1
|
Cosse RL, van der Most T, Voet VSD, Folkersma R, Loos K. Improving the Long-Term Mechanical Properties of Thermoplastic Short Natural Fiber Compounds by Using Alternative Matrices. Biomimetics (Basel) 2025; 10:46. [PMID: 39851762 PMCID: PMC11761199 DOI: 10.3390/biomimetics10010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
Wood plastic composites (WPCs) offer a means to reduce the carbon footprint by incorporating natural fibers to enhance the mechanical properties. However, there is limited information on the mechanical properties of these materials under hostile conditions. This study evaluated composites of polypropylene (PP), polystyrene (PS), and polylactic acid (PLA) processed via extrusion and injection molding. Tests were conducted on tensile and flexural strength and modulus, heat deflection temperature (HDT), and creep analysis under varying relative humidity conditions (10% and 90%) and water immersion, followed by freeze-thaw cycles. The addition of fibers generally improved the mechanical properties but increased water absorption. HDT and creep were dependent on the crystallinity of the composites. PLA and PS demonstrated a superior overall performance, except for their impact properties, where PP was slightly better than PLA.
Collapse
Affiliation(s)
- Renato Lemos Cosse
- Circular Plastics, Academy Tech & Design, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands; (R.L.C.); (T.v.d.M.); (V.S.D.V.)
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Tobias van der Most
- Circular Plastics, Academy Tech & Design, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands; (R.L.C.); (T.v.d.M.); (V.S.D.V.)
| | - Vincent S. D. Voet
- Circular Plastics, Academy Tech & Design, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands; (R.L.C.); (T.v.d.M.); (V.S.D.V.)
| | - Rudy Folkersma
- Circular Plastics, Academy Tech & Design, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands; (R.L.C.); (T.v.d.M.); (V.S.D.V.)
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Bio-based polyamide nanocomposites of nanoclay, carbon nanotubes and graphene: a review. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
3
|
Mane SS, Joshi GM, Shirsat MD, Kaleemulla S. Development of soft polymer blend for copper ion detection by electrochemical route. J Appl Polym Sci 2023. [DOI: 10.1002/app.53691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Savita S. Mane
- Department of Engineering Physics and Engineering Materials Institute of Chemical Technology Mumbai Marathwada Jalna Campus Jalna India
| | - Girish M. Joshi
- Department of Engineering Physics and Engineering Materials Institute of Chemical Technology Mumbai Marathwada Jalna Campus Jalna India
| | - Mahendra D. Shirsat
- RUSA‐ Center for Advanced Sensor Technology Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | | |
Collapse
|
4
|
Alangari AM, Al Juhaiman LA, Mekhamer WK. Enhanced Coating Protection of C-Steel Using Polystyrene Clay Nanocomposite Impregnated with Inhibitors. Polymers (Basel) 2023; 15:polym15020372. [PMID: 36679250 PMCID: PMC9860803 DOI: 10.3390/polym15020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Polymer-Clay Nanocomposite (PCN) coatings were prepared using the solution intercalation method. The raw Khulays clay was treated with NaCl to produce sodium clay (NaC). Thereafter, Cetyl Pyridinium Chloride (CPC) was used to convert NaC into the organic clay form (OC). PCN was prepared by adding polystyrene as the matrix to different weights of OC to prepare 1 wt.% and 3 wt.% PCN. To enhance the coating protection of C-steel in NaCl solution, PCN coatings were added to microcapsules loaded with some corrosion inhibitors PCN (MC). The microcapsules are prepared by the encapsulation of rare-earth metal Ce+3 ions and Isobutyl silanol into polystyrene via the Double Emulsion Solvent Evaporation (DESE) technique. Characterization techniques such as FTIR, X-Ray Diffraction (XRD), and Transmission Electron Microscopy (TEM) were employed. FTIR confirmed the success of the preparation, while XRD and TEM revealed an intercalated structure of 1 wt.% PCN while 3 wt.% PCN has a fully exfoliated structure. Electrochemical Impedance Spectroscopy (EIS), Electrochemical Frequency Modulation (EFM), and Potentiodynamic Polarization showed an enhanced protection efficiency of PCN (MC) coatings. The results demonstrated that the corrosion resistance (RCorr) of 3% PCN (MC) coating was higher than all the formulations. These PCN (MC) coatings may provide corrosion protection for C-steel pipes in many industrial applications.
Collapse
Affiliation(s)
| | - Layla A. Al Juhaiman
- Chemistry Department, King Saud University, Riyadh 12372, Saudi Arabia
- Correspondence:
| | - Waffa K. Mekhamer
- Chemistry Department, King Saud University, Riyadh 12372, Saudi Arabia
- Department of Material Science, Institute of Graduate Studies, Alexandria University, Alexandria 5422004, Egypt
| |
Collapse
|
5
|
Lee SJ, Choi MY, Kwac LK, Kim HG, Chang JH. Comparison of Properties of Colorless and Transparent Polyimide Nanocomposites Containing Chemically Modified Nanofillers: Functionalized-Graphene and Organoclay. Polymers (Basel) 2022; 14:polym14122469. [PMID: 35746045 PMCID: PMC9228794 DOI: 10.3390/polym14122469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Poly(amic acid) (PAA) was synthesized from dianhydride 4,4-(4,4-isopropylidenediphenoxy)bis(phthalic anhydride) and diamine bis [4-(3-aminophenoxy) phenyl] sulfone. Colorless and transparent polyimide (CPI) hybrid films were synthesized through thermal imidization after dispersing nanofillers using an intercalation method in a PAA solution. C16-GS and C16-MMT, in which hexadecylamine (C16) was substituted on graphene sheet (GS) and montmorillonite (MMT), respectively, were used as nanofillers to reinforce the CPI hybrid films. These two nanofillers were admixed in varying loadings of 0.25 to 1.00 wt%, and the morphology, thermal properties, and optical transparency of the hybrid films were investigated and compared. The results suggest that the thermal properties of the CPI hybrid films can be improved by adding only a small amount of nanofiller. Transmission electron microscopy results of the CPI hybrid film containing two types of fillers suggested that the fillers were well dispersed in the nano-size in the matrix polymer; however, some of the fillers were observed as agglomerated particles above the critical concentration of 0.50 wt%.
Collapse
Affiliation(s)
- Seon Ju Lee
- Graduate School of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Korea; (S.J.L.); (M.Y.C.); (L.K.K.); (H.G.K.)
| | - Moon Young Choi
- Graduate School of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Korea; (S.J.L.); (M.Y.C.); (L.K.K.); (H.G.K.)
| | - Lee Ku Kwac
- Graduate School of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Korea; (S.J.L.); (M.Y.C.); (L.K.K.); (H.G.K.)
