1
|
Hong Z, Peng D, Tembrock LR, Liao X, Xu D, Liu X, Wu Z. Chromosome-level genome assemblies from two sandalwood species provide insights into the evolution of the Santalales. Commun Biol 2023; 6:587. [PMID: 37264116 DOI: 10.1038/s42003-023-04980-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
Sandalwood is one of the most expensive woods in the world and is well known for its long-lasting and distinctive aroma. In our study, chromosome-level genome assemblies for two sandalwood species (Santalum album and Santalum yasi) were constructed by integrating NGS short reads, RNA-seq, and Hi-C libraries with PacBio HiFi long reads. The S. album and S. yasi genomes were both assembled into 10 pseudochromosomes with a length of 229.59 Mb and 232.64 Mb, containing 21,673 and 22,816 predicted genes and a repeat content of 28.93% and 29.54% of the total genomes, respectively. Further analyses resolved a Santalum-specific whole-genome triplication event after divergence from ancestors of the Santalales lineage Malania, yet due to dramatic differences in transposon content, the Santalum genomes were only one-sixth the size of the Malania oleifera genome. Examination of RNA-seq data revealed a suite of genes that are differentially expressed in haustoria and might be involved in host hemiparasite interactions. The two genomes presented here not only provide an important comparative dataset for studying genome evolution in early diverging eudicots and hemiparasitic plants but will also hasten the application of conservation genomics for a lineage of trees recovering from decades of overexploitation.
Collapse
Affiliation(s)
- Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 510520, Guangzhou, China
| | - Dan Peng
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, 518120, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, 518120, Shenzhen, China
| | - Daping Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 510520, Guangzhou, China
| | - Xiaojing Liu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 510520, Guangzhou, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, 518120, Shenzhen, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China.
| |
Collapse
|
2
|
Teixeira da Silva JA, Kher MM, Soner D, Page T, Zhang X, Nataraj M, Ma G. Sandalwood: basic biology, tissue culture, and genetic transformation. PLANTA 2016; 243:847-87. [PMID: 26745967 DOI: 10.1007/s00425-015-2452-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/16/2015] [Indexed: 05/07/2023]
Abstract
Sustainable resource preservation of Santalum species that yield commercially important forest products is needed. This review provides an understanding of their basic biology, propagation, hemi-parasitic nature, reproductive biology, and biotechnology. Many species of the genus Santalum (Santalaceae) have been exploited unremittingly for centuries, resulting in the extinction of one and the threatened status of three other species. This reduction in biodiversity of sandalwood has resulted from the commercial exploitation of its oil-rich fragrant heartwood. In a bid to conserve the remaining germplasm, biotechnology provides a feasible, and effective, means of propagating members of this genus. This review provides a detailed understanding of the biological mechanisms underlying the success or failure of traditional propagation, including a synopsis of the process of hemi-parasitism in S. album, and of the suitability of host plants to sustain the growth of seedlings and plants under forestry production. For the mass production of economically important metabolites, and to improve uniformity of essential oils, the use of clonal material of similar genetic background for cultivation is important. This review summarizes traditional methods of sandalwood production with complementary and more advanced in vitro technologies to provide a basis for researchers, conservationists and industry to implement sustainable programs of research and development for this revered genus.
Collapse
Affiliation(s)
| | - Mafatlal M Kher
- B.R. Doshi School of Biosciences, Sardar Patel University, Sardar Patel Maidan, Vadtal Rd., P.O. Box 39, Vallabh Vidyanagar, Gujarat, 388120, India.
| | - Deepak Soner
- B.R. Doshi School of Biosciences, Sardar Patel University, Sardar Patel Maidan, Vadtal Rd., P.O. Box 39, Vallabh Vidyanagar, Gujarat, 388120, India.
| | - Tony Page
- Forests and People Research Centre, University of Sunshine Coast, Maroochydore DC, Locked Bag 4, Sunshine Coast, QLD, 4558, Australia.
| | - Xinhua Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - M Nataraj
- B.R. Doshi School of Biosciences, Sardar Patel University, Sardar Patel Maidan, Vadtal Rd., P.O. Box 39, Vallabh Vidyanagar, Gujarat, 388120, India.
| | - Guohua Ma
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
3
|
Puhan P, Rath S. Induction, Development and Germination of Somatic Embryos from In vitro Grown Seedling Explants in Desmodium gangeticum L.: A Medicinal Plant. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/rjmp.2012.346.369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|