1
|
Jayachitra R, Lincy V, Prasannan A, Nimita Jebaranjitham J, Sangaraju S, Hong PD. Tailored fabrication of biodegradable polymer/ Fe 3O 4 doped WO 3 nano star-based porous membrane with enhanced photo fentonic activity for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 248:118262. [PMID: 38280523 DOI: 10.1016/j.envres.2024.118262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
The accelerated development of special-wetting polymeric materials with hierarchical pores for membrane applications is crucial to effectively separating water-soluble and insoluble pollutants, such as oily wastewater, emulsion, organic pollutants, and heavy metals. This pressing environmental and socioeconomic issue requires the implementation of effective remediation technologies. In this study, we successfully fabricated an environmentally friendly membrane with a flexible property by combining biopolymers and magnetic nanohybrids of iron oxide (Fe3O4)-doped tungsten oxide (WO3) through a thermal-induced phase separation process (TIPS). The resulting membrane exhibited a well-defined 3D-interconnected porous network structure when blending poly (ε-caprolactone)/poly (D,L-lactide) (PCL)/(PDLLA) in an 8:2 volume ratio. The Fe3O4@WO3 nanohybrids were synthesized using a hydrothermal process, resulting in a star-shaped morphology from the sea urchin-like WO3 clusters, which showed great potential to efficiently separate water/oil contamination and facilitate visible-light-driven photocatalytic degradation of organic dyes (MB, Rh B, BY, and CR) and photoreduction of hexavalent chromium (Cr (VI)). The obtained PCL/PDLLA/Fe3O4@WO3 nanocomposite membrane demonstrated hydrophobic properties, showing a water contact angle of 95 ± 2° and an excellent oil adsorption capacity of ∼4-4.5 g/g without fouling. The interconnected porous structure of the composite membrane enabled the efficient separation of emulsions (≥99.4 %) and achieved a high permeation flux of up to 1524 L m-2 h-1 under gravity separation. Overall, we obtained a novel high-performance composite material with specialized wetting properties, offering significant potential for effectively removing insoluble and soluble organic contaminants from wastewater.
Collapse
Affiliation(s)
- Ravichandran Jayachitra
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Varghese Lincy
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan; Universidad Politecnica Taiwán Paraguay (UPTP), Paraguay
| | - Adhimoorthy Prasannan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
| | - J Nimita Jebaranjitham
- P.G. Department of Chemistry, Women's Christian College (An Autonomous Institution Affiliated to University of Madras), Chennai, Tamil Nadu, India
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Po-Da Hong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
| |
Collapse
|
2
|
Sakarya D, Zorlu T, Yücel S, Sahin YM, Özarslan AC. Advanced Bioresin Formulation for 3D-Printed Bone Scaffolds: PCLDMA and p-PLA Integration. Polymers (Basel) 2024; 16:534. [PMID: 38399911 PMCID: PMC10892561 DOI: 10.3390/polym16040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In bone tissue engineering, scaffold attributes such as pore dimensions and mechanical strength are crucial. This study synthesized polycaprolactone dimethacrylate (PCLDMA) from polycaprolactone (PCL), incorporating epichlorohydrin (Epi-PCL) and methacryloyl chloride (Meth-Cl). PCLDMA was blended with polylactic acid (p-PLA) to 3D-print bone scaffolds using stereolithography (SLA). Analytical techniques included nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and compression testing. Degradation kinetics and cell viability were investigated using human osteoblast (HOB) cells. Findings revealed PCLDMA/p-PLA composite scaffold superiority over the original polymers. Notably, PCLDMA-60 (60% PCLDMA, 40% p-PLA) displayed optimal properties. Compressive strength varied from 0.019 to 16.185 MPa, porosity from 2% to 50%, and degradation rates from 0% to 0.4% over three days. Cell viability assays affirmed biocompatibility across various PCLDMA ratios. In conclusion, PCLDMA/p-PLA composite scaffolds, particularly PCLDMA-60, show great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Deniz Sakarya
- Institute of Nanotechnology and Biotechnology, İstanbul University-Cerrahpaşa, Istanbul 34500, Turkey
- Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul 34210, Turkey; (S.Y.); (A.C.Ö.)
| | - Tolga Zorlu
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, 1090 Vienna, Austria;
| | - Sevil Yücel
- Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul 34210, Turkey; (S.Y.); (A.C.Ö.)
| | - Yesim Muge Sahin
- Polymer Technologies and Composite Application and Research Center (ArelPOTKAM), Istanbul Arel University, Buyukcekmece, Istanbul 34537, Turkey;
| | - Ali Can Özarslan
- Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul 34210, Turkey; (S.Y.); (A.C.Ö.)