- Institute of Carbon Technology, Jeonju University, Jeonju 55069, Korea
| | - Hong Gun Kim
- Graduate School of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Korea; (S.J.L.); (M.Y.C.); (L.K.K.); (H.G.K.)
- Institute of Carbon Technology, Jeonju University, Jeonju 55069, Korea
| | - Jin-Hae Chang
- Institute of Carbon Technology, Jeonju University, Jeonju 55069, Korea
- Correspondence:
| |
Collapse
|
6
|
Siddique S, Novak A, Guliyev E, Yates K, Leung PS, Njuguna J. Oil-Based Mud Waste as a Filler Material in LDPE Composites: Evaluation of Mechanical Properties. Polymers (Basel) 2022; 14:polym14071455. [PMID: 35406328 PMCID: PMC9003121 DOI: 10.3390/polym14071455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Traditionally, the drilling waste generated in oil and gas exploration operations, including spent drilling fluid, is disposed of or treated by several methods, including burial pits, landfill sites and various thermal treatments. This study investigates drilling waste valorisation and its use as filler in polymer composites. The effect of the poor particle/polymer interfacial adhesion bonding of the suspended clay in oil-based mud (OBM) slurry and the LDPE matrix is believed to be the main reason behind the poor thermo-mechanical and mechanical properties of low-density polyethylene (LDPE)/OBM slurry nanocomposites. The thermo-mechanical and mechanical performances of LDPE)/OBM slurry nanocomposites without the clay surface treatment and without using compatibilizer are evaluated and discussed. In our previous studies, it has been observed that adding thermally treated reclaimed clay from OBM waste in powder form improves both the thermal and mechanical properties of LDPE nanocomposites. However, incorporating OBM clay in slurry form in the LDPE matrix can decrease the thermal stability remarkably, which was reported recently, and thereby has increased the interest to identify the mechanical response of the composite material after adding this filler. The results show the severe deterioration of the tensile and flexural properties of the LDPE/OBM slurry composites compared to those properties of the LDPE/MMT nanocomposites in this study. It is hypothesised, based on the observation of the different test results in this study, that this deterioration in the mechanical properties of the materials was associated with the poor Van der Waals force between the polymer molecules/clay platelets and the applied force. The decohesion between the matrix and OBM slurry nanoparticles under stress conditions generated stress concentration through the void area between the matrix and nanoparticles, resulting in sample failure. Interfacial adhesion bonding appears to be a key factor influencing the mechanical properties of the manufactured nanocomposite materials.
Collapse
Affiliation(s)
- Shohel Siddique
- Advanced Materials Research Group, School of Engineering, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK; (S.S.); (A.N.); (E.G.)
| | - Adam Novak
- Advanced Materials Research Group, School of Engineering, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK; (S.S.); (A.N.); (E.G.)
| | - Emin Guliyev
- Advanced Materials Research Group, School of Engineering, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK; (S.S.); (A.N.); (E.G.)
| | - Kyari Yates
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK;
| | - Pak Sing Leung
- Department of Mechanical and Construction Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, UK;
| | - James Njuguna
- Advanced Materials Research Group, School of Engineering, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK; (S.S.); (A.N.); (E.G.)
- National Subsea Centre, 3 International Ave, Dyce, Aberdeen AB21 0BH, UK
- Correspondence: ; Tel.: +44-(0)-1224262304
| |
Collapse
|
7
|
Nassar N, Utracki LA, Kamal MR. Melt Intercalation in Montmorillonite/Polystyrene Nanocomposites. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2005-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Atactic polystyrene (PS) was used to study the effect of flow field (shear and/or elongational) on the intercalation of polymer/clay nanocomposites (PNC). Three grades of (PS), with different molecular weights, were compounded with an ammonium-modified montmorillonite (Cloisite 10A) in a twin-screw extruder (TSE). The compounds were subsequently fed to a single screw extruder, fitted with one of three specially designed torpedo-attachments. The attachments were designed to provide combinations of different levels of shear and elongational deformations. The resins, TSE compounds, and final PNC’s were characterized for the degree of intercalation, degradation, rheological behavior, and mechanical properties. The data showed that the thermal decomposition of the quaternary ammonium intercalant caused severe damage to both PNC components: a collapse of the organoclay interlayer spacing, and the thermo-oxidative degradation of PS. In spite of these detrimental effects, the attachment employing combined elongational and shear flow resulted in generally larger gallery spacing and more improvement of the mechanical properties than the other two attachments.
Collapse
Affiliation(s)
- N. Nassar
- Chemical Engineering Department, McGill University , Montreal , QC , Canada
| | - L. A. Utracki
- National Research Council Canada, Industrial Materials Institute , Boucherville , QC , Canada
| | - M. R. Kamal
- Chemical Engineering Department, McGill University , Montreal , QC , Canada
| |
Collapse
|
8
|
Calle Luzuriaga M, Ávila EE, Viloria DA. Porous frameworks from Ecuadorian clays. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This research provides a literature review on several topics as a foundation to comprehend porous materials, their structure, and behavior to explore how they can be derived from clays and nanoclays. In this case, considering the several minerals present in some Ecuadorian clays, which are a potential starting material for the synthesis of porous frameworks, they constitute a solid source of metal atoms such as Silicon or Aluminum. This research presents the evaluation and characterization via XRD and AAS of clay samples collected in the southeast of Ecuador in the provinces of Azuay, Morona Santiago and Zamora Chinchipe, which present diversified soil mineralogy with many chemical and crystallographic features for suitable precursors in nanomaterials design.
Collapse
Affiliation(s)
- María Calle Luzuriaga
- Universidad de Tecnología Experimental Yachay Tech, Escuela de Ciencias Químicas e Ingenieria, Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP)
| | - Edward E. Ávila
- Universidad de Tecnología Experimental Yachay Tech, Escuela de Ciencias Químicas e Ingenieria, Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP)
| | - Dario Alfredo Viloria
- Universidad de Tecnología Experimental Yachay Tech, Escuela de Ciencias Químicas e Ingenieria, Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP)
| |
Collapse
|
9
|
An Investigative Study on the Progress of Nanoclay-Reinforced Polymers: Preparation, Properties, and Applications: A Review. Polymers (Basel) 2021; 13:polym13244401. [PMID: 34960959 PMCID: PMC8704753 DOI: 10.3390/polym13244401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nanoclay-reinforced polymers have attracted considerable universal attention in academic and industrial research due to their outstanding properties and their ever-expanding utilization in diversified applications. In that regard, in the present review, the structure of layered silicate clay, as well as procedures for clay material modification, are outlined. We also discuss the general characterization techniques, synthesis methods, and various properties of polymer-clay nanocomposites (PCNs), and some examples likewise are depicted from the scientific literature. The study's primary goal is to provide an up-to-date survey of polymer-clay nanocomposites and their specific applications in industries such as automotive, flame-retardant, and biomedical applications, coating, and packaging.
