1
|
Volova TG, Uspenskaya MV, Kiselev EG, Sukovatyi AG, Zhila NO, Vasiliev AD, Shishatskaya EI. Effect of Monomers of 3-Hydroxyhexanoate on Properties of Copolymers Poly(3-Hydroxybutyrate- co 3-Hydroxyhexanoate). Polymers (Basel) 2023; 15:2890. [PMID: 37447536 DOI: 10.3390/polym15132890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) copolymers with different ratios of monomers synthesized by the wild-type strain Cupriavidus necator B-10646 on sugars, and an industrial sample from Kaneka synthesized by the recombinant strain C. necator NSDG-ΔfadB1 on soybean oil, were studied in a comparative aspect and in relation to poly(3-hydroxybutyrate) P(3HB). The copolymer samples, regardless of the synthesis conditions or the ratio of monomers, had reduced values of crystallinity degree (50-60%) and weight average molecular weight (415-520 kDa), and increased values of polydispersity (2.8-4.3) compared to P(3HB) (70-76%, 720 kDa, and 2.2). The industrial sample had differences in its thermal behavior, including a lower glass transition temperature (-2.4 °C), two peaks in its crystallization and melting regions, a lower melting point (Tmelt) (112/141 °C), and a more pronounced gap between Tmelt and the temperature of thermal degradation (Tdegr). The process, shape, and size of the spherulites formed during the isothermal crystallization of P(3HB) and P(3HB-co-3HHx) were generally similar, but differed in the maximum growth rate of the spherulites during exothermic crystallization, which was 3.5-3.7 μm/min for P(3HB), and 0.06-1.25 for the P(3HB-co-3HHx) samples. The results from studying the thermal properties and the crystallization mechanism of P(3HB-co-3HHx) copolymers are important for improving the technologies for processing polymer products from melts.
Collapse
Affiliation(s)
- Tatiana G Volova
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Mayya V Uspenskaya
- Chemical Engineering Center, Research Institute «Bioengineering» ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| | - Evgeniy G Kiselev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Aleksey G Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Natalia O Zhila
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Aleksander D Vasiliev
- V. Kirensky Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/38, 660036 Krasnoyarsk, Russia
- Basic Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radio Electronics, Siberian Federal University, Kirensky St. 26, 660074 Krasnoyarsk, Russia
| | - Ekaterina I Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
- Chemical Engineering Center, Research Institute «Bioengineering» ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| |
Collapse
|
2
|
El-Taweel SH, Al-Ahmadi AO. Isothermal Crystallization Kinetics of Poly (3-hydroxybutyrate/ Poly(ethylene-co-vinyl acetate) Blends Enhanced by NH4Cl as a Nucleating Agent. J MACROMOL SCI B 2019. [DOI: 10.1080/00222348.2019.1593620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Safaa H. El-Taweel
- Chemistry Department Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Chemistry Department Faculty of Science, Cairo University, Orman-Giza, Egypt
| | - Arwa O. Al-Ahmadi
- Chemistry Department Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| |
Collapse
|
3
|
El-Taweel SH, Al-Ahmadi AO, Alhaddad O, Okasha RM. Cationic Cyclopentadienyliron Complex as a Novel and Successful Nucleating Agent on the Crystallization Behavior of the Biodegradable PHB Polymer. Molecules 2018; 23:molecules23102703. [PMID: 30347768 PMCID: PMC6222505 DOI: 10.3390/molecules23102703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/03/2022] Open
Abstract
Cationic cyclopentadienyliron (CpFe+) is one of the most fruitful organometallic moieties that has been utilized to mediate the facile synthesis of a massive number of macromolecules. However, the ability of this compound to function as a nucleating agent to improve other macromolecule properties has not been explored. This report scrutinizes the influence of the cationic complex as a novel nucleating agent on the spherulitic morphology, crystal structure, and isothermal and non-isothermal crystallization behavior of the Poly(3-hydroxybutyrate) (PHB) bacterial origin. The incorporation of the CpFe+ into the PHB materials caused a significant increase in its spherulitic numbers with a remarkable reduction in the spherulitic sizes. Unlike other nucleating agents, the SEM imageries exhibited a good dispersion without forming agglomerates of the CpFe+ moieties in the PHB matrix. Moreover, according to the FTIR analysis, the cationic organoiron complex has a strong interaction with the PHB polymeric chains via the coordination with its ester carbonyl. Yet, the XRD results revealed that this incorporation had no significant effect on the PHB crystalline structure. Though the CpFe+ had no effect on the polymer’s crystal structure, it accelerated outstandingly the melt crystallization of the PHB. Meanwhile, the crystallization half-times (t0.5) of the PHB decreased dramatically with the addition of the CpFe+. The isothermal and non-isothermal crystallization processes were successfully described using the Avrami model and a modified Avrami model, as well as a combination of the Avrami and Ozawa methods. Finally, the effective activation energy of the PHB/CpFe+ nanocomposites was much lower than those of their pure counterparts, which supported the heterogeneous nucleation mechanism with the organometallic moieties, indicating that the CpFe+ is a superior nucleating agent for this class of polymer.