| |
Collapse
|
3
|
Alexeeva OV, Olkhov AA, Konstantinova ML, Podmasterev VV, Petrova TV, Martirosyan LY, Karyagina OK, Kozlov SS, Lomakin SM, Tretyakov IV, Siracusa V, Iordanskii AL. A Novel Approach for Glycero-(9,10-trioxolane)-Trialeate Incorporation into Poly(lactic acid)/Poly(ɛ-caprolactone) Blends for Biomedicine and Packaging. Polymers (Basel) 2023; 16:128. [PMID: 38201793 PMCID: PMC10780447 DOI: 10.3390/polym16010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The product of ozonolysis, glycero-(9,10-trioxolane)-trioleate (ozonide of oleic acid triglyceride, [OTOA]), was incorporated into polylactic acid/polycaprolactone (PLA/PCL) blend films in the amount of 1, 5, 10, 20, 30 and 40% w/w. The morphological, mechanical, thermal and antibacterial properties of the biodegradable PLA/PCL films after the OTOA addition were studied. According to DSC and XRD data, the degree of crystallinity of the PLA/PCL + OTOA films showed a general decreasing trend with an increase in OTOA content. Thus, a significant decrease from 34.0% for the reference PLA/PCL film to 15.7% for the PLA/PCL + 40% OTOA film was established using DSC. Observed results could be explained by the plasticizing effect of OTOA. On the other hand, the PLA/PCL film with 20% OTOA does not follow this trend, showing an increase in crystallinity both via DSC (20.3%) and XRD (34.6%). OTOA molecules, acting as a plasticizer, reduce the entropic barrier for nuclei formation, leading to large number of PLA spherulites in the plasticized PLA/PCL matrix. In addition, OTOA molecules could decrease the local melt viscosity at the vicinity of the growing lamellae, leading to faster crystal growth. Morphological analysis showed that the structure of the films with an OTOA concentration above 20% drastically changed. Specifically, an interface between the PLA/PCL matrix and OTOA was formed, thereby forming a capsule with the embedded antibacterial agent. The moisture permeability of the resulting PLA/PCL + OTOA films decreased due to the formation of uniformly distributed hydrophobic amorphous zones that prevented water penetration. This architecture affects the tensile characteristics of the films: strength decreases to 5.6 MPa, elastic modulus E by 40%. The behavior of film elasticity is associated with the redistribution of amorphous regions in the matrix. Additionally, PLA/PCL + OTOA films with 20, 30 and 40% of OTOA showed good antibacterial properties on Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena) and Agrobacterium tumefaciens, making the developed films potentially promising materials for wound-dressing applications.
Collapse
Affiliation(s)
- Olga V. Alexeeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Anatoliy A. Olkhov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Marina L. Konstantinova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Vyacheslav V. Podmasterev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Tuyara V. Petrova
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| | - Levon Yu. Martirosyan
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Olga K. Karyagina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Sergey S. Kozlov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
| | - Sergey M. Lomakin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.O.); (M.L.K.); (V.V.P.); (L.Y.M.); (O.K.K.); (S.S.K.); (S.M.L.)
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| | - Ilya V. Tretyakov
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia; (T.V.P.); (I.V.T.); (A.L.I.)
| |
Collapse
|
4
|
Malinowski R, Fiedurek K, Rytlewski P, Puszczykowska N, Kaczor D, Stasiek A. The structure and selected properties of poly(ε-caprolactone)-based biodegradable composites with high calcium carbonate concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161528. [PMID: 36638989 DOI: 10.1016/j.scitotenv.2023.161528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The article refers to new polycaprolactone (PCL) composites with high concentration of calcium carbonate (CC). The objective of the present study was the manufacturing of PCL-based biodegradable composites, containing from 24 to 75 % of CC by mass, along with analyses of changes in selected properties of the obtained PCL composites, occurring upon various amounts of CC. Importantly, in the study relatively cheap and unmodified kind of CC has been used to determine the changeover cost of produced composites. Qualitative and quantitative analyses in addition to structure analysis of the obtained composites, including the distribution of the filler particles and their average dimensions were conducted. Furthermore, the mechanical and thermal properties, mass melt flow rate and the density have been determined. Finally, a commercially important economic analysis has been presented. A significant influence of CC on the mechanical properties of PCL was found. Specifically, the reduction of its relative elongation at break and impact strength, as well as the increase of its flexural modulus and bending strength. An increase in the thermal stability of the produced composites was also observed, however the characteristic temperatures of phase transitions as well as the degree of crystallinity did not change significantly. Considering the results of the density tests, an increase in the CC content resulted in a significant decrease in the unit price of the produced composites. This is of particular application importance, because a lower cost material with new properties could be obtained.