Collapse
|
10
|
Shang Z, Yan Y, Jiang J, Wang J, Yin X. Facile fabrication of silk fibroin/graphene oxide composite films and real‐time morphological observation in stretching. J Appl Polym Sci 2021. [DOI: 10.1002/app.51403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zihan Shang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Yinan Yan
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
- Nanobiological Medicine Laboratory National Engineering Research Centre for Nanotechnology Shanghai China
| | - Jie Jiang
- Nanobiological Medicine Laboratory National Engineering Research Centre for Nanotechnology Shanghai China
| | - Jielin Wang
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| |
Collapse
|
11
|
Jung BN, Jung HW, Kang DH, Kim GH, Shim JK. A Study on the Oxygen Permeability Behavior of Nanoclay in a Polypropylene/Nanoclay Nanocomposite by Biaxial Stretching. Polymers (Basel) 2021; 13:2760. [PMID: 34451298 PMCID: PMC8399966 DOI: 10.3390/polym13162760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/17/2023] Open
Abstract
Polypropylene (PP) has poor oxygen barrier properties, therefore it is manufactured in a multi-layer structure with other plastics and metals, and has been widely used as a packaging material in various industries from food and beverage to pharmaceuticals. However, multi-layered packaging materials are generally low in recyclability and cause serious environmental pollution, therefore we have faced the challenge of improving the oxygen barrier performance as a uni-material. In this work, PP/nanoclay nanocomposites were prepared at nanoclay contents ranging from 0.8 to 6.4 wt% by the biaxial stretching method, performed through a sequential stretching method. It was observed that, as the draw ratio increased, the behavior of the agglomerates of the nanoclay located in the PP matrix changed and the nanoclay was dispersed along the second stretching direction. Oxygen barrier properties of PP/nanoclay nanocomposites are clearly improved due to this dispersion effect. As the biaxial stretching ratio and the content of nanoclay increased, the oxygen permeability value of the PP/nanoclay nanocomposite decreased to 43.5 cc·mm/m2·day·atm, which was reduced by about 64% compared to PP. Moreover, even when the relative humidity was increased from 0% to 90%, the oxygen permeability values remained almost the same without quality deterioration. Besides these properties, we also found that the mechanical and thermal properties were also improved. The biaxially-stretched PP/nanoclay nanocomposite fabricated in this study is a potential candidate for the replacement of the multi-layered packaging material used in the packaging fields.
Collapse
Affiliation(s)
- Bich-Nam Jung
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.-N.J.); (D.-H.K.); (G.-H.K.)
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea;
| | - Hyun-Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea;
| | - Dong-Ho Kang
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.-N.J.); (D.-H.K.); (G.-H.K.)
| | - Gi-Hong Kim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.-N.J.); (D.-H.K.); (G.-H.K.)
| | - Jin-Kie Shim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.-N.J.); (D.-H.K.); (G.-H.K.)
| |
Collapse
|
12
|
Jung BN, Jung HW, Kang D, Kim GH, Shim JK. Synergistic Effect of Cellulose Nanofiber and Nanoclay as Distributed Phase in a Polypropylene Based Nanocomposite System. Polymers (Basel) 2020; 12:E2399. [PMID: 33081046 PMCID: PMC7603177 DOI: 10.3390/polym12102399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
Since the plastic-based multilayer films applied to food packaging are not recyclable, it is necessary to develop easily recyclable single materials. Herein, polypropylene (PP)-based cellulose nanofiber (CNF)/nanoclay nanocomposites were prepared by melt-mixing using a fixed CNF content of 1 wt %, while the nanoclay content varied from 1 to 5 wt %. The optimum nanoclay content in the PP matrix was found to be 3 wt % (PCN3), while they exhibited synergistic effects as a nucleating agent. PCN3 exhibited the best mechanical properties, and the tensile and flexural moduli were improved by 51% and 26%, respectively, compared to PP. In addition, the oxygen permeability was reduced by 28%, while maintaining the excellent water vapor permeability of PP. The improvement in the mechanical and barrier properties of PP through the production of PP/CNF/nanoclay hybrid nanocomposites suggested their possible application in the field of food packaging.
Collapse
Affiliation(s)
- Bich Nam Jung
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.N.J.); (D.K.); (G.H.K.)
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea;
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea;
| | - DongHo Kang
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.N.J.); (D.K.); (G.H.K.)
| | - Gi Hong Kim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.N.J.); (D.K.); (G.H.K.)
| | - Jin Kie Shim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (B.N.J.); (D.K.); (G.H.K.)
| |
Collapse
|
13
|
Yinmin Zhang, Zhang A, Kang L, Zhang Y. Mechanical Properties and Thermal Stability of Kaolinite/Emulsion Polymerization Styrene Butadiene Rubber Composite Prepared by Latex Blending Method. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20040112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tan J, Bai J, Yan Z. An Aligned Patterned Biomimetic Elastic Membrane Has a Potential as Vascular Tissue Engineering Material. Front Bioeng Biotechnol 2020; 8:704. [PMID: 32695769 PMCID: PMC7338373 DOI: 10.3389/fbioe.2020.00704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide, with an annual mortality incidence predicted to rise to 23.3 million worldwide by 2030. Synthetic vascular grafts as an alternative to autologous vessels have shown satisfactory long-term results for replacement of large- and medium-diameter arteries, but have poor patency rates when applied to small-diameter vessels. Nanoparticles with low toxicity, contrasting agent properties, tailorable characteristics, targeted/stimuli- response delivery potential, and precise control over behavior (via external stimuli such as magnetic fields) have made possible their use for improving engineered tissues. Poly (styrene-block-butadiene-block-styrene) (SBS) is a kind of widely used thermoplastic elastomer with good mechanical properties and biocompatibility. Here, we synthesized anthracene-grafted SBS (SBS-An) by the method for the fabrication of a biomimetic elastic membrane with a switchable Janus structure, and formed the patterns on the surface of SBS-An under ultraviolet (UV) light irradiation. By irradiating the SBS-An film at different times (0, 10, 20, 30, 60, and 120 s), we obtained six well-ordered surface-patterned biomimetic elastic film with SBS-An at different heights in the thickness direction and the same distances of intervals (named sample-0, 10, 20, 30, 60, and 120 s). The structural effects of the SBS-An films on the adhesion and proliferation of human umbilical vein endothelial cells (HUVECs) were studied, and the possible mechanism was explored. When the HUVECs were cultured on the SBS-An films at different heights in the thickness direction, the sample-30 s with approximately 4 μm height significantly promoted adhesion of the HUVECs at the early stage and proliferation during the culture period compared with the samples of the lower (0, 10, and 20 s) and higher (60 and 120 s) heights. Consistent with this, the sample 30 s showed a higher stimulatory effect on the proliferation- and angiogenesis-related genes. These results suggest that SBS-An with appropriate height could efficiently control bioactivities of the biomimetic elastic membrane and might have great potential in vascular tissue engineering application.
