1
|
Khangkhachit W, Suyotha W, O-Thong S, Prasertsan P. Cellulase production by Aspergillus fumigatus A4112 and the potential use of the enzyme in cooperation with surfactant to enhance floating oil recovery and methane production from palm oil mill effluent. Prep Biochem Biotechnol 2024:1-12. [PMID: 38909283 DOI: 10.1080/10826068.2024.2368627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This research performed cellulase production by Aspergillus fumigatus A4112 and evaluated its potential use in palm oil mill effluent (POME) hydrolysis to recover oil simultaneously with the generation of fermentable sugar useful for biofuel production under non-sterilized conditions. Empty fruit bunch (EFB) without pretreatment was used as carbon source. The combination of nitrogen sources facilitated CMCase production. The maximum activity (3.27 U/mL) was obtained by 1.0 g/L peptone and 1.5 g/L (NH4)2SO4 and 20 g/L EFB at 40 °C for 7 days. High level of FPase activity (39.51 U/mL) was also obtained. Interestingly, the enzyme retained its cellulase activities more than 60% at ambient temperature over 15 days. In enzymatic hydrolysis, Triton X-100 was an effective surfactant to increase total oil recovery in the floating form. High yield of reducing sugar (50.13 g/L) and 21% (v/v) of floating oil was recoverable at 65 °C for 48 h. Methane content of the raw POME increased from 41.49 to 64.94% by using de-oiled POME hydrolysate which was higher than using the POME hydrolysate (59.82%). The results demonstrate the feasibility of the constructed process for oil recovery coupled with a subsequent step for methane yield enhancement in biogas production process that benefits the palm oil industry.
Collapse
Affiliation(s)
- Wiyada Khangkhachit
- International Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Wasana Suyotha
- International Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Sompong O-Thong
- Biofuel and Biocatalysis Innovation Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, Thailand
| | - Poonsuk Prasertsan
- International Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
2
|
Spatial heterogeneity of the microbiome and metabolome profiles of high-temperature Daqu in the same workshop. Food Res Int 2022; 156:111298. [DOI: 10.1016/j.foodres.2022.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
|
3
|
Yaashikaa PR, Senthil Kumar P, Varjani S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. BIORESOURCE TECHNOLOGY 2022; 343:126126. [PMID: 34673193 DOI: 10.1016/j.biortech.2021.126126] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 05/26/2023]
Abstract
Energy recovery from waste resources is a promising approach towards environmental consequences. In the prospect of environmental sustainability, utilization of agro-industrial waste residues as feedstock for biorefinery processes have gained widespread attention. In the agro-industry, various biomasses are exposed to different unit processes for offering value to various agro-industrial waste materials. Agro-industrial wastes can generate a substantial amount of valuable products such as fuels, chemicals, energy, electricity, and by-products. This paper reviews the methodologies for valorization of agro-industrial wastes and their exploitation for generation of renewable energy products. In addition, management of agro-industrial wastes and products from agro-industrial wastes have been elaborated. The waste biorefinery process using agro-industrial wastes does not only offer energy, it also offers environmentally sustainable modes, which address effective management of waste streams. This review aims to highlight the cascading use of biomass from agro-industrial wastes into the systemic approach for economic development.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| |
Collapse
|
4
|
Patel A, Divecha J, Shah A. Fomitopsis meliae CFA 2, a novel brown rot for endoglucanase: emphasis towards enhanced endoglucanase production by statistical approach. Mycology 2021; 12:325-340. [PMID: 34900384 PMCID: PMC8654404 DOI: 10.1080/21501203.2021.1918277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brown rot basidiomycetes are a principal group of wood-decaying fungi which degrade wood cellulose and hemicellulose by the combination of carbohydrate active enzymes and non-enzymatic oxidation reactions. Very scant information is available on carbohydrate active enzymes of brown rot fungi. In this context, present study focused on the production of cellulolytic–hemicellulolytic enzymes from newly isolated brown rot Fomitopsis meliae CFA 2. Under solid-state fermentation using wheat bran as the substrate Fomitopsis meliae CFA 2 was able to produce a maximum of 1391.12 ± 21.13 U/g of endoglucanase along with other cellulolytic and hemicellulolytic enzymes. Various fermentation parameters were optimised for enhanced production of endoglucanase by employing Plackett-Burman design followed by Box-Behnken design. A well-fitted regression equation with R2 value of 98.91% was attained for endoglucanase. The yield of endoglucanase was enhanced by 1.83-fold after executing statistical optimisation of various fermentative parameters. The newly isolated Fomitopsis meliae CFA 2 was found to be a potential producer of endoglucanase. Enzymatic saccharification of alkali-treated wheat straw and rice straw resulted in release of 190.8 and 318.8 mg/g of reducing sugars, respectively.
