-(9-methyl-9-azabicyclo[3.3. 1]non-3-yl)-indazole-3-carboxamide (granisetron), differing from LY 278584 by an additional carbon in this cycle, nor 2beta-carbomethoxy-3beta-benzoyloxytropane (cocaine), 1,2,3, 9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)-methyl]-4H-carba zol-4-one (ondansetron) and (S)-4-amino-N-(1-azabicyclo[2.2. 2]oct-3-yl)-5-chloro-2-methoxy-benzamide ((S)-zacopride) could potentiate glycine responses. A pharmacophore model of the glycinergic potentiators was generated by molecular modelling using MDL 72222 as a template. According to this model, an aromatic ring, a carbonyl group and a tropane nitrogen atom are required for glycinergic potentiation, as previously described for 5-HT(3) receptor antagonism. However, the steric allowance at the glycine receptor site and the tridimensional arrangement of the pharmacophoric elements appear to be more restricted.
Collapse
Affiliation(s)
- D Chesnoy-Marchais
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, CNRS UMR-8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| | | | | |
Collapse
|
46
|
Mochizuki S, Watanabe T, Miyake A, Saito M, Furuichi K. Cloning, expression, and characterization of ferret 5-HT(3) receptor subunit. Eur J Pharmacol 2000; 399:97-106. [PMID: 10884508 DOI: 10.1016/s0014-2999(00)00371-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ferrets (Mustela putorius furo) are useful animals for determining anti-emetic activity via 5-HT(3) receptors in vivo. We isolated a cDNA encoding the 5-hydroxytryptamine (5-HT) type 3A receptor subunit (5-HT(3A)) from ferret colon, expressed it in a human embryonic kidney cell line and determined its pharmacological properties. The open reading frame of the isolated cDNA encoded a 483-amino acid protein, corresponding to the shorter splice variant of 5-HT(3A) receptors. Splice variants were no longer detected by reverse transcriptase-polymerase chain reaction. The ferret 5-HT(3A) receptor exhibits a high degree of amino acid sequence identity (>/=80%) to that of other species. Binding studies demonstrated the following rank order of potency for agonists: meta-chlorophenylbiguanide (mCPBG)>2-methyl-5-hydroxytryptamine (2-Me-5-HT)=5-HT, and for antagonists: ondansetron=tropisetron>(+)-tubocurarine>metoclopramide. Electrophysiological studies revealed that mCPBG was a partial agonist and 2-Me-5-HT was an almost fully effective agonist compared to 5-HT.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Biguanides/pharmacology
- Binding, Competitive
- Cell Line
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dose-Response Relationship, Drug
- Electrophysiology
- Ferrets
- Gene Expression
- Humans
- Imidazoles/metabolism
- Indoles/metabolism
- Kruppel-Like Factor 6
- Kruppel-Like Transcription Factors
- Membrane Potentials/drug effects
- Molecular Sequence Data
- Ondansetron/pharmacology
- Piperazines
- Proto-Oncogene Proteins
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Receptors, Serotonin/genetics
- Receptors, Serotonin, 5-HT3
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Serotonin/analogs & derivatives
- Serotonin/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Tissue Distribution
- Trans-Activators
- Tritium
- Tubocurarine/pharmacology
Collapse
Affiliation(s)
- S Mochizuki
- Molecular Medicine Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba, 305-8585, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
47
|
Arias HR. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem Int 2000; 36:595-645. [PMID: 10771117 DOI: 10.1016/s0197-0186(99)00154-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Identification of all residues involved in the recognition and binding of cholinergic ligands (e.g. agonists, competitive antagonists, and noncompetitive agonists) is a primary objective to understand which structural components are related to the physiological function of the nicotinic acetylcholine receptor (AChR). The picture for the localization of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are located mainly on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are identical, the observed high and low affinity for different ligands on the receptor is conditioned by the interaction of the alpha subunit with other non-alpha subunits. This molecular interaction takes place at the interface formed by the different subunits. For example, the high-affinity acetylcholine (ACh) binding site of the muscle-type AChR is located on the alphadelta subunit interface, whereas the low-affinity ACh