Collapse
Affiliation(s)
- Juanjuan Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composite Materials and Shanghai Key Lab of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Jing Bai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composite Materials and Shanghai Key Lab of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Yan
- Central Laboratory, Southern Medical University affiliated Fengxian Hospital, Shanghai, China
| |
Collapse
|
15
|
Polyethylene and Polyvinyl Chloride-Blended Polystyrene Nanofibrous Sorbents and Their Application in the Removal of Various Oil Spills. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/4097520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polymers provide a wide range of properties, and these properties can be greatly enhanced and modified through polymer blending. Polymer blending combines the properties and advantages of their original polymers. This paper showcases hydrophobic polymers prepared through polymer blending; these blends are characterized and evaluated for their efficiency in the removal of crude oil spills from aqueous media. The application of these blends holds a great deal of importance in preserving the environment and the recovery of lost oil in spills. The blends are produced using polystyrene (PS) as the matrix polymer and individually blending poly(vinyl chloride) (PVC) and polyethylene (PE) with the PS consisting of proportions of 5–20 wt.% each. The blends are then electrospun into bead-free microfibers with interconnected porosities as shown by their respective scanned electron micrographs. All fibrous sorbents showed a high affinity towards the removal of crude oil, motor oil, and diesel spills. The highly viscous motor spill showed a different pattern of sorption onto fibers than that of crude oil and diesel spills. Upon comparing all the studied electrospun fibers to commercially available polypropylene fibrous sorbents, results show that the sorption efficiency of the electrospun fibers is superior. Most notably, both PS-PE5 and PS-PVC5 fibers showed to be highly more effective than commercially available polypropylene (PP) sorbents towards all types of oil spills.
Collapse
|
16
|
Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food Chem 2020; 310:125915. [DOI: 10.1016/j.foodchem.2019.125915] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
|
17
|
Chen S, Xie J, Yang Z. Effect of reactive montmorillonite with amino on the properties of polyimide/montmorillonite nanocomposite. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02767-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Insertion of Iron Decorated Organic-Inorganic Cage-Like Polyhedral Oligomeric Silsesquioxanes between Clay Platelets by Langmuir Schaefer Deposition. MATERIALS 2020; 13:ma13010216. [PMID: 31947932 PMCID: PMC6982069 DOI: 10.3390/ma13010216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 11/17/2022]
Abstract
Tuning the architecture of multilayer nanostructures by exploiting the properties of their constituents is a versatile way to develop multifunctional films. Herein, we report a bottom-up approach for the fabrication of highly ordered hybrid films consisting of dimethyldioctadecylammonium (DODA), iron decorated polyhedral oligomeric silsesquioxanes (POSS), and montmorillonite clay platelets. Clay platelets provided the template where Fe/POSS moieties were grafted by the use of the surfactant. Driven by the iron ions present, DODA adopted a staggered arrangement, which is essential to realize the controllable layer-by-layer growth of the film. The elemental composition of the film was studied by X-ray photoelectron spectroscopy and X-ray reflectivity confirmed the existence of smooth interfaces between the different layers.
Collapse
|
19
|
Khan SA, Siddiqui MF, Khan TA. Ultrasonic-assisted synthesis of polyacrylamide/bentonite hydrogel nanocomposite for the sequestration of lead and cadmium from aqueous phase: Equilibrium, kinetics and thermodynamic studies. ULTRASONICS SONOCHEMISTRY 2020; 60:104761. [PMID: 31499323 DOI: 10.1016/j.ultsonch.2019.104761] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Clay-hydrogel nanocomposites are suitable material for mitigating the pollution/environmental impact because of their high adsorption capacity. In this study, the synthesis of polyacrylamide/bentonite hydrogel nanocomposite was assisted by ultrasound through successful incorporation of nanobentonite as filler and cross-linker into polyacrylamide framework. The adsorbent was characterized by FTIR, XRD, BET, SEM-EDX, and TEM in order to observe structural changes and sorption interactions. The effect of adsorbent dose, contact time, initial metal ion concentration and pH on the sequestration of Pb2+ and Cd2+ was analyzed. The adsorbent removed more than 95% Pb2+ and Cd2+ within first 20 min, which corresponds to relatively high pseudo-first order rate constant, k1 (0.240 for Pb2+ and 0.253 1/min for Cd2+) and pseudo-second order rate constant, k2 (0.031 for Pb2+ and 0.033 g/mg/min for Cd2+). The isotherm and kinetics modeling data were best described by Freundlich isotherm over the entire concentration range and pseudo-second order rate equation, respectively. The thermodynamic studies implied spontaneous and endothermic nature of adsorption process. The maximum adsorption capacity (138.33 for Pb2+ and 200.41 mg/g for Cd2+) determined using Langmuir model along with a good regeneration potential depicts that polyacrylamide/bentonite hydrogel nanocomposite could be used effectively for Pb2+ and Cd2+ uptake from aqueous solution.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | | | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India.
| |
Collapse
|
20
|
Snigdha S, Kalarikkal N, Thomas S, Radhakrishnan EK. Engineered Phyllosilicate Clay-Based Antimicrobial Surfaces. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2020:95-108. [DOI: 10.1007/978-981-15-4630-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Buruga K, Song H, Shang J, Bolan N, Jagannathan TK, Kim KH. A review on functional polymer-clay based nanocomposite membranes for treatment of water. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120584. [PMID: 31419722 DOI: 10.1016/j.jhazmat.2019.04.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/12/2019] [Accepted: 04/20/2019] [Indexed: 06/10/2023]
Abstract
Water is essential for every living being. Increasing population, mismanagement of water sources, urbanization, industrialization, globalization, and global warming have all contributed to the scarcity of fresh water sources and the growing demand of such resources. Securing and allocating sufficient water resources has thus become one of the current major global challenges. Membrane technology has dominated the field of water purification due to its ease of usage and fabrication with high efficiency. The development of novel membrane materials can hence play a central role in advancing the field of membrane technology. It is noted that polymer-clay nanocomposites have been used widely for treatment of waste water. Nonetheless, not much efforts have been put to functionalize their membranes to be selective for specific targets. This review was organized to offer better insights into various types of functional polymer and clays composite membranes developed for efficient treatment and purification of water/wastewater. Our discussion was extended further to evaluate the efficacy of membrane techniques employed in the water industry against major chemical (e.g., heavy metal, dye, and phenol) and biological contaminants (e.g., biofouling).