Collapse
Affiliation(s)
- Amisha Patel
- P. G. Department of Biosciences, Sardar Patel University, Satellite Campus, Anand, Gujarat, India
| | - Jyoti Divecha
- Department of Statistics, Sardar Patel University, Gujarat, India
| | - Amita Shah
- P. G. Department of Biosciences, Sardar Patel University, Satellite Campus, Anand, Gujarat, India
| |
Collapse
|
5
|
Zaki AG, El-Sayed ESR. New and potent production platform of the acetylcholinesterase inhibitor huperzine A by gamma-irradiated Alternaria brassicae under solid-state fermentation. Appl Microbiol Biotechnol 2021; 105:8869-8880. [PMID: 34748037 DOI: 10.1007/s00253-021-11678-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Huperzine-A (HupA) is an emerging, powerful, and promising natural acetylcholinesterase inhibitor. Despite that, the achieved yields of HupA from microbial sources are still far from the industrial applications. Accordingly, this paper was conducted to valorize solid-state fermentation (SSF) as an efficient production platform of HupA. Four agro-industrial wastes, namely rice bran, potato peel, sugarcane bagasse, and wheat bran, were tested and screened as cultural substrates for the production of HupA by the endophytic Alternaria brassica under SSF. Maximum HupA production was attained on using rice bran moistened by Czapex's dox mineral broth. In the effort to increase the HupA titer, supplementation of the best moistening agent by different carbon and nitrogen sources was successfully investigated. Additionally, factors affecting HupA production under SSF including substrate concentration, moistening level, and inoculum concentration were optimized using response surface methodology. A Box-Behnken design was applied for generating a predictive model of the interactions between these factors. Under the optimum conditions of 15 g rice bran, inoculum concentration of 5 × 106 spores mL-1, and 60% moisture level, HupA concentration was intensified to 518.93 μg g-1. Besides, HupA production by the fungal strain was further enhanced using gamma-irradiation mutagenesis. The final HupA production was significantly intensified following exposure to 0.5 KGy gamma radiation to 1327 μg g-1, which represents a 12.85-fold increase. This is the first report on the successful production of the natural fungal metabolite HupA under SSF. Moreover, the achieved yield in this study using agro-industrial wastes may contribute to reducing the cost of HupA manufacture.Key points• Different agro-industrial by-products were tried as cultural substrates for the production of the acetylcholinesterase inhibitor HupA under SSF for the first time.• Factors affecting HupA production under SSF were optimized using response surface methodology.• The final HupA production was intensified following exposure to gamma radiation recording 1327 μg g-1, which represents a 12.85-fold increase.
Collapse
Affiliation(s)
- Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
6
|
Gao B, Xiao Y, Zhang Q, Sun J, Zhang Z, Zhu D. Concurrent production of glycyrrhetic acid 3- O-mono-β-d-glucuronide and lignocellulolytic enzymes by solid-state fermentation of a plant endophytic Chaetomium globosum. BIORESOUR BIOPROCESS 2021; 8:88. [PMID: 34540556 PMCID: PMC8442819 DOI: 10.1186/s40643-021-00441-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Glycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG) as an important derivative of glycyrrhizin (GL) shows stronger biological activities and higher sweetness than GL. The biotransformation process is considered as an efficient strategy for GAMG production, due to its mild reaction, high production efficiency and environmentally friendly status. In this study, licorice straw was used for the first time as a medium for GAMG and lignocellulosic enzyme production via solid-state fermentation (SSF) of endophytic fungus Chaetomium globosum DX-THS3. The fermentation conditions including particle size, temperature, seed age, inoculum size, and moisture of substrate were optimized. Furthermore, additional nitrogen sources and carbon sources were screened for GAMG production by C. globosum DX-THS3 of SSF. Under optimal fermentation conditions, the percent conversion of glycyrrhizin reached 90% in 15 days, whereas the control needed 35 days to achieve the same result. The productivity of optimization (P = 2.1 mg/g/day) was 2.33-fold that of non-optimization (P = 0.9 mg/g/day). Meanwhile, high activities of filter paper enzyme (FPase) (245.80 U/g), carboxymethyl cellulase (CMCase) (33.67 U/g), xylanase (83.44 U/g), and β-glucuronidase activity (271.42 U/g) were obtained faster than those in the control during SSF. Our study provides a novel and efficient strategy for GAMG production and indicates C. globosum DX-THS3 as a potential producer of lignocellulolytic enzymes. Supplementary Information The online version contains supplementary material available at 10.1186/s40643-021-00441-y.