binding site is located on the alphagamma subunit interface. Regarding homomeric AChRs (e.g. alpha7, alpha8, and alpha9), up to five binding sites may be located on the alphaalpha subunit interfaces. From the point of view of subunit arrangement, the gamma subunit is in between both alpha subunits and the delta subunit follows the alpha aligned in a clockwise manner from the gamma. Although some competitive antagonists such as lophotoxin and alpha-bungarotoxin bind to the same high- and low-affinity sites as ACh, other cholinergic drugs may bind with opposite specificity. For instance, the location of the high- and the low-affinity binding site for curare-related drugs as well as for agonists such as the alkaloid nicotine and the potent analgesic epibatidine (only when the AChR is in the desensitized state) is determined by the alphagamma and the alphadelta subunit interface, respectively. The case of alpha-conotoxins (alpha-CoTxs) is unique since each alpha-CoTx from different species is recognized by a specific AChR type. In addition, the specificity of alpha-CoTxs for each subunit interface is species-dependent. In general terms we may state that both alpha subunits carry the principal component for the agonist/competitive antagonist binding sites, whereas the non-alpha subunits bear the complementary component. Concerning homomeric AChRs, both the principal and the complementary component exist on the alpha subunit. The principal component on the muscle-type AChR involves three loops-forming binding domains (loops A-C). Loop A (from mouse sequence) is mainly formed by residue Y(93), loop B is molded by amino acids W(149), Y(152), and probably G(153), while loop C is shaped by residues Y(190), C(192), C(193), and Y(198). The complementary component corresponding to each non-alpha subunit probably contributes with at least four loops. More specifically, the loops at the gamma subunit are: loop D which is formed by residue K(34), loop E that is designed by W(55) and E(57), loop F which is built by a stretch of amino acids comprising L(109), S(111), C(115), I(116), and Y(117), and finally loop G that is shaped by F(172) and by the negatively-charged amino acids D(174) and E(183). The complementary component on the delta subunit, which corresponds to the high-affinity ACh binding site, is formed by homologous loops. Regarding alpha-neurotoxins, several snake and alpha-CoTxs bear specific residues that are energetically coupled with their corresponding pairs on the AChR binding site. The principal component for snake alpha-neurotoxins is located on the residue sequence alpha1W(184)-D(200), which includes loop C. In addition, amino acid sequence 55-74 from the alpha1 subunit (which includes loop E), and residues gammaL(119) (close to loop F) and gammaE(176) (close to loop G) at the low-affinity binding site, or deltaL(121) (close to the homologous region of loop G) at the high-affinity binding site, are i
Collapse
Affiliation(s)
- H R Arias
- Instituto de Matemática de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
48
|
Blanton MP, McCardy EA, Fryer JD, Liu M, Lukas RJ. 5-hydroxytryptamine interaction with the nicotinic acetylcholine receptor. Eur J Pharmacol 2000; 389:155-63. [PMID: 10688979 DOI: 10.1016/s0014-2999(99)00855-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study examines the interaction of the neurotransmitter 5-hydroxytryptamine (5-HT) with muscle-type nicotinic acetylcholine receptors. 5-HT inhibits the initial rate of [125I]alpha-bungarotoxin binding to Torpedo acetylcholine receptor membranes (IC(50)=8.5+/-0.32 mM) and [3H]5-HT can be photoincorporated into acetylcholine receptor subunits, with labeling of the alpha-subunit inhibitable by both agonists and competitive antagonists. Within the agonist-binding domain, [3H]5-HT photoincorporates into alphaTyr(190), alphaCys(192) and alphaCys(193). Functional studies using the human clonal cell line TE671/RD, show that 5-HT is a weak inhibitor (IC(50)=1.55+/-0.25 mM) of acetylcholine receptor activity. In this regard, agonist-response profiles in the absence and presence of 5-HT indicate a noncompetitive mode of inhibition. In addition, 5-HT displaces high affinity [3H]thienylcyclohexylpiperidine binding to the desensitized Torpedo acetylcholine receptor channel (IC(50)=1.61+/-0.07 mM). Collectively, these results indicate that 5-HT interacts weakly with the agonist recognition site and inhibits receptor function noncompetitively by binding to the acetylcholine receptor channel.