Collapse
Affiliation(s)
- Kezia Buruga
- Department of Chemical Engineering, National Institute of Technology Karnataka Surathkal 575025, India
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nanthi Bolan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
22
|
Sebri NJM, Abdul Latip AF, Adnan R, Hussin MH, Kobayashi T. Enhancement of poly(vinyl alcohol) using delaminated layered double hydroxide for the formulation of mechanically strong nanocomposite hydrogel. J Appl Polym Sci 2019. [DOI: 10.1002/app.48637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nor Jannah Mohd Sebri
- School of Chemical SciencesUniversiti Sains Malaysia, Pusat Pengajian Sains Kimia, U, 11800 USM Pulau Pinang, Malaysia
| | - Ahmad Faiz Abdul Latip
- School of Chemical SciencesUniversiti Sains Malaysia, Pusat Pengajian Sains Kimia, U, 11800 USM Pulau Pinang, Malaysia
| | - Rohana Adnan
- School of Chemical SciencesUniversiti Sains Malaysia, Pusat Pengajian Sains Kimia, U, 11800 USM Pulau Pinang, Malaysia
| | - Mohd Hazwan Hussin
- School of Chemical SciencesUniversiti Sains Malaysia, Pusat Pengajian Sains Kimia, U, 11800 USM Pulau Pinang, Malaysia
| | - Takaomi Kobayashi
- Department of Materials Science and TechnologyNagaoka University of Technology, 1603–1 Kamitomioka Nagaoka 940‐2188 Japan
| |
Collapse
|
23
|
Kusmono, Abdurrahim I. Water sorption, antimicrobial activity, and thermal and mechanical properties of chitosan/clay/glycerol nanocomposite films. Heliyon 2019; 5:e02342. [PMID: 31485529 PMCID: PMC6717162 DOI: 10.1016/j.heliyon.2019.e02342] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/15/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023] Open
Abstract
Chitosan-based nanocomposites films with different clay loadings (0, 5, 10, 15 wt %), with (10, 20, 30 wt%) and without glycerol as plasticizer, were prepared by solution casting. The effects of the addition of clay and glycerol on the thermal, mechanical, water absorption, and antimicrobial activity properties of chitosan/clay nanocomposites films were investigated in this study. XRD results indicated that the intercalated structure was obtained in the chitosan/clay nanocomposites with and without glycerol. The thermal stability of the chitosan was significantly enhanced by the presence of clay and glycerol. It was found that the addition of clay into the chitosan improved significantly the tensile strength and tensile modulus. The highest values in strength and stiffness were achieved for the chitosal/clay nanocomposites with 5 wt% of clay and 20 wt% of glycerol. The addition of both clay and glycerol reduced drastically the ductility of chitosan. The best water resistance was obtained for the chitosan film containing 5 wt% of clay and 20 wt% of glycerol. The chitosan/clay nanocomposite film had potential for application of alternative food packing materials.
Collapse
Affiliation(s)
- Kusmono
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Yogyakarta, Post Code 55281, Indonesia
| | - I Abdurrahim
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Yogyakarta, Post Code 55281, Indonesia
| |
Collapse
|
24
|
Xing L, Ke Y, Hu X, Zhao Y, Peng F, Bai C, Lin Y. Preparation and properties of amphoteric polyacrylamide/modified montmorillonite nanocomposites and its drag reduction performance. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Zare Y, Rhee KY. Prediction of loss factor (tan δ) for polymer nanocomposites as a function of yield tress, relaxation time and the width of transition region between Newtonian and power-law behaviors. J Mech Behav Biomed Mater 2019; 96:136-143. [DOI: 10.1016/j.jmbbm.2019.04.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
|
26
|
Arya A, Sharma AL. Investigation on enhancement of electrical, dielectric and ion transport properties of nanoclay-based blend polymer nanocomposites. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02893-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Faizan M, Niazi KUK, Muhammad N, Hu Y, Wang Y, Lin D, Liu Y, Zhang W, Gao Z. The Intercalation of CORM-2 with Pharmaceutical Clay Montmorillonite (MMT) Aids for Therapeutic Carbon Monoxide Release. Int J Mol Sci 2019; 20:E3453. [PMID: 31337099 PMCID: PMC6679092 DOI: 10.3390/ijms20143453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 01/11/2023] Open
Abstract
The pharmaceutical clay montmorillonite (MMT) is, for the first time, explored as a carbon monoxide-releasing material (CORMat). MMT consists of silicate double layered structure; its exfoliation feature intercalate the CORM-2 [RuCl(μ-Cl)(CO)3]2 inside the layers to suppress the toxicity of organometallic segment. The infrared spectroscopy (IR) confirmed the existence of ruthenium coordinated carbonyl ligand in MMT layers. The energy-dispersive X-ray spectroscopy (EDX) analysis showed that ruthenium element in this material was about 5%. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images showed that the layer-structure of MMT has been maintained after loading the ruthenium carbonyl segment. Moreover, the layers have been stretched out, which was confirmed by X-ray diffraction (XRD) analysis. Thermogravimetric (TG) curves with huge weight loss around 100-200 °C were attributed to the CO hot-release of ruthenium carbonyl as well as the loss of the adsorbed solvent molecules and the water molecules between the layers. The CO-liberating properties have been assessed through myoglobin assay. The horse myoglobin test showed that the material could be hydrolyzed to slowly release carbon monoxide in physiological environments. The half-life of CO release was much longer than that of CORM-3, and it has an excellent environmental tolerance and slow release effect.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | | | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Dezhi Lin
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yuanyuan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
28
|
Siddique S, Smith GD, Yates K, Mishra AK, Matthews K, Csetenyi LJ, Njuguna J. Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1802-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
High performance linear low density polyethylene nanocomposites reinforced by two-dimensional layered nanomaterials. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Liu S, Liu J, Xu Z, Liu Y, Li P, Guo F, Wang F, Liu Y, Yang M, Gao W, Gao C. Artificial Bicontinuous Laminate Synergistically Reinforces and Toughens Dilute Graphene Composites. ACS NANO 2018; 12:11236-11243. [PMID: 30335359 DOI: 10.1021/acsnano.8b05835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Strength and toughness are usually exclusive in polymer nanocomposites with dispersed nanofillers. This intrinsic conflict has been relieved in a high filler loading range by mimicking the nacre structure of natural selection. However, at the low loading extreme, it still remains a great challenge. Here, we design a bicontinuous lamellar (BCL) structure to synergistically reinforce and toughen nanocomposites in the dilute range of nanofiller below 1 wt %. At a typical loading of 0.3 wt %, the BCL composite of graphene oxide (GO) and poly(vinyl alcohol) (PVA) has an 8200% toughness and a comparably reinforced hardness of the dispersed counterpart, accompanying a 53-fold higher failure elongation that even exceeds that of pure PVA. Theoretical modeling and experimental analyses reveal that the continuous generation of massive crazes of GO layers endows the BCL composite with high toughness and surprising breakage elongation beyond those of pure PVA. The BCL organization is an alternatively optimal structure model to merge the exclusive strength and toughness together for damage-tolerant nanocomposites with a dilute range of nanofillers, other than nacre-like and well-dispersed structure, providing an alternative methodology to fabricate mechanically robust composites.
