Miyakawa H, Oishi K, Hagiwara S, Kira S, Kitano T, Iwasaka H, Noguchi T. Olprinone improves diaphragmatic contractility and fatigability during abdominal sepsis in a rat model.
Acta Anaesthesiol Scand 2004;
48:637-41. [PMID:
15101862 DOI:
10.1111/j.0001-5172.2004.00385.x]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND
Respiratory failure with diaphragmatic fatigability is common in patients suffering sepsis or septic shock. However, the development and progress of diaphragmatic fatigability remains poorly understood, and no method has been established to treat fatigability. In this study, we hypothesize that neutrophil activation contributes to the development of diaphragmatic fatigability. We also sought to investigate whether a phosphodiesterase inhibitor, olprinone, improves diaphragmatic fatigability associated with abdominal sepsis and inhibits an increase in myeloperoxidase activity in diaphragmatic muscle.
METHODS
Male Wistar rats were randomly assigned to a sham group, coecal legation perforation group (CLP), and a phosphodiesterase inhibitor (PDE) pretreated group. At 16 h after surgical procedure, the left hemidiaphragm was removed for the measurement of diaphragmatic contractility and fatigability. In addition, for the measurement of serial changes in myeloperoxidase activity, the