Collapse
Affiliation(s)
- Boliang Gao
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Yiwen Xiao
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China.,Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022 China
| | - Qian Zhang
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Junru Sun
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Zhibing Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022 China
| | - Du Zhu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China.,Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022 China
| |
Collapse
|
7
|
Bioprospecting of Thermophilic Fungal Enzymes and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
El‐Sayed E, Ahmed A, Al‐Hagar O. Agro‐industrial wastes for production of paclitaxel by irradiated
Aspergillus fumigatus
under solid‐state fermentation. J Appl Microbiol 2020; 128:1427-1439. [DOI: 10.1111/jam.14574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
Affiliation(s)
- E.R. El‐Sayed
- Plant Research Department Nuclear Research Center Atomic Energy Authority Cairo Egypt
| | - A.S. Ahmed
- Plant Research Department Nuclear Research Center Atomic Energy Authority Cairo Egypt
| | - O.E.A. Al‐Hagar
- Plant Research Department Nuclear Research Center Atomic Energy Authority Cairo Egypt
| |
Collapse
|
9
|
Liu P, Miao L. Multiple Batches of Fermentation Promote the Formation of Functional Microbiota in Chinese Miscellaneous-Flavor Baijiu Fermentation. Front Microbiol 2020; 11:75. [PMID: 32082290 PMCID: PMC7005924 DOI: 10.3389/fmicb.2020.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
Baiyunbian baijiu, the most popular miscellaneous-flavor baijiu in China, has been widely consumed for decades. Similar to many Chinese baijiu, Baiyunbian baijiu is fermented in five successive batches every year. Sensory analysis demonstrated that the raw baijiu obtained from the last two fermentation batches always has better quality than that produced from the former three batches. In this study, the microbial compositions of fungi and bacteria in each fermentation batch were investigated via high-throughput sequencing. The results showed that Bacillus, Virgibacillus, and Lactobacillus dominated the bacterial community in the last two batches, and the most prevalent fungi were Paecilomyces, Saccharomyces, and Zygosaccharomyces. In contrast, large percentages of fungi belonging to Thermomyces, Thermoascus, Monascus, and Issatchenkia and prokaryotes belonging to Acetobacter, Lactobacillus, and Thermoactinomyces were observed in the former three fermentation batches. GC-MS analysis revealed that the fermented grains sampled from the latter two batches contained high concentrations of ethyl lactate, 2,3-butanediol and ethyl caproate, which were mainly generated by co-fermentation of Lactobacillus and yeast. The high acidity of the fermented grains in the fourth and fifth fermentation batches as well as the large contents of ethanol and moisture promoted the formation of the functional microbial community. This study provides insight into factors that influenced the baijiu fermentation and is helpful for developing new fermentation techniques with higher baijiu quality.
Collapse
Affiliation(s)
- Pulin Liu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lihong Miao
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
10
|
Efficient enzymatic saccharification of macroalgal biomass using a specific thermostable GH 12 endoglucanase from Aspergillus terreus JL1. World J Microbiol Biotechnol 2019; 36:5. [DOI: 10.1007/s11274-019-2779-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 11/29/2019] [Indexed: 11/26/2022]
|
11
|
|
12
|
Miao J, Wang M, Ma L, Li T, Huang Q, Liu D, Shen Q. Effects of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5: insights into performance, transcriptional, and proteomic profiles. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:4. [PMID: 30622646 PMCID: PMC6318881 DOI: 10.1186/s13068-018-1350-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND As a ubiquitous filamentous fungal, Aspergillus spp. play a critical role in lignocellulose degradation, which was also defined as considerable cell factories for organic acids and industrially relevant enzymes producer. Nevertheless, the production of various extracellular enzymes can be influenced by different factors including nitrogen source, carbon source, cultivation temperature, and initial pH value. Thus, this study aims to reveal how amino acids affect the decomposition of lignocellulose by Aspergillus fumigatus Z5 through transcriptional and proteomics methods. RESULTS The activities of several lignocellulosic enzymes secreted by A. fumigatus Z5 adding with cysteine, methionine, and ammonium sulfate were determined with the chromatometry method. The peak of endo-glucanase (7.33 ± 0.03 U mL-1), exo-glucanase (10.50 ± 0.07 U mL-1), β-glucosidase (21.50 ± 0.22 U mL-1), and xylanase (76.43 ± 0.71 U mL-1) were all obtained in the Cys treatment. The secretomes of A. fumigatus Z5 under different treatments were also identified by LC-MS/MS, and 227, 256 and 159 different proteins were identified in the treatments of Cys, Met, and CK (Control, treatment with ammonium sulfate as the sole nitrogen source), respectively. Correlation analysis results of transcriptome and proteome data with fermentation profiles showed that most of the cellulose-degrading enzymes including cellulases, hemicellulases and glycoside hydrolases were highly upregulated when cysteine was added to the growth medium. In particular, the enzymes that convert cellulose into cellobiose appear to be upregulated. This study could increase knowledge of lignocellulose bioconversion pathways and fungal genetics. CONCLUSIONS Transcriptome and proteome analyses' results indicated that cysteine could significantly promote the secretion of lignocellulosic enzymes of an efficient lignocellulosic decomposing strain, A. fumigatus Z5. The possible reason for these results is that Z5 preferred to use amino acids such as cysteine to adapt to the external environment through upregulating carbon-related metabolism pathways.