Collapse
Affiliation(s)
- Senping Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , P. R. China
| | - Jingran Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , P. R. China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments , Harbin Institute of Technology , Harbin 150080 , P. R. China
| | - Yilun Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Peng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , P. R. China
| | - Fan Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , P. R. China
| | - Fang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , P. R. China
| | - Mincheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , P. R. China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , P. R. China
| |
Collapse
|
31
|
Zheng Z, Cox M, Li B. Effective structure regulation of poly(vinylidene fluoride) via soy protein isolate: A morphological study. J Appl Polym Sci 2018. [DOI: 10.1002/app.46706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhuoyuan Zheng
- Department of Mechanical EngineeringWichita State UniversityWichita Kansas67260‐0133
| | - McCord Cox
- Department of Mechanical EngineeringWichita State UniversityWichita Kansas67260‐0133
| | - Bin Li
- Department of Mechanical EngineeringWichita State UniversityWichita Kansas67260‐0133
| |
Collapse
|
32
|
Dos Santos EP, Fook MVL, Malta OML, de Lima Silva SM, Leite IF. Role of Surfactants in the Properties of Poly(Ethylene Terephthalate)/Purified Clay Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1397. [PMID: 30103373 PMCID: PMC6119996 DOI: 10.3390/ma11081397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022]
Abstract
Purified clay was modified with different amounts of alkyl ammonium and phosphonium salts and used as filler in the preparation of PET nanocomposites via melt intercalation. The effect of this type of filler on morphology and thermal and mechanical properties of PET nanocomposites was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile properties, and transmission electron microscopy (TEM). The results showed that the mixture of alkyl ammonium and phosphonium salts favored the production of PET nanocomposites with intercalated and partially exfoliated morphologies with slight improvement in thermal stability. In addition, the incorporation of these organoclays tended to inhibit PET crystallization behavior, which is profitable in the production of transparent bottles.
Collapse
Affiliation(s)
- Elaine Pereira Dos Santos
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa PB 58051-900, Brazil.
| | - Marcus Vinícius Lia Fook
- Laboratório de Avaliação e Desenvolvimento de Biomateriais do Nordeste-CERTBIO, Unidade Acadêmica de Engenharia de Materiais, Universidade Federal de Campina Grande, Campina Grande PB 58429-900, Brazil.
| | | | - Suédina Maria de Lima Silva
- Unidade Acadêmica de Engenharia de Materiais, Universidade Federal de Campina Grande, Campina Grande PB 58429-900, Brazil.
| | - Itamara Farias Leite
- Departmento de Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa PB 58051-900, Brazil.
| |
Collapse
|
33
|
Youssef AM, El-Sayed SM. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr Polym 2018; 193:19-27. [DOI: 10.1016/j.carbpol.2018.03.088] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/16/2018] [Accepted: 03/24/2018] [Indexed: 01/05/2023]
|
34
|
Karimi M, Davoudizadeh S, Bahadorikhalili S, Khezri K. Investigating the Effect of Silica Aerogel Nanoparticles on the Kinetics of AGET ATRP of Methyl Methacrylate. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2018-1202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Hexamethyldisilazane-modified silica aerogel nanoparticles were used for in situ polymerization of methyl methacrylate by activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) to synthesize tailor-made PMMA nanocomposites. Appropriate dispersion of silica aerogel nanoparticles in the monomer solution and improvement in interfacial interaction between the PMMA matrix and nanoparticles are two main reasons for application of HMDS-modified silica aerogel nanoparticles. Nitrogen adsorption/desorption isotherm was employed to examine surface area and structural characteristics of the HMDS-modified silica aerogel nanoparticles. Evaluation of size distribution and morphological studies were also performed by SEM and TEM. Conversion and molecular weight determinations were carried out using GC and SEC, respectively. Addition of 3 wt% HMDS-modified silica aerogel nanoparticles leads to decrement of conversion from 85 to 64%. Molecular weight of PMMA chains also decreases from 13,912 to 10,810 g⋅mol−1 by addition of only 3 wt% HMDS-modified silica aerogel nanoparticles; however, polydispersity index values increases from 1.18 to 1.51. Linear increase of ln(M0/M) with time for all the samples shows that polymerization proceeds in a living manner. In addition, suitable agreement between theoretical and experimental molecular weight in combination with low PDI values can appropriately demonstrate the living nature of the polymerization. TGA results indicate that by increasing HMDS-modified silica aerogel nanoparticles content, slight improvements in thermal stability of the nanocomposites were obtained. DSC results show a decrease in Tg from 86.9 to 80.1°C by addition of 3 wt% HMDS-modified silica aerogel nanoparticles.