Collapse
Affiliation(s)
- Rafał Malinowski
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland.
| | - Kacper Fiedurek
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| | - Piotr Rytlewski
- Faculty of Materials Engineering, Kazimierz Wielki University, 30 Chodkiewicza Street, 85-064 Bydgoszcz, Poland
| | - Natalia Puszczykowska
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| | - Daniel Kaczor
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| | - Andrzej Stasiek
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Liu H, Hu J, Zhang Y, Zhao J, Wang X, Song J. A dual role of D-Sorbitol in crystallizing and processing poly (lactic acid). JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
6
|
Wang X, Wang Y, Wang X. Fabrication strategy for long‐chain branched polypropylene foams with high resilience and compressive strength. J Appl Polym Sci 2022. [DOI: 10.1002/app.53016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoli Wang
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing People's Republic of China
| | - Yaqiao Wang
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing People's Republic of China
| | - Xiangdong Wang
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing People's Republic of China
| |
Collapse
|
7
|
On the effective application of star-shaped polycaprolactones with different end functionalities to improve the properties of polylactic acid blend films. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Thermal Stability and Dynamic Mechanical Properties of Poly( ε-caprolactone)/Chitosan Composite Membranes. MATERIALS 2021; 14:ma14195538. [PMID: 34639932 PMCID: PMC8509319 DOI: 10.3390/ma14195538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Poly (ε-caprolactone) (PCL) and chitosan (CS) are widely used as biodegradable and biocompatible polymers with desirable properties for tissue engineering applications. Composite membranes (CS-PCL) with various blend ratios (CS:PCL, w/w) of 0:100, 5:95, 10:90, 15:85, 20:80, and 100:0 were successfully prepared by lyophilization. The thermal stabilities of the CS-PCL membranes were systematically characterized by thermogravimetric analysis (TG), dynamic thermogravimetry (DTG), and differential scanning calorimetry (DSC). It was shown that the blend ratio of PCL and CS had a significant effect on the thermal stability, hydrophilicity, and dynamic mechanical viscoelasticity of the CS-PCL membranes. All the samples in the experimental range exhibited high elasticity at low temperature and high viscosity at high temperatures by dynamic mechanical thermal analysis (DMTA). The performances of the CS-PCL membranes were at optimum levels when the blend ratio (w/w) was 10:90. The glass transition temperature of the CS-PCL membranes increased from 64.8 °C to 76.6 °C compared to that of the pure PCL, and the initial thermal decomposition temperature reached 86.7 °C. The crystallinity and porosity went up to 29.97% and 85.61%, respectively, while the tensile strength and elongation at the breakage were 20.036 MPa and 198.72%, respectively. Therefore, the 10:90 (w/w) blend ratio of CS/PCL is recommended to prepare CS-PCL membranes for tissue engineering applications.
Collapse
|
9
|
The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly(ε-Caprolactone) Composites Modified by Electron Beam Irradiation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.
Collapse
|
10
|
Bhati P, Ahuja R, Srivastava A, Pankaj, Singh S, Vashisth P, Bhatnagar N. Physicochemical characterization and mechanical performance analysis of biaxially oriented PLA/PCL tubular scaffolds for intended stent application. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03795-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Zhu B, Bai T, Wang P, Wang Y, Liu C, Shen C. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. Int J Biol Macromol 2020; 153:1272-1280. [DOI: 10.1016/j.ijbiomac.2019.10.262] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
|
12
|
Hajebi S, Mohammadi Nasr SA, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Tahriri M, Tayebi L, Hamblin MR. Bioresorbable composite polymeric materials for tissue engineering applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
13
|
Wang Y, Liu J, Xia L, Shen M, Wei L, Xin Z, Kim J. Fully Biobased Shape Memory Thermoplastic Vulcanizates from Poly(Lactic Acid) and Modified Natural Eucommia Ulmoides Gum with Co-Continuous Structure and Super Toughness. Polymers (Basel) 2019; 11:E2040. [PMID: 31835324 PMCID: PMC6960773 DOI: 10.3390/polym11122040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 11/17/2022] Open
Abstract
Novel, fully biobased shape memory thermoplastic vulcanizates (TPVs) were prepared using two sustainable biopolymers, poly(lactic acid) (PLA), and modified natural Eucommia ulmoides gum (EUG-g-GMA), via a dynamic vulcanization technique. Simultaneously, in situ compatibilization was achieved in the TPVs to improve interfacial adhesion and the crosslinked modified Eucommia ulmoides gum (EUG) was in "netlike" continuous state in the PLA matrix to form "sea-sea" phase structure. The promoted interface and co-continuous structure played critical roles in enhancing shape memory capacity and toughness of the TPVs. The TPV with 40 wt % modified EUG displayed the highest toughness with an impact strength of 54.8 kJ/m2 and the most excellent shape memory performances with a shape fixity ratio (Rf) of 99.83% and a shape recovery ratio (Rr) of 93.74%. The prepared shape memory TPVs would open up great potential applications in biobased shape memory materials for smart medical devices.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.W.); (J.L.); (L.X.); (M.S.); (L.W.)
| | - Jinhui Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.W.); (J.L.); (L.X.); (M.S.); (L.W.)
| | - Lin Xia
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.W.); (J.L.); (L.X.); (M.S.); (L.W.)
| | - Mei Shen
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.W.); (J.L.); (L.X.); (M.S.); (L.W.)
| | - Liping Wei
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.W.); (J.L.); (L.X.); (M.S.); (L.W.)
| | - Zhenxiang Xin
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (Y.W.); (J.L.); (L.X.); (M.S.); (L.W.)