Collapse
Affiliation(s)
- Safaa H El-Taweel
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
- Chemistry Department, Faculty of Science, Cairo University, Orman-Giza, P.O. 12613, Egypt.
| | - Arwa O Al-Ahmadi
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Omaima Alhaddad
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Rawda M Okasha
- Department of Chemistry, Taibah University, 30002 Al-Madinah Al-Munawarah, Saudi Arabia.
| |
Collapse
|
4
|
Wang H, Tao X, Newton E. Dielectric Properties and Relaxation Behavior of Polymethylsiloxane-imide Films. HIGH PERFORM POLYM 2016. [DOI: 10.1177/095400830301500105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have investigated the dielectric properties, dielectric relaxation behavior, electric conduction and kinetic characteristics of polysiloxane-imide films. The addition of siloxane is a very effective way to reduce the dielectric constant (E') of polyimides. For example, polysiloxane-imide [BPDA + siloxane] has a very low dielectric constant of 2.66, compared to normal polyimides such as Upilex-S [BPDA + pPDA] with a dielectric constant of 3.47. The dielectric relaxation behavior of polysiloxane-imide is quite similar to that of fluorine-containing polysiloxane-imide. As frequency increases, the transition peaks of polysiloxane-imide move toward high temperature and the ce relaxation strengths decrease. The fJ peak corresponds to the 3 dipolar relaxation whereas the a peak is due to the conductive effects in the bulk and the ca dipolar relaxation. The activation energy of the ce transition decreases with increasing frequency, while the activation energy of the 3 transition does not vary with frequency The a peak is reduced with the increase of frequency, while the value of the 3 peak hardly changes with frequency
Collapse
Affiliation(s)
- Huimin Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; School of Chemistry and Chemical Engineering, Shandong University, Jinan, Peoples Republic of China
| | | | - Edward Newton
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
5
|
Volova TG, Zhila NO, Shishatskaya EI, Mironov PV, Vasil’ev AD, Sukovatyi AG, Sinskey AJ. The physicochemical properties of polyhydroxyalkanoates with different chemical structures. POLYMER SCIENCE SERIES A 2013. [DOI: 10.1134/s0965545x13070080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Merino EG, Rodrigues C, Viciosa MT, Melo C, Sotomayor J, Dionísio M, Correia NT. Phase Transformations Undergone by Triton X-100 Probed by Differential Scanning Calorimetry and Dielectric Relaxation Spectroscopy. J Phys Chem B 2011; 115:12336-47. [DOI: 10.1021/jp2028033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esther G. Merino
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carla Rodrigues
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - M. Teresa Viciosa
- CQFM − Centro de Química-Física Molecular and IN − Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carlos Melo
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João Sotomayor
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Madalena Dionísio
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Natália T. Correia
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Unité Matériaux et Transformation (UMET), UMR CNRS 8207, UFR de Physique, BAT P5, Université Lille 1, 59655 Villeneuve d’Ascq, France
| |
Collapse
|
7
|
Viciosa MT, Correia NT, Sanchez MS, Carvalho AL, Romão MJ, Gómez Ribelles JL, Dionísio M. Real-Time Monitoring of Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former. J Phys Chem B 2009; 113:14209-17. [DOI: 10.1021/jp903212g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. T. Viciosa
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, CQFM - Centro de Química-Física Molecular and IN - Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal, Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain, Centro de Investigación Príncipe Felipe, Avda
| | - N. T. Correia
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, CQFM - Centro de Química-Física Molecular and IN - Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal, Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain, Centro de Investigación Príncipe Felipe, Avda
| | - M. Salmerón Sanchez
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, CQFM - Centro de Química-Física Molecular and IN - Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal, Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain, Centro de Investigación Príncipe Felipe, Avda
| | - A. L. Carvalho
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, CQFM - Centro de Química-Física Molecular and IN - Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal, Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain, Centro de Investigación Príncipe Felipe, Avda
| | - M. J. Romão
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, CQFM - Centro de Química-Física Molecular and IN - Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal, Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain, Centro de Investigación Príncipe Felipe, Avda
| | - J. L. Gómez Ribelles
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, CQFM - Centro de Química-Física Molecular and IN - Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal, Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain, Centro de Investigación Príncipe Felipe, Avda
| | - M. Dionísio
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, CQFM - Centro de Química-Física Molecular and IN - Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal, Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain, Centro de Investigación Príncipe Felipe, Avda
| |
Collapse
|
8
|
|
9
|
Napolitano S, Wübbenhorst M. Slowing Down of the Crystallization Kinetics in Ultrathin Polymer Films: A Size or an Interface Effect? Macromolecules 2006. [DOI: 10.1021/ma061304u] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Napolitano
- Katholieke Universiteit Leuven, Laboratory for Acoustics
and Thermal Physics, Department of Physics and Astronomy,
Celestijnenlaan 200D, B-3001 Heverlee, Belgium
| | - Michael Wübbenhorst
- Katholieke Universiteit Leuven, Laboratory for Acoustics
and Thermal Physics, Department of Physics and Astronomy,
Celestijnenlaan 200D, B-3001 Heverlee, Belgium
| |
Collapse
|
10
|
Häberlein H, Seliger H, Kohler R, Sulzberger P. Cost-effective synthesis of environmentally benign materials on the basis of poly-3-hydroxybutyrate. POLIMEROS 2005. [DOI: 10.1590/s0104-14282005000200011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
El-Taweel SH, Stoll B, Höhne GWH, Mansour AA, Seliger H. Stress-strain behavior of blends of bacterial polyhydroxybutyrate. J Appl Polym Sci 2004. [DOI: 10.1002/app.21215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Ezquerra TA, Nogales A. Probing Crystallization Studying Amorphous Phase Evolution. POLYMER CRYSTALLIZATION 2003. [DOI: 10.1007/3-540-45851-4_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|