Collapse
Affiliation(s)
- M P Blanton
- Department of Pharmacology, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, USA.
| | | | | | | | | |
Collapse
|
49
|
Arias HR. Role of local anesthetics on both cholinergic and serotonergic ionotropic receptors. Neurosci Biobehav Rev 1999; 23:817-43. [PMID: 10541058 DOI: 10.1016/s0149-7634(99)00020-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A great body of experimental evidence indicates that the main target for the pharmacological action of local anesthetics (LAs) is the voltage-gated Na+ channel. However, the epidural and spinal anesthesia as well as the behavioral effects of LAs cannot be explained exclusively by its inhibitory effect on the voltage-gated Na+ channel. Thus, the involvement of other ion channel receptors has been suggested. Particularly, two members of the neurotransmitter-gated ion channel receptor superfamily, the nicotinic acetylcholine receptor (AChR) and the 5-hydroxytryptamine receptor (5-HT3R type). In this regard, the aim of this review is to explain and delineate the mechanism by which LAs inhibit both ionotropic receptors from peripheral and central nervous systems. Local anesthetics inhibit the ion channel activity of both muscle- and neuronal-type AChRs in a noncompetitive fashion. Additionally, LAs inhibit the 5-HT3R by competing with the serotonergic agonist binding sites. The noncompetitive inhibitory action of LAs on the AChR is ascribed to two possible blocking mechanisms. An open-channel-blocking mechanism where the drug binds to the open channel and/or an allosteric mechanism where LAs bind to closed channels. The open-channel-blocking mechanism is in accord with the existence of high-affinity LA binding sites located in the ion channel. The allosteric mechanism seems to be physiologically more relevant than the open-channel-blocking mechanism. The inhibitory property of LAs is also elicited by binding to several low-affinity sites positioned at the lipid-AChR interface. However, there is no clearcut evidence indicating whether these sites are located at either the annular or the nonannular lipid domain. Both tertiary (protonated) and quaternary LAs gain the interior of the channel through the hydrophilic pathway formed by the extracellular ion channel's mouth with the concomitant ion flux blockade. Nevertheless, an alternative mode of action is proposed for both deprotonated tertiary and permanently-uncharged LAs: they may pass from the lipid membrane core to the lumen of the ion channel through a hydrophobic pathway. Perhaps this hydrophobic pathway is structurally related to the nonannular lipid domain. Regarding the LA binding site location on the 5-HT3R, at least two amino acids have been involved. Glutamic acid at position 106 which is located in a residue sequence homologous to loop A from the principal component of the binding site for cholinergic agonists and competitive antagonists, and Trp67 which is positioned in a stretch of amino acids homologous to loop F from the complementary component of the cholinergic ligand binding site.
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Argentina.
| |
Collapse
|
50
|
Dubin AE, Huvar R, D'Andrea MR, Pyati J, Zhu JY, Joy KC, Wilson SJ, Galindo JE, Glass CA, Luo L, Jackson MR, Lovenberg TW, Erlander MG. The pharmacological and functional characteristics of the serotonin 5-HT(3A) receptor are specifically modified by a 5-HT(3B) receptor subunit. J Biol Chem 1999; 274:30799-810. [PMID: 10521471 DOI: 10.1074/jbc.274.43.30799] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While homomers containing 5-HT(3A) subunits form functional ligand-gated serotonin (5-HT) receptors in heterologous expression systems (Jackson, M. B., and Yakel, J. L. (1995) Annu. Rev. Physiol. 57, 447-468; Lambert, J. J., Peters, J. A., and Hope, A. G. (1995) in Ligand-Voltage-Gated Ion Channels (North, R., ed) pp. 177-211, CRC Press, Inc., Boca Raton, FL), it has been proposed that native receptors may exist as heteromers (Fletcher, S., and Barnes, N. M. (1998) Trends Pharmacol. Sci. 19, 212-215). We report the cloning of a subunit 5-HT(3B) with approximately 44% amino acid identity to 5-HT(3A) that specifically modified 5-HT(3A) receptor kinetics, voltage dependence, and pharmacology. Co-expression of 5-HT(3B) with 5-HT(3A) modified the duration of 5-HT(3) receptor agonist-induced responses, linearized the current-voltage relationship, increased agonist and antagonist affinity, and reduced cooperativity between subunits. Reverse transcriptase-polymerase chain reaction in situ hybridization revealed co-localization of both 5-HT(3B) and 5-HT(3A) in a population of neurons in the amygdala, telencephalon, and entorhinal cortex. Furthermore, 5-HT(3A) and 5-HT(3B) mRNAs were expressed in spleen and intestine. Our data suggest that 5-HT(3B) might contribute to tissue-specific functional changes in 5-HT(3)-mediated signaling and/or modulation.
Collapse
Affiliation(s)
- A E Dubin
- R. W. Johnson Pharmaceutical Research Institute, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|