Collapse
Affiliation(s)
- Jiaxi Miao
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
| | - Mengmeng Wang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Ma
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tuo Li
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiwei Huang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongyang Liu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
13
|
An Insight into Fungal Cellulases and Their Industrial Applications. Fungal Biol 2019. [DOI: 10.1007/978-3-030-14726-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
|
15
|
Yan Q, Yang H, Jiang Z, Liu E, Yang S. A novel thermostable β-1,3-1,4-glucanase from Thermoascus aurantiacus and its application in oligosaccharide production from oat bran. Carbohydr Res 2018; 469:31-37. [DOI: 10.1016/j.carres.2018.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022]
|
16
|
Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-017-0187-z] [Citation(s) in RCA: 424] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
17
|
Lin WC, Lee MT, Lo CT, Chang SC, Lee TT. Effects of dietary supplementation of Trichoderma pseudokoningii fermented enzyme powder on growth performance, intestinal morphology, microflora and serum antioxidantive status in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1355273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wei Chih Lin
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Min Ting Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Chaur Tsuen Lo
- Department of Biotechnology, National Formosa University, Huwei, Taiwan
| | - Shen Chang Chang
- Livestock Research Institute, Council of Agriculture, Kaohsiung Animal Propagation Station, Kaohsiung, Taiwan
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Menegol D, Scholl AL, Dillon AJP, Camassola M. Use of elephant grass (Pennisetum purpureum) as substrate for cellulase and xylanase production in solid-state cultivation by Penicillium echinulatum. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1590/0104-6632.20170343s20150822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J Microbiol Biotechnol 2017; 33:109. [DOI: 10.1007/s11274-017-2278-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
20
|
Sharma D, Goel G, Bansal S, Mahajan R, Sharma BM, Chauhan RS. Retraction: Characterization of cellulolytic activities of newly isolated Thelephora sowerbyi from North-Western Himalayas on different lignocellulosic substrates. J Basic Microbiol 2016; 56:1403. [PMID: 26059280 DOI: 10.1002/jobm.201500107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/12/2015] [Indexed: 11/08/2022]
Abstract
Characterization of cellulolytic activities of newly isolated Thelephora sowerbyi from North-Western Himalayas on different lignocellulosic substrate J. Basic Microbiol. 2015, 55, 1-11 - DOI: 10.1002/jobm.201500107 The above article from the Journal of Basic Microbiology, published online on 08 June 2015 in Wiley Online Library as Early View (http://onlinelibrary.wiley.com/doi/10.1002/jobm.201500107/pdf), has been retracted by agreement between the authors, the Editor-in-Chief and Wiley-VCH GmbH & Co. KGaA. The retraction has been agreed because the microorganism studied in the described experiments has been identified as the fungus Cotylidia pannosa (Gene Accession No. KT008117) instead of Thelephora sowerbyi. The culture has been identified on the basis of the sequence of the amplified ITS region of the microorganism which was submitted by the authors to the NCBI database.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Gunjan Goel
- Department of Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Rishi Mahajan
- Department of Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - B M Sharma
- Department of Plant Pathology, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Rajinder Singh Chauhan
- Department of Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| |
Collapse
|
21
|
Jain KK, Kumar S, Deswal D, Kuhad RC. Improved Production of Thermostable Cellulase from Thermoascus aurantiacus RCKK by Fermentation Bioprocessing and Its Application in the Hydrolysis of Office Waste Paper, Algal Pulp, and Biologically Treated Wheat Straw. Appl Biochem Biotechnol 2016; 181:784-800. [DOI: 10.1007/s12010-016-2249-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
|
22
|
Purification and characterization of low molecular weight extreme alkaline xylanase from the thermophilic fungus Myceliophthora thermophila BF1-7. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Parkhey P, Gupta P, Eswari JS. Optimization of Cellulase Production from Isolated Cellulolytic Bacterium: Comparison between Genetic Algorithms, Simulated Annealing, and Response Surface Methodology. CHEM ENG COMMUN 2016. [DOI: 10.1080/00986445.2016.1230736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Li P, Lin W, Liu X, Wang X, Luo L. Environmental Factors Affecting Microbiota Dynamics during Traditional Solid-state Fermentation of Chinese Daqu Starter. Front Microbiol 2016; 7:1237. [PMID: 27540378 PMCID: PMC4972817 DOI: 10.3389/fmicb.2016.01237] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the microbiota dynamics during two industrial-scale traditional solid-state fermentation (SSF) processes of Daqu starters. Similar evolution profiles of environmental parameters, enzymatic activities, microbial amounts, and communities were observed during the medium temperature SSF (MTSSF) and low temperature SSF (LTSSF) processes. Orders of Rickettsiales and Streptophyta only dominated the initial 2 days, and Eurotiales only predominated from days 10 to 24, however, phylotypes of Enterobacteriales, Lactobacillales, Bacillales, Saccharomycetales, and Mucorales both prevailed throughout the MTSSF and LTSSF processes. Nevertheless, the pH in MTSSF process on day 5 were 5.28, while in LTSSF process (4.87) significantly lower (P < 0.05). The glucoamylase activities in MTSSF process dropped from 902.71 to 394.33 mg glucose g(-1) h(-1) on days 5 to 24, while significantly lower (P < 0.05) in LTSSF process and decreased from 512.25 to 268.69 mg glucose g(-1) h(-1). The relative abundance of Enterobacteriales and Lactobacillales in MTSSF process constituted from 10.30 to 71.73% and 2.34 to 16.68%, while in LTSSF process ranged from 3.16 to 41.06% and 8.43 to 57.39%, respectively. The relative abundance of Eurotiales in MTSSF process on days 10 to 24 decreased from 36.10 to 28.63%, while obviously higher in LTSSF process and increased from 52.00 to 72.97%. Furthermore, lower bacterial richness but higher fungal richness were displayed, markedly differences in bacterial communities but highly similarities in fungal communities were exhibited, during MTSSF process comparatively to the LTSSF process. Canonical correspondence analysis revealed microbial structure transition happened at thermophilic stages under environmental stress of moisture, pH, acidity, and pile temperature. These profound understanding might help to effectively control the traditional Daqu SSF process by adjusting relevant environmental parameters.