| | - Jinkuk Kim
- 404-424 Elastomer Lab, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea;
| |
Collapse
|
14
|
Biodegradable Polymer Films with a Natural Antibacterial Extract as Novel Periodontal Barrier Membranes. Int J Biomater 2019; 2019:7932470. [PMID: 31485230 PMCID: PMC6710769 DOI: 10.1155/2019/7932470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Biodegradable composite membranes containing propolis were produced from PCL/PLLA blends using a simple and low-cost solvent casting method, and subsequently their physicochemical, mechanical, and antibacterial properties were characterized. SEM analysis revealed that the addition of propolis has created honeycomb-like structures on the film surfaces. The flexibility of the films increased in the presence of propolis, which may provide ease of use during application. Propolis disrupted the organized structure of both polymers at the molecular level and caused decreases in the melting points. The films with propolis showed faster degradation in physiological conditions due to this molecular disruption. Moreover, the PLLA/PCL/propolis composite films exhibited remarkable antibacterial activities against S. aureus. Collectively, the data suggest that the produced films might be used as an alternative to exiting barrier membranes in guided tissue regeneration.
Collapse
|
15
|
Visco A, Scolaro C, Giamporcaro A, De Caro S, Tranquillo E, Catauro M. Threads Made with Blended Biopolymers: Mechanical, Physical and Biological Features. Polymers (Basel) 2019; 11:polym11050901. [PMID: 31108907 PMCID: PMC6572296 DOI: 10.3390/polym11050901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/19/2023] Open
Abstract
Poly (Lactic Acid), PLA, and Poly (ε-CaproLactone), PCL, compatibilized with Ethyl Ester l-Lysine Triisocyanate (LTI) can be employed as biomaterials. We mixed PLA with PCL and LTI in a twin extruder and by a melt spinning process obtained threads with an average diameter of about 0.3 mm. In order to study the possible application of these threads, mechanical tensile (with the calorimetric and morphological investigations) and biological tests were performed. The results highlighted these biopolymers as promising materials for sutures since they can be rigid and elastic (especially by increasing the PCL amount in the blend), and they are bioactive, able to inhibit bacterial growth. This paper represents a starting point to optimize the blend composition for biomedical suture application.
Collapse
Affiliation(s)
- Annamaria Visco
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
- Institute for Chemical-Physical Processes CNR ⁻IPCF, Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Italy.
| | - Cristina Scolaro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
| | - Alberto Giamporcaro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
| | - Salvatore De Caro
- Department of Engineering, University of Messina, C.da Di Dio, 98166 Messina, Italy.
| | - Elisabetta Tranquillo
- Department of Engineering, University of Campania Luigi Vanvitelli, VialeAbramo Lincoln 5, 81100 Caserta, Italy.
| | - Michelina Catauro
- Department of Engineering, University of Campania Luigi Vanvitelli, VialeAbramo Lincoln 5, 81100 Caserta, Italy.
| |
Collapse
|
16
|
Lee JS, Ryu YS, Kim I, Kim SH. Effect of interface affinity on the performance of a composite of microcrystalline cellulose and polypropylene/polylactide blends. POLYM INT 2019. [DOI: 10.1002/pi.5831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ji Su Lee
- Department of Organic and Nano EngineeringHanyang University Seoul South Korea
| | - Yeon Sung Ryu
- Department of Organic and Nano EngineeringHanyang University Seoul South Korea
| | - Ick‐Soo Kim
- Faculty of Textile Science and TechnologyShinshu University Nagano Japan
| | - Seong Hun Kim
- Department of Organic and Nano EngineeringHanyang University Seoul South Korea
| |
Collapse
|
17
|
Xiang S, Feng L, Bian X, Zhang B, Sun B, Liu Y, Li G, Chen X. Toughening modification of PLLA with PCL in the presence of PCL-b
-PLLA diblock copolymers as compatibilizer. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4530] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sheng Xiang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
- University of the Chinese Academy of Sciences; Beijing China
| | - Lidong Feng
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Xinchao Bian
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Bao Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Bin Sun
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Yanlong Liu
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| |
Collapse
|
18
|
Tsuji H, Tamura KI, Arakawa Y. A versatile strategy for the synthesis and mechanical property manipulation of networked biodegradable polymeric materials composed of well-defined alternating hard and soft domains. RSC Adv 2019; 9:7094-7106. [PMID: 35519995 PMCID: PMC9062625 DOI: 10.1039/c9ra00255c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Networked materials composed of well-defined alternating domains of two types of biodegradable polymers, hard poly(l-lactide) and soft poly(ε-caprolactone), were successfully synthesized.
