Vincken JP, Heng L, de Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom.
PHYTOCHEMISTRY 2007;
68:275-97. [PMID:
17141815 DOI:
10.1016/j.phytochem.2006.10.008]
[Citation(s) in RCA: 389] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 09/23/2006] [Accepted: 10/10/2006] [Indexed: 05/12/2023]
Abstract
Saponins are a structurally diverse class of compounds occurring in many plant species, which are characterized by a skeleton derived of the 30-carbon precursor oxidosqualene to which glycosyl residues are attached. Traditionally, they are subdivided into triterpenoid and steroid glycosides, or into triterpenoid, spirostanol, and furostanol saponins. In this study, the structures of saponins are reviewed and classified based on their carbon skeletons, the formation of which follows the main pathways for the biosynthesis of triterpenes and steroids. In this way, 11 main classes of saponins were distinguished: dammaranes, tirucallanes, lupanes, hopanes, oleananes, taraxasteranes, ursanes, cycloartanes, lanostanes, cucurbitanes, and steroids. The dammaranes, lupanes, hopanes, oleananes, ursanes, and steroids are further divided into 16 subclasses, because their carbon skeletons are subjected to fragmentation, homologation, and degradation reactions. With this systematic classification, the relationship between the type of skeleton and the plant origin was investigated. Up to five main classes of skeletons could exist within one plant order, but the distribution of skeletons in the plant kingdom did not seem to be order- or subclass-specific. The oleanane skeleton was the most common skeleton and is present in most orders of the plant kingdom. For oleanane type saponins, the kind of substituents (e.g. -OH, =O, monosaccharide residues, etc.) and their position of attachment to the skeleton were reviewed. Carbohydrate chains of 18 monosaccharide residues can be attached to the oleanane skeleton, most commonly at the C3 and/or C17 atom. The kind and positions of the substituents did not seem to be plant order-specific.
Collapse