Collapse
Affiliation(s)
- Maryam Karimi
- Research Laboratory of Green Organic Synthesis and Polymers , Department of Chemistry , Iran University of Science and Technology , Tehran , Iran
| | - Soroush Davoudizadeh
- School of Chemistry , University College of Science, University of Tehran , Tehran , Iran
| | - Saeed Bahadorikhalili
- School of Chemistry , University College of Science, University of Tehran , Tehran , Iran
| | - Khezrollah Khezri
- Young Researchers and Elite Club , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|
35
|
Sangian D, Naficy S, Dehghani F, Yamauchi Y. A Review on Layered Mineral Nanosheets Intercalated with Hydrophobic/Hydrophilic Polymers and Their Applications. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Danial Sangian
- International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering; The University of Sydney; Sydney NSW 2006 Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering; The University of Sydney; Sydney NSW 2006 Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering; The University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
36
|
Zou Y, Fang L, Chen T, Sun M, Lu C, Xu Z. Near-Infrared Light and Solar Light Activated Self-Healing Epoxy Coating having Enhanced Properties Using MXene Flakes as Multifunctional Fillers. Polymers (Basel) 2018; 10:E474. [PMID: 30966508 PMCID: PMC6415427 DOI: 10.3390/polym10050474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/05/2023] Open
Abstract
Two issues are required to be solved to bring intrinsically self-healing polymer coatings into real applications: remote activation and satisfied practical properties. Here, we used MXene, a newly reported two-dimensional material, to provide an epoxy coating with light-induced self-healing capabilities and we worked to enhance the properties of that coating. The self-healing coatings had a reversible crosslinking network based on the Diels-Alder reaction among maleimide groups from bis(4-maleimidopheny)methane and dangling furan groups in oligomers that were prepared through the condensation polymerization of diglycidylether of bisphenol A and furfurylamine. The results showed that the delaminated MXene flakes were small in size, around 900 nm, and dispersed well in self-healing coatings. The MXene flakes of only 2.80 wt % improved greatly the pencil hardness of the coating hardness from HB to 5H and the polarization resistance from 4.3 to 428.3 MΩ cm-2. The self-healing behavior, however, was retarded by MXene flakes. Leveling agent acted a key part here to facilitate the gap closure driven by reverse plasticity to compensate for the limitation of macromolecular mobility resulting from the MXene flakes. The self-healing of coatings was achieved in 30 s by thermal treatment at 150 °C. The efficient self-healing was also demonstrated based on the recovery of the anti-corrosion capability. MXene flakes also played an evident photothermal role in generating heat via irradiation of near-infrared light at 808 nm and focused sunlight. The healing can be quickly obtained in 10 s under irradiation of near-infrared light at 808 nm having a power density of 6.28 W cm-2 or in 10 min under irradiation of focused sunlight having a power density of 4.0 W cm-2.
Collapse
Affiliation(s)
- Yuting Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Liang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Tianqi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Menglong Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| | - Zhongzi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
37
|
Kurt A, Topsoy OK. Preparation of Novel Coumarin Cyclic Polymer/Montmorillonite Based Nanocomposites. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427217120199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Çayli G, Gürbüz D, Çınarli A. Characterization and Polymerization of Epoxidized Methacrylated Castor Oil. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gökhan Çayli
- Dr. G. Çayli; Engineering Faculty; Department of Engineering Sciences; Istanbul University; Istanbul Turkey
| | - Demet Gürbüz
- Dr. D. Gürbüz, Dr. A. Çınarli; Engineering Faculty; Department of Chemistry; Istanbul University; Istanbul Turkey
| | - Adem Çınarli
- Dr. D. Gürbüz, Dr. A. Çınarli; Engineering Faculty; Department of Chemistry; Istanbul University; Istanbul Turkey
| |
Collapse
|
39
|
Fujimura T, Shimada T, Sasai R, Takagi S. Optical Humidity Sensing Using Transparent Hybrid Film Composed of Cationic Magnesium Porphyrin and Clay Mineral. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3572-3577. [PMID: 29485287 DOI: 10.1021/acs.langmuir.7b04006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A transparent hybrid film composed of cationic magnesium porphyrin and clay mineral was developed, and its chromic behavior depending on relative humidity (RH) was investigated. The hybrid film was obtained via intercalation of magnesium porphyrin into clay film; magnesium porphyrin was intercalated into the interlayer spaces of the clay mineral without aggregation. The absorption spectra of the hybrid film showed red shifts compared to the aqueous solution of magnesium porphyrin because of the π-conjugated system extension with coplanarization of the meso-substituted pyridinium group and porphyrin ring. The absorption maximum of the hybrid film was gradually shifted to a shorter wavelength, and the color of the hybrid film was changed with increasing RH. The X-ray diffraction measurement suggested that the basal space of clay was expanded with increasing RH, indicating that the interlayer space of clay was expanded by water adsorption, and the spectral shift was induced by the change in coplanarization degree between the porphyrin ring and meso-substituted pyridinium groups.
Collapse
Affiliation(s)
- Takuya Fujimura
- Department of Physics and Materials Science, Interdisciplinary Graduate School of Science and Engineering , Shimane University , 1060, Nishikawatsu-cho , Matsue 690-8504 Japan
| | | | - Ryo Sasai
- Department of Physics and Materials Science, Interdisciplinary Graduate School of Science and Engineering , Shimane University , 1060, Nishikawatsu-cho , Matsue 690-8504 Japan
| | | |
Collapse
|
40
|
Yu J, Wang Q, O'Hare D, Sun L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem Soc Rev 2018; 46:5950-5974. [PMID: 28766671 DOI: 10.1039/c7cs00318h] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Layered double hydroxides (LDHs) with their highly flexible and tunable chemical composition and physical properties have attracted tremendous attention in recent years. LDHs have found widespread application as catalysts, anion exchange materials, fire retardants, and nano-fillers in polymer nanocomposites. The ability to exfoliate LDHs into ultrathin nanosheets enables a range of new opportunities for multifunctional materials. In this review we summarize the current available LDH exfoliation methods. In particular, we highlight recent developments for the direct synthesis of single-layer LDH nanosheets, as well as the emerging applications of LDH nanosheets in catalyzing oxygen evolution reactions and preparing light emitting devices, supercapacitors, and flame retardant nanocomposites.
Collapse
Affiliation(s)
- Jingfang Yu
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | | | | | |
Collapse
|
41
|
Comparative study of pyrethroids residue in fruit peels and fleshes using polystyrene-coated magnetic nanoparticles based clean-up techniques. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Abstract
Phyllosilicate (clay) is used as a filler to improve the thermal stability and gas barrier properties of plastic films. However, few film preparation trials used clays as the main component. Many researchers have studied clay-based films (CBFs) that are heat-resistant and have high gas barrier properties against various gases (such as oxygen, water vapor, and hydrogen) over a wide range of temperatures. An organic binder improves the film toughness, but increases gas permeation. CBFs are obtained by solution casting and show excellent incombustibility and electrical insulation. Moreover, transparent films, e. g. for optoelectronic applications, can be prepared using synthetic clay, which does not contain colored impurities. The water vapor barrier properties of CBFs were achieved using reduced-charge smectite. Applications of CBF materials include food packaging, solar cell back sheets, hydrogen tanks, gaskets, water vapor barrier display films, substrates for printed electronics, thermal insulation, and electric insulation. Recent achievements in the field and future prospects are discussed.