Collapse
Affiliation(s)
- Hideto Tsuji
- Department of Environmental and Life Sciences
- Graduate School of Engineering
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Ken-ichi Tamura
- Department of Environmental and Life Sciences
- Graduate School of Engineering
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Yuki Arakawa
- Department of Environmental and Life Sciences
- Graduate School of Engineering
- Toyohashi University of Technology
- Toyohashi
- Japan
| |
Collapse
|
19
|
Woodard LN, Grunlan MA. Hydrolytic degradation of PCL-PLLA semi-IPNs exhibiting rapid, tunable degradation. ACS Biomater Sci Eng 2018; 5:498-508. [PMID: 31633012 DOI: 10.1021/acsbiomaterials.8b01135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accelerating the rate of polyester hydrolytic degradation is of interest for numerous biomedical applications. Poly(ε-caprolactone) (PCL) and poly(L-lactic acid) (PLLA) have been extensively studied as thermoplastic homo- and copolymers as well as PCL-PLLA blends. PCL-PLLA semi-interpenetrating networks (semi-IPN) prepared with thermoplastic PLLA embedded in a cross-linked PCL diacrylate (PCL-DA) network were previously shown to exhibit uniquely accelerated degradation behavior that increased with PLLA content. Herein, their properties before and during degradation were further investigated to reveal the origin of this behavior and to better understand the semi-IPNs' degradation mechanism. Initially, semi-IPNs exhibited restricted spherulite size and irregularity, as well as a phase-separated morphology and PLLA-rich surface. Under accelerated conditions (1 M NaOH, 37 °C), degradation was revealed to be initiated in PLLA regions. It was also found that the PCL-DA crosslinking and PCL-PLLA phase separation played the largest roles in degradation rates and that semi-IPNs underwent faster rates of degradation than an analogous blend largely due to the reduced crystallinity of PCL-DA. Non-accelerated conditions (PBS [pH = 7.4], 37 °C) up to 56 weeks, which had never before been studied for polyester semi-IPNs, revealed similar trends in degradation rates.
Collapse
Affiliation(s)
- Lindsay N Woodard
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
20
|
Chummun I, Bhaw-Luximon A, Jhurry D. Modulating matrix-multicellular response using polysucrose-blended with poly-L-lactide or polydioxanone in electrospun scaffolds for skin tissue regeneration. J Biomed Mater Res A 2018; 106:3275-3291. [PMID: 30367544 DOI: 10.1002/jbm.a.36527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Polysucrose (PSuc) is hydrophilic, has excellent biocompatibility with cells as a density gradient and is resistant to enzymes. Its use in electrospun mats for tissue engineering applications has not been investigated due to its amorphous nature. For spinnability and robustness, polysucrose was blended with poly-L-lactide (PLLA) and polydioxanone (PDX) respectively and electrospun into nanofibrous mats. Interaction with cells was assessed using L929 mouse fibroblasts and HaCaT keratinocytes separately and in co-culture. Effect of parameters such as porosity, fiber diameter, surface wettability and mechanical properties of mats on cell-scaffold interactions was studied. Depending on nature and composition of mats, fibroblasts showed dendritic, spindle or round cell morphologies along with the formation of lamellipodia, filopodia, fibrillar or fiber-like projections of 100 nm and 200-300 nm in diameter respectively from the periphery or center of cells. Granular extracellular matrix was formed on both PLLA-PSuc and PDX-PSuc 50-50 seeded with keratinocytes. Growth of keratinocytes was enhanced in co-culture with fibroblasts with the formation of a skin-like layer. Both cells showed the ability to form multilayer structures. The mats maintained their physical integrity during the period of study. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3275-3291, 2018.
Collapse
Affiliation(s)
- Itisha Chummun
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Dhanjay Jhurry
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| |
Collapse
|
21
|
Investigation into the Anticancer Activity and Apoptosis Induction of Brevinin-2R and Brevinin-2R-Conjugated PLA–PEG–PLA Nanoparticles and Strong Cell Cycle Arrest in AGS, HepG2 and KYSE-30 Cell Lines. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Abstract
Strategies to refine the degradation behavior of polyester biomaterials, particularly to overcome the limitations of slow hydrolytic degradation, would broaden their utility. Herein, we examine the complexities of polyester degradation behavior, its assessment and strategies for refinement. The factors governing polyester degradation are strikingly complex. In addition to the half-life of the hydrolytically-labile bond, a series of interdependent material properties must be considered. Thus, methods used to characterize such material properties, both before and during degradation, must be carefully selected. Assessment of degradation behavior is further complicated by the variability of reported test protocols and the need for accelerated rather than real-time in vitro testing conditions. Ultimately, through better control of degradation behavior and correlation of in vitro, simulated degradation to that observed in vivo, the development of superior devices prepared with polyester biomaterials may be achieved.