Collapse
Affiliation(s)
- Pan Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology Guangzhou, China
| | - Weifeng Lin
- College of Light Industry and Food Sciences, South China University of Technology Guangzhou, China
| | - Xiong Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology Guangzhou, China
| | - Xiaowen Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology Guangzhou, China
| | - Lixin Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology Guangzhou, China
| |
Collapse
|
25
|
Kumar A, Dutt D, Gautam A. Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram residue as the substrate and its industrial applications. J Genet Eng Biotechnol 2016; 14:107-118. [PMID: 30647604 PMCID: PMC6299890 DOI: 10.1016/j.jgeb.2016.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/07/2016] [Accepted: 06/18/2016] [Indexed: 10/25/2022]
Abstract
The production of crop residues in India is estimated to be about 500-550 million tons annually. It is estimated that about 93 million tons of crop residues is burnt annually which is not only wastage of valuable biomass resources but pollution of the environment with the production of green house gases also. Among different low cost crop residues, black gram residue as the substrate produced maximal endoglucanase, FPase, and β-glucosidase activities from Aspergillus nidulans AKB-25 under solid-state fermentation. During optimisation of cultural parameters A. nidulans AKB-25 produced maximal endoglucanase (152.14 IU/gds), FPase (3.42 FPU/gds) and xylanase (2441.03 IU/gds) activities. The crude enzyme was found effective for the saccharification of pearl millet stover and bio-deinking of mixed office waste paper. The crude enzyme from A. nidulans AKB-25 produced maximum fermentable sugars of 546.91 mg/g from alkali-pretreated pearl millet stover by saccharification process at a dose of 15 FPU/g of substrate. Pulp brightness and deinking efficiency of mixed office waste paper improved by 4.6% and 25.01% respectively and mitigated dirt counts by 74.70% after bio-deinking. Physical strength properties like burst index, tensile index and double fold number were also improved during bio-deinking of mixed office waste paper.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247 001, India
| | | | | |
Collapse
|
26
|
Teixeira da Silva VDC, de Souza Coto AL, de Carvalho Souza R, Bertoldi Sanchez Neves M, Gomes E, Bonilla-Rodriguez GO. Effect of pH, Temperature, and Chemicals on the Endoglucanases and β-Glucosidases from the Thermophilic Fungus Myceliophthora heterothallica F.2.1.4. Obtained by Solid-State and Submerged Cultivation. Biochem Res Int 2016; 2016:9781216. [PMID: 27242927 PMCID: PMC4875970 DOI: 10.1155/2016/9781216] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/03/2016] [Accepted: 04/12/2016] [Indexed: 01/13/2023] Open
Abstract
This work reports endoglucanase and beta-glucosidase production by the thermophilic fungus Myceliophthora heterothallica in solid-state (SSC) and submerged (SmC) cultivation. Wheat bran and sugarcane bagasse were used for SSC and cardboard for SmC. Highest endoglucanase production in SSC occurred after 192 hours: 1,170.6 ± 0.8 U/g, and in SmC after 168 hours: 2,642 ± 561 U/g. The endoglucanases and beta-glucosidases produced by both cultivation systems showed slight differences concerning their optimal pH and temperature. The number of endoglucanases was also different: six isoforms in SSC and ten in SmC. Endoglucanase activity remained above 50% after incubation between pH 3.0 and 9.0 for 24 h for both cultivation systems. The effect of several chemicals displayed variation between SSC and SmC isoenzymes. Manganese activated the enzymes from SmC but inhibited those from SSC. For β-glucosidases, maximum production on SmC was 244 ± 48 U/g after 168 hours using cardboard as carbon source. In SSC maximum production reached 10.9 ± 0.3 U/g after 240 h with 1 : 1 wheat bran and sugarcane bagasse. Manganese exerted a significant activation on SSC β-glucosidases, and glucose inhibited the enzymes from both cultivation systems. FeCl3 exerted the strongest inhibition for endoglucanases and β-glucosidases.