Collapse
Affiliation(s)
- Takeo Ebina
- National Institute of Advanced Industrial Science and Technology, Nigatake 4-2-1, Miyagino-ku, Sendai, 983-8551, Japan
| |
Collapse
|
43
|
Khezri K, Ghasemi M, Fazli Y. Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate. Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2017-1063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mesoporous diatomite particles were employed to prepare different poly(styrene-co-butyl acrylate)/diatomite nanocomposites. Diatomite nanoplatelets were used for in situ copolymerization of styrene and butyl acrylate by SR&NI ATRP to synthesize well-defined poly(styrene-co-butyl acrylate) nanocomposites. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite nanoplatelets. Evaluation of pore size distribution and morphological studies were also performed by SEM and TEM. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography respectively. Addition of 3 wt% pristine mesoporous diatomite nanoplatelets leads to increase of conversion from 73 to 89%. Molecular weight of poly(styrene-co-butyl acrylate) chains increases from 17,115 to 20,343 g·mol−1 by addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.14 to 1.37. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 35.26 to 39.61°C by adding 3 wt% of mesoporous diatomite nanoplatelets.
Collapse
Affiliation(s)
- Khezrollah Khezri
- Young Researchers and Elite Club, Central Tehran Branch , Islamic Azad University , Tehran , Iran
| | - Moosa Ghasemi
- Abadan Oil Refining Company , Abadan, Khuzestan , Iran
| | - Yousef Fazli
- Department of Chemistry , Faculty of Science, Arak Branch , Islamic Azad University , Arak , Iran , e-mail:
| |
Collapse
|
44
|
Pan Y, Schubert DW, Ryu JE, Wujick E, Liu C, Shen C, Liu X. Dynamic oscillatory rheological properties of polystyrene/poly(methyl methacrylate) blends and their composites in the presence of carbon black. ACTA ACUST UNITED AC 2018. [DOI: 10.30919/es.180402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Well-defined PMMA/diatomite nanocomposites by in situ AGET ATRP: diatomite as an appropriate replacement for clay. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1405-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Alex AS, Rajeev R, Sekkar V, Gouri C. The role of organoclay on the properties of Polymethylsilsesquioxane: A systematic study. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1340076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ancy Smitha Alex
- Analytical Division, Chemical Systems Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvanathapuram, India
| | - R.S. Rajeev
- Polymers & Special Chemicals Division, PCM Entity, Vikram Sarabhai Space Centre, Thiruvanathapuram, India
| | - V. Sekkar
- Analytical Division, Chemical Systems Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvanathapuram, India
| | - C. Gouri
- Polymers and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Centre, Thiruvanathapuram, India
| |
Collapse
|
47
|
Sung K, Nakagawa S, Yoshie N. Fabrication of Water-Resistant Nacre-like Polymer/Clay Nanocomposites via in Situ Polymerization. ACS OMEGA 2017; 2:8475-8482. [PMID: 31457384 PMCID: PMC6645041 DOI: 10.1021/acsomega.7b01606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/17/2017] [Indexed: 05/10/2023]
Abstract
Fabrication and characterization of water-resistant nacre-like polymer/clay nanocomposites, in which clay platelets and hydrophobic polymer chains are alternately stacked in parallel, are reported. Hydrophilic clay was converted by an ion-exchange reaction with a methacrylate monomer having a long alkyl chain and a quaternary ammonium salt group at the end. The subsequent in situ polymerization bound the neighboring clay surfaces, leading to the preferential orientation of the clay platelets owing to their high aspect ratio. The composites maintained excellent mechanical properties even after being immersed in water for more than a day. Strong shape stability was observed in water as well as in various organic solvents.
Collapse
|
48
|
Mandal P, Ponnupandian S, Choudhury S, Singha NK. TUNING PROPERTIES AND MORPHOLOGY IN HIGH VINYL CONTENT SBS BLOCK COPOLYMER, A THERMOPLASTIC ELASTOMER VIA THIOL-ENE MODIFICATION. RUBBER CHEMISTRY AND TECHNOLOGY 2017. [DOI: 10.5254/rct.17.83761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Thiol-ene modification of high vinyl content thermoplastic elastomeric styrene butadiene styrene (SBS) block copolymer (BCP) was carried out using different thiolating agents in toluene at 70 °C. 1H NMR analysis confirmed the participation of vinyl double bond in the thiol-ene modification reaction of SBS. Surface morphology of the block copolymers evaluated by atomic force microscopy analysis showed higher roughness after the thiol-ene reaction. The thiol-modified SBS block copolymer showed better adhesion strength and oil resistance properties than the pristine SBS.
Collapse
Affiliation(s)
- Prithwiraj Mandal
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal India
| | - Siva Ponnupandian
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal India
| | - Soumyadip Choudhury
- Leibniz-Institut für Polymerforschung Dresden E.V., Hohe str. 6, d-01069 Dresden, Germany
| | - Nikhil K. Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal India
| |
Collapse
|
49
|
Dong L, Jin Y, Song T, Liang J, Bai X, Yu S, Teng C, Wang X, Qu J, Huang X. Removal of Cr(VI) by surfactant modified Auricularia auricula spent substrate: biosorption condition and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17626-17641. [PMID: 28600790 DOI: 10.1007/s11356-017-9326-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Auricularia auricula spent substrate (AASS) modified by didodecyldimethylammonium bromide(DDAB) was used as adsorbent to remove Cr(VI) from aqueous solution. Based on a single-factor experiment and response surface methodology, the optimal conditions were adsorbent dosage of 1.5 g/L, pH value of 4.0, initial Cr(VI) concentration of 19 mg/L, temperature of 25 °C, biosorption time of 120 min, rotational speed of 150 r/min, respectively, under which biosorption capacity could reach 12.16 mg/g compared with unmodified AASS (6.058 mg/g). DDAB modification could enlarge the specific surface area and porous diameter of the adsorbents, and supply hydrophilic and hydrophobic groups capable of adsorbing at the interfaces. In addition, DDAB increased ionic exchange and complex formation demonstrated by variations of elemental contents, shifts of carboxyl, amine groups, hydroxyl, alkyl chains, and phosphate groups as well as the crystal structure of the Cr-O compounds. Variations of peaks and energy in XPS analysis also testified the reduction of Cr(VI) to Cr(III).The biosorption behavior of modified AASS was in line with Langmuir and Freundlich isotherm equation. The final regeneration efficiency was 62.33% after three biosorption-desorption cycles. Apparently, DDBA is a eximious modifier and DDBA-modified AASS was very efficient for Cr(VI) removal.
Collapse
Affiliation(s)
- Liying Dong
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Song
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jinsong Liang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Bai
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Sumei Yu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chunying Teng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaomei Huang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
50
|
Youssef AM, Malhat F, Abdel Hakim A, Dekany I. Synthesis and utilization of poly (methylmethacrylate) nanocomposites based on modified montmorillonite. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2015.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|