Collapse
Affiliation(s)
- Lindsay N. Woodard
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
23
|
Botlhoko OJ, Ramontja J, Ray SS. A new insight into morphological, thermal, and mechanical properties of melt-processed polylactide/poly(ε-caprolactone) blends. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Huang H, Chen L, Song G, Tang G. An efficient plasticization method for poly(lactic acid) using combination of liquid-state and solid-state plasticizers. J Appl Polym Sci 2018. [DOI: 10.1002/app.46669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haichao Huang
- Advanced Materials Institute, Graduate School at Shenzhen; Tsinghua University; Shenzhen 518055 China
- School of Materials Science and Engineering; Tsinghua University; Haidian District Beijing 100084 China
| | - Lijie Chen
- Advanced Materials Institute, Graduate School at Shenzhen; Tsinghua University; Shenzhen 518055 China
| | - Guolin Song
- School of Materials Science and Engineering; Tsinghua University; Haidian District Beijing 100084 China
| | - Guoyi Tang
- Advanced Materials Institute, Graduate School at Shenzhen; Tsinghua University; Shenzhen 518055 China
- School of Materials Science and Engineering; Tsinghua University; Haidian District Beijing 100084 China
| |
Collapse
|
25
|
Rosen T, Goldberg I, Navarra W, Venditto V, Kol M. Block-Stereoblock Copolymers of Poly(ϵ-Caprolactone) and Poly(Lactic Acid). Angew Chem Int Ed Engl 2018; 57:7191-7195. [PMID: 29665211 DOI: 10.1002/anie.201803063] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/11/2018] [Indexed: 01/11/2023]
Abstract
A magnesium complex of the type {ONNN}Mg-HMDS wherein {ONNN} is a sequential tetradentate monoanionic ligand is introduced. In the presence of an alcohol initiator this complex catalyzes the living and immortal homopolymerization of the lactide enantiomers and ϵ-caprolactone at room-temperature with exceptionally high activities, as well as the precise block copolymerization of these monomers in a one-pot synthesis by sequential monomer addition. Copolymers of unprecedented microstructures such as the PCL-b-PLLA-b-PDLA and PDLA-b-PLLA-b-PCL-b-PLLA-b-PDLA block-stereoblock microstructures that feature unique thermal properties are readily accessed.
Collapse
Affiliation(s)
- Tomer Rosen
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Israel Goldberg
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Wanda Navarra
- Department of Chemistry and Biology A. Zambelli, and, INSTM Research Unit, University of Salerno, Fisciano, 84084 Salerno, Italy
| | - Vincenzo Venditto
- Department of Chemistry and Biology A. Zambelli, and, INSTM Research Unit, University of Salerno, Fisciano, 84084 Salerno, Italy
| | - Moshe Kol
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| |
Collapse
|
26
|
Ding Y, Feng W, Lu B, Wang P, Wang G, Ji J. PLA-PEG-PLA tri-block copolymers: Effective compatibilizers for promotion of the interfacial structure and mechanical properties of PLA/PBAT blends. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Bolbasov E, Goreninskii S, Tverdokhlebov S, Mishanin A, Viknianshchuk A, Bezuidenhout D, Golovkin A. Comparative Study of the Physical, Topographical and Biological Properties of Electrospinning PCL, PLLA, their Blend and Copolymer Scaffolds. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/350/1/012012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Rosen T, Goldberg I, Navarra W, Venditto V, Kol M. Block-Stereoblock Copolymers of Poly(ϵ
-Caprolactone) and Poly(Lactic Acid). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tomer Rosen
- School of Chemistry; Tel Aviv University; Ramat Aviv Tel Aviv 6997801 Israel
| | - Israel Goldberg
- School of Chemistry; Tel Aviv University; Ramat Aviv Tel Aviv 6997801 Israel
| | - Wanda Navarra
- Department of Chemistry and Biology A. Zambelli, and; INSTM Research Unit; University of Salerno; Fisciano 84084 Salerno Italy
| | - Vincenzo Venditto
- Department of Chemistry and Biology A. Zambelli, and; INSTM Research Unit; University of Salerno; Fisciano 84084 Salerno Italy
| | - Moshe Kol
- School of Chemistry; Tel Aviv University; Ramat Aviv Tel Aviv 6997801 Israel
| |
Collapse
|
29
|
Han W, Liao X, He B, Yang Q, Li G. Disclosing the crystallization behavior and morphology of poly(ϵ-caprolactone) within poly(ϵ-caprolactone)/poly( l-lactide) blends. POLYM INT 2018. [DOI: 10.1002/pi.5548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weiqiang Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Sichuan China
| | - Xia Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Sichuan China
| | - Bin He
- National Engineering Research Center for Biomaterials; Sichuan University; Sichuan China
| | - Qi Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Sichuan China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Sichuan China
| |
Collapse
|
30
|
Improvement of microstructures and properties of poly(lactic acid)/poly(ε-caprolactone) blends compatibilized with polyoxymethylene. J Appl Polym Sci 2018. [DOI: 10.1002/app.46536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Wang Y, Wei Z, Li Y. Toughening polylactide with epoxidized styrene-butadiene impact resin: Mechanical, morphological, and rheological characterization. J Appl Polym Sci 2018. [DOI: 10.1002/app.46058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanshai Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Polymer Science and Engineering of Liaoning Province, Liaoning Engineering Laboratory of Advanced Polymer Materials, Department of Polymer Science and Engineering, Faculty of Chemical, Environmental and Biological Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Key Laboratory of Polymer Science and Engineering of Liaoning Province, Liaoning Engineering Laboratory of Advanced Polymer Materials, Department of Polymer Science and Engineering, Faculty of Chemical, Environmental and Biological Science and Technology; Dalian University of Technology; Dalian 116024 China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Polymer Science and Engineering of Liaoning Province, Liaoning Engineering Laboratory of Advanced Polymer Materials, Department of Polymer Science and Engineering, Faculty of Chemical, Environmental and Biological Science and Technology; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