Collapse
Affiliation(s)
- Vanessa de Cássia Teixeira da Silva
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Amanda Lais de Souza Coto
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Rafael de Carvalho Souza
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Marcello Bertoldi Sanchez Neves
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Eleni Gomes
- Laboratório de Bioquímica e Microbiologia Aplicadas, Departamento de Biologia, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Gustavo Orlando Bonilla-Rodriguez
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| |
Collapse
|
27
|
Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T. Thermophilic molds: Biology and applications. Crit Rev Microbiol 2016; 42:985-1006. [DOI: 10.3109/1040841x.2015.1122572] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Mansour AA, Da Costa A, Arnaud T, Lu-Chau TA, Fdz-Polanco M, Moreira MT, Cacho Rivero JA. Review of lignocellulolytic enzyme activity analyses and scale-down to microplate-based assays. Talanta 2015; 150:629-37. [PMID: 26838452 DOI: 10.1016/j.talanta.2015.12.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/23/2015] [Accepted: 12/26/2015] [Indexed: 11/16/2022]
Abstract
With the increasing use of enzymes in environmental applications, there is a need for analytical methods adapted to large factorial experiments. Existing reference methods are chemical and labor intensive and unsuitable to analyze in parallel a large number of samples. Based on an extensive literature review and on experimental results, this work compares reference and microplate adapted methods to define the most adequate filter paper, carboxymethylcellulase, β-glucosidase and xylanase activity tests. In the adapted methods, the total reaction volume was reduced from 2.2-24.5 mL to 0.21-0.24 mL. Statistical analysis of the activities measured on enzyme mixtures by applying the 96-well plate reduced methods showed that they were not significantly different to the activities obtained with reference tests.
Collapse
Affiliation(s)
- A A Mansour
- VEOLIA Research and Innovation, 291 Av. Dreyfous Ducas, F-78520, Limay, France.
| | - A Da Costa
- VEOLIA Research and Innovation, 291 Av. Dreyfous Ducas, F-78520, Limay, France
| | - T Arnaud
- VEOLIA Research and Innovation, 291 Av. Dreyfous Ducas, F-78520, Limay, France
| | - T A Lu-Chau
- VEOLIA Research and Innovation, 291 Av. Dreyfous Ducas, F-78520, Limay, France
| | - Maria Fdz-Polanco
- VEOLIA Research and Innovation, 291 Av. Dreyfous Ducas, F-78520, Limay, France
| | - M T Moreira
- VEOLIA Research and Innovation, 291 Av. Dreyfous Ducas, F-78520, Limay, France
| | - J A Cacho Rivero
- VEOLIA Research and Innovation, 291 Av. Dreyfous Ducas, F-78520, Limay, France
| |
Collapse
|
29
|
Tarayre C, Bauwens J, Brasseur C, Mattéotti C, Millet C, Guiot PA, Destain J, Vandenbol M, Portetelle D, De Pauw E, Haubruge E, Francis F, Thonart P. Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4369-4382. [PMID: 25300185 DOI: 10.1007/s11356-014-3681-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this work was the isolation and cultivation of cellulolytic and xylanolytic microorganisms extracted from the gut of the lower termite Reticulitermes santonensis. Microcrystalline cellulose (with and without lignin) and beech wood xylan were used as diets instead of poplar wood in order to select cellulose and hemicellulose-degrading fungi. The strain Sarocladium kiliense (Acremonium kiliense) CTGxxyl was isolated from the termites fed on xylan, while the strain Trichoderma virens CTGxAviL was isolated from the termites fed on cellulose (with and without lignin). Both molds were cultivated in liquid media containing different substrates: agro-residues or purified polymers. S. kiliense produced maximal β-glucosidase, endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase and endo-1,4-β-D-xylanase activities of 0.103, 3.99, 0.53, and 40.8 IU/ml, respectively. T. virens produced maximal β-xylosidase, endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase, and endo-1,4-β-D-xylanase activities of 0.38, 1.48, 0.69, and 426 IU/ml. The cellulase and the xylanase of S. kiliense, less common than T. virens, were further investigated. The optimal activity of the xylanase was observed at pH 9-10 at 60 °C. The cellulase showed its maximal activity at pH 10, 70 °C. Zymography identified different xylanases produced by both molds, and some fragment sizes were highlighted: 35, 100, and 170 kDa for S. kiliense and 20, 40, 80, and 170 kDa for T. virens. In both cases, endo-1,4-β-D-xylanase activities were confirmed through mass spectrometry.
Collapse
Affiliation(s)
- Cédric Tarayre
- Unit of Bio-Industries, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
An Endo-cellulase was purified to homogeneity using ammonium sulfate precipitation, ion exchange and size exclusion chromatography from newly isolated strain of Thermoascus aurantiacus RBB-1. The recovery and purification fold were 13.3% and 6.6, respectively, after size exclusion chromatography. The purified cellulase has a molecular mass (M) of 35 kDa. Optimum temperature for the enzyme was found to be 70 °C and stability was upto 80 °C for 1 h. Along with higher stability at 80 °C, enzyme showed half lives of 192 h and 144 h at 50 and 70 °C respectively. The purified cellulase was optimally active at pH 4.0 and was stable over a broad pH range of 3.0–7.0. The enzyme purified showed apparent Km and Vmax values of 37 mg/ml and 82.6 U/min/mg protein respectively with higher salt tolerance of 10% for 1 h.
Collapse
|
31
|
Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Bioprocess Biosyst Eng 2014; 38:787-96. [DOI: 10.1007/s00449-014-1320-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
32
|
Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BIOMED RESEARCH INTERNATIONAL 2014; 2014:512497. [PMID: 25050355 PMCID: PMC4090499 DOI: 10.1155/2014/512497] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/08/2014] [Indexed: 11/17/2022]
Abstract
From different natural reserves in the subtropical region of China, a total of 245 aerobic bacterial strains were isolated on agar plates containing sugarcane bagasse pulp as the sole carbon source. Of the 245 strains, 22 showed hydrolyzing zones on agar plates containing carboxymethyl cellulose after Congo-red staining. Molecular identification showed that the 22 strains belonged to 10 different genera, with the Burkholderia genus exhibiting the highest strain diversity and accounting for 36.36% of all the 22 strains. Three isolates among the 22 strains showed higher carboxymethyl cellulase (CMCase) activity, and isolate ME27-1 exhibited the highest CMCase activity in liquid culture. The strain ME27-1 was identified as Paenibacillus terrae on the basis of 16S rRNA gene sequence analysis as well as physiological and biochemical properties. The optimum pH and temperature for CMCase activity produced by the strain ME27-1 were 5.5 and 50°C, respectively, and the enzyme was stable at a wide pH range of 5.0–9.5. A 12-fold improvement in the CMCase activity (2.08 U/mL) of ME27-1 was obtained under optimal conditions for CMCase production. Thus, this study provided further information about the diversity of cellulose-degrading bacteria in the subtropical region of China and found P. terrae ME27-1 to be highly cellulolytic.
Collapse
|
33
|
Aspergillus fumigatusNITDGPKA3 Provides for Increased Cellulase Production. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2014. [DOI: 10.1155/2014/959845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A cellulolytic fungal strain,Aspergillus fumigatusNITDGPKA3, was isolated from straw retting ground. Cellulase and xylanase production byA. fumigatusNITDGPKA3 in submerged fermentation of rice straw was studied. The culture conditions for maximum enzyme production were found to be initial pH 4, 1% substrate concentration, temperature 30°C, incubation time 5 days, 0.2% tryptone as nitrogen source, and inoculum volumes 7% v/v (for cellulase) and 5% v/v (for xylanase). Addition of Tween 80 in fermentation broth improved xylanase production (193.58 IU/ml) much more compared to cellulase production (6.53 IU/ml). Xylanase activity found in the culture broth was approximately 50% higher compared to most of the reported data. The crude enzyme was further applied for reducing sugar production from alkali pretreated rice straw, where a dosage of 40 IU/g CMCase produced 0.522 g reducing sugar/g dry substrate after 36 hours which was higher than that in the reported literature. The high concentration of reducing sugar yield was most probably due to the extraordinarily high titer ofβ-glucosidase (80.1 IU/ml) found in the crude enzyme. The crude enzymes secreted byAspergillus fumigatusNITDGPKA3 efficiently hydrolyzed alkali pretreated rice straw suggesting thatAspergillus fumigatusNITDGPKA3 is a robust microorganism.
Collapse
|
34
|
Improvement of β-glucosidase production by co-culture of Aspergillus niger and A. oryzae under solid state fermentation through feeding process. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0696-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Kim BK, Kim HJ, Lee JW. Rapid Statistical Optimization of Cultural Conditions for Mass Production of Carboxymethylcellulase by a Newly Isolated Marine Bacterium, Bacillus velezensis A-68 from Rice Hulls. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.6.757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Palaniyandi SA, Yang SH, Suh JW. Cellulase production and saccharification of rice straw by the mutant strainHypocrea koningiiRSC1. J Basic Microbiol 2013; 54:56-65. [DOI: 10.1002/jobm.201200309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/29/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Sasikumar Arunachalam Palaniyandi
- Center for Nutraceutical and Pharmaceutical Materials; Myongji University; Cheoin-gu, Yongin Gyeonggi-Do Korea
- Division of Bioscience and Bioinformatics; College of Natural Science, Myongji University; Cheoin-gu, Yongin Gyeonggi-Do Korea
| | - Seung Hwan Yang
- Center for Nutraceutical and Pharmaceutical Materials; Myongji University; Cheoin-gu, Yongin Gyeonggi-Do Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials; Myongji University; Cheoin-gu, Yongin Gyeonggi-Do Korea
- Division of Bioscience and Bioinformatics; College of Natural Science, Myongji University; Cheoin-gu, Yongin Gyeonggi-Do Korea
| |
Collapse
|
37
|
Dave BR, Sudhir AP, Parmar P, Pathak S, Raykundaliya DP, Subramanian R. Enhancement of cellulase activity by a new strain of Thermoascus aurantiacus: Optimisation by statistical design response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2013. [DOI: 10.1016/j.bcab.2013.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran. Mol Biol Rep 2013; 40:3609-21. [DOI: 10.1007/s11033-012-2435-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/18/2012] [Indexed: 11/25/2022]
|
39
|
Lee YJ, Kim HJ, Gao W, Chung CH, Lee JW. Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0258-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Utilization of Jatropha deoiled seed cake for production of cellulases under solid-state fermentation. Bioprocess Biosyst Eng 2012; 35:1343-53. [DOI: 10.1007/s00449-012-0723-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/09/2012] [Indexed: 11/25/2022]
|
41
|
Kim HJ, Lee YJ, Gao W, Chung CH, Son CW, Lee JW. Statistical optimization of fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0457-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Kim HJ, Gao W, Chung CH, Lee JW. Statistical Optimization for Production of Carboxymethylcellulase from Rice Hulls by a Newly Isolated Marine Microorganism Bacillus licheniformis LBH-52 Using Response Surface Method. ACTA ACUST UNITED AC 2011. [DOI: 10.5352/jls.2011.21.8.1083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Zhang H, Sang Q, Zhang W. Statistical optimization of cellulases production by Aspergillus niger HQ-1 in solid-state fermentation and partial enzymatic characterization of cellulases on hydrolyzing chitosan. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0300-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Deswal D, Khasa YP, Kuhad RC. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. BIORESOURCE TECHNOLOGY 2011; 102:6065-6072. [PMID: 21470856 DOI: 10.1016/j.biortech.2011.03.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
Culture conditions for enhanced cellulase production from a newly isolated brown rot fungus, Fomitopsis sp. RCK2010 were optimized under solid state fermentation. An initial pH of 5.5 and moisture ratio of 1:3.5 (solid:liquid) were found to be optimal for maximum enzyme production. Of the different carbon sources tested wheat bran gave the maximum production of CMCase (71.526 IU/g), FPase (3.268 IU/g), and β-glucosidase (50.696 IU/g). Among the nitrogen sources, urea caused maximum production of CMCase (81.832 IU/g), where as casein and soyabean meal gave the highest FPase (4.682 IU/g) and β-glucosidase (69.083 IU/g) production, respectively. Among amino acids tested glutamic acid gave the highest production for CMCase (84.127I U/g); however 4-hydroxy-l-proline stimulated maximum FPase production (6.762 IU/g). Saccharification of pretreated rice straw and wheat straw by crude enzyme extract from Fomitopsis sp. RCK2010 resulted in release of 157.160 and 214.044 mg/g of reducing sugar, respectively.
Collapse
Affiliation(s)
- Deepa Deswal
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | | | | |
Collapse
|
45
|
Improved mannan-degrading enzymes’ production by Aspergillus niger through medium optimization. N Biotechnol 2011; 28:146-52. [DOI: 10.1016/j.nbt.2010.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 08/02/2010] [Accepted: 10/12/2010] [Indexed: 11/22/2022]
|
46
|
Farinas CS, Loyo MM, Baraldo A, Tardioli PW, Neto VB, Couri S. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. N Biotechnol 2010; 27:810-5. [DOI: 10.1016/j.nbt.2010.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/03/2010] [Accepted: 10/04/2010] [Indexed: 11/15/2022]
|
47
|
Camassola M, Dillon AJP. Cellulases and Xylanases Production by Penicillium echinulatum Grown on Sugar Cane Bagasse in Solid-State Fermentation. Appl Biochem Biotechnol 2010; 162:1889-900. [DOI: 10.1007/s12010-010-8967-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 04/06/2010] [Indexed: 11/30/2022]
|
48
|
Monte. Use of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose. ACTA ACUST UNITED AC 2010. [DOI: 10.3844/ajabssp.2010.468.476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Brienzo M, Carvalho W, Milagres AMF. Xylooligosaccharides Production from Alkali-Pretreated Sugarcane Bagasse Using Xylanases from Thermoascus aurantiacus. Appl Biochem Biotechnol 2010; 162:1195-205. [DOI: 10.1007/s12010-009-8892-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
|
50
|
Kim BK, Lee BH, Lee YJ, Jin IH, Chung CH, Lee JW. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|