32
|
Ang HY, Chan J, Toong D, Venkatraman SS, Chia SJ, Huang YY. Tailoring the mechanical and biodegradable properties of binary blends of biomedical thermoplastic elastomer. J Mech Behav Biomed Mater 2018; 79:64-72. [DOI: 10.1016/j.jmbbm.2017.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
|
33
|
In-situ compatibilization of an immiscible liquid hydroxyl-terminated polymer pair by rate controlled reactions with a diisocyanate. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Preparation and characterization of poly(ethylene carbonate)/poly(lactic acid) blends. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Ding Y, Lu B, Wang P, Wang G, Ji J. PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Ugartemendia J, Larrañaga A, Amestoy H, Etxeberria A, Sarasua J. Tougher biodegradable polylactide system for bone fracture fixations: Miscibility study, phase morphology and mechanical properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Nocita D, Forte G, Drakopoulos SX, Visco A, Gianporcaro A, Ronca S. Processing and characterization of bio-polyester reactive blends: From thermoplastic blends to cross-linked networks. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Muthuraj R, Misra M, Mohanty AK. Biodegradable compatibilized polymer blends for packaging applications: A literature review. J Appl Polym Sci 2017. [DOI: 10.1002/app.45726] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rajendran Muthuraj
- Institut de Recherche Dupuy de Lome (IRDL)‐CNRS FRE 3744University of South BrittanyLorient56100 France
| | - Manjusri Misra
- School of EngineeringUniversity of GuelphGuelph Ontario Canada
- Bioproducts Discovery and Development Centre (BDDC), Crop Science Building, Department of Plant AgricultureUniversity of GuelphGuelph Ontario Canada
| | - Amar Kumar Mohanty
- School of EngineeringUniversity of GuelphGuelph Ontario Canada
- Bioproducts Discovery and Development Centre (BDDC), Crop Science Building, Department of Plant AgricultureUniversity of GuelphGuelph Ontario Canada
| |
Collapse
|
39
|
Hesami M, Jalali-Arani A. Cold crystallization behavior of poly(lactic acid) in its blend with acrylic rubber; the effect of acrylic rubber content. POLYM INT 2017. [DOI: 10.1002/pi.5414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahdis Hesami
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | - Azam Jalali-Arani
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
40
|
Obasi HC, Chaudhry AA, Ijaz K, Akhtar H, Malik MH. Development of biocomposites from coir fibre and poly (caprolactone) by solvent casting technique. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2122-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Jing Z, Shi X, Zhang G, Gu J. Synthesis and properties of poly(lactide)/poly(ε-caprolactone) multiblock supramolecular polymers bonded by the self-complementary quadruple hydrogen bonding. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Leng X, Ren Y, Wei Z, Bian Y, Li Y. Synthesis of Star-Comb Double Crystalline Diblock Copolymer of Poly(ε-caprolactone)-block-poly(l-lactide): Effect of Chain Topology on Crystallization Behavior. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuefei Leng
- State Key Laboratory of Fine Chemicals; Department of Polymer Materials; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yingying Ren
- State Key Laboratory of Fine Chemicals; Department of Polymer Materials; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals; Department of Polymer Materials; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yufei Bian
- State Key Laboratory of Fine Chemicals; Department of Polymer Materials; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| | - Yang Li
- State Key Laboratory of Fine Chemicals; Department of Polymer Materials; School of Chemical Engineering; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
43
|
Effect of Ethyl Ester L-Lysine Triisocyanate addition to produce reactive PLA/PCL bio-polyester blends for biomedical applications. J Mech Behav Biomed Mater 2017; 68:308-317. [DOI: 10.1016/j.jmbbm.2017.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/20/2022]
|
44
|
Yao J, Zhang S, Lim LT, Chen X. Investigation of isothiocyanate release from electrospun modified poly(L-lactic acid)/mustard powder composite fibers. Polym J 2017. [DOI: 10.1038/pj.2017.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Finotti PFM, Costa LC, Capote TSO, Scarel-Caminaga RM, Chinelatto MA. Immiscible poly(lactic acid)/poly(ε-caprolactone) for temporary implants: Compatibility and cytotoxicity. J Mech Behav Biomed Mater 2017; 68:155-162. [PMID: 28171812 DOI: 10.1016/j.jmbbm.2017.01.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 11/28/2022]
Abstract
This manuscript focuses on the effect of the addition of a low molecular weight triblock copolymer derived from ε-caprolactone and tetrahydrofuran (CT) on the compatibility and cytotoxicity of immiscible poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) blends. Binary and tertiary PLA/PCL blends were prepared by melt mixing in a twin-screw extruder and their morphological, mechanical and thermal behaviors were investigated by scanning electron microscopy (SEM), tensile and Izod impact test, dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). SEM micrographs showed the CT copolymer suppressed the coalescence phenomena and maintained the size of dispersed PCL domains at approximately 0.35µm. Bioresorbable PLA/PCL blends containing 5wt% of CT copolymer exhibited a remarkable increase in ductility and improved toughness at room temperature. Although the CT copolymer increased the interfacial adhesion, the DMA results suggest it also acts as a plasticizer exclusively for the PCL phase. The cell viability evaluated by the XTT assay confirmed PLA/PCL blends compatibilized by CT copolymer exerted no cytotoxic effect.
Collapse
Affiliation(s)
- Pablo F M Finotti
- Department of Materials Engineering, Engineering School of São Carlos, University of São Paulo - USP, São Carlos, São Paulo 13563-120, Brazil
| | - Lidiane C Costa
- Department of Materials Engineering, Federal University of São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Ticiana S O Capote
- Department of Morphology, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo 14801-603, Brazil
| | - Raquel M Scarel-Caminaga
- Department of Morphology, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo 14801-603, Brazil
| | - Marcelo A Chinelatto
- Department of Materials Engineering, Engineering School of São Carlos, University of São Paulo - USP, São Carlos, São Paulo 13563-120, Brazil.
| |
Collapse
|
46
|
Rizzuto M, Marinetti L, Caretti D, Mugica A, Zubitur M, Müller AJ. Can poly(ε-caprolactone) crystals nucleate glassy polylactide? CrystEngComm 2017. [DOI: 10.1039/c7ce00578d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev 2016; 107:247-276. [PMID: 27125191 PMCID: PMC5482531 DOI: 10.1016/j.addr.2016.04.015] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Varadraj N Vernekar
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
48
|
Toughening modification of diglycerol-based polylactide networks by incorporating poly(propylene sebacate) segments. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Ge F, Wang X, Ran X. Effect of annealing on the properties of polylactide/poly(butylene carbonate) blend. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Ge
- Polymer Composites Engineering Laboratory; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
- University of Chinese Academy of Sciences; Beijing China
| | - Xuemei Wang
- Polymer Composites Engineering Laboratory; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Xianghai Ran
- Polymer Composites Engineering Laboratory; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| |
Collapse
|
50
|
Stoleru E, Zaharescu T, Hitruc EG, Vesel A, Ioanid EG, Coroaba A, Safrany A, Pricope G, Lungu M, Schick C, Vasile C. Lactoferrin-Immobilized Surfaces onto Functionalized PLA Assisted by the Gamma-Rays and Nitrogen Plasma to Create Materials with Multifunctional Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31902-31915. [PMID: 27933972 DOI: 10.1021/acsami.6b09069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Both cold nitrogen radiofrequency plasma and gamma irradiation have been applied to activate and functionalize the polylactic acid (PLA) surface and the subsequent lactoferrin immobilization. Modified films were comparatively characterized with respect to the procedure of activation and also with unmodified sample by water contact angle measurements, mass loss, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), and chemiluminescence measurements. All modified samples exhibit enhanced surface properties mainly those concerning biocompatibility, antimicrobial, and antioxidant properties, and furthermore, they are biodegradable and environmentally friendly. Lactoferrin deposited layer by covalent coupling using carbodiimide chemistry showed a good stability. It was found that the lactoferrin-modified PLA materials present significantly increased oxidative stability. Gamma-irradiated samples and lactoferrin-functionalized samples show higher antioxidant, antimicrobial, and cell proliferation activity than plasma-activated and lactoferrin-functionalized ones. The multifunctional materials thus obtained could find application as biomaterials or as bioactive packaging films.
Collapse
Affiliation(s)
- Elena Stoleru
- "P. Poni" Institute of Macromolecular Chemistry, Physical Chemistry Department, Iasi 700487, Romania
| | - Traian Zaharescu
- National Institute for R&D in Electrical Engineering , Bucharest 030138, Romania
| | - Elena Gabriela Hitruc
- "P. Poni" Institute of Macromolecular Chemistry, Physical Chemistry Department, Iasi 700487, Romania
| | - Alenka Vesel
- Jožef Stefan Institute , Ljubljana 1000, Slovenia
| | - Emil G Ioanid
- "P. Poni" Institute of Macromolecular Chemistry, Physical Chemistry Department, Iasi 700487, Romania
| | - Adina Coroaba
- "P. Poni" Institute of Macromolecular Chemistry, Physical Chemistry Department, Iasi 700487, Romania
| | - Agnes Safrany
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna 1400, Austria
| | - Gina Pricope
- Veterinary and Food Safety Laboratory, Food Safety Department, Iasi 700487, Romania
| | - Maria Lungu
- National Institute of Research and Development for Biological Sciences , Bucharest 060031, Romania
| | - Christoph Schick
- Universität Rostock, Institut für Physik , Rostock 18059, Germany
| | - Cornelia Vasile
- "P. Poni" Institute of Macromolecular Chemistry, Physical Chemistry Department, Iasi 700487, Romania
| |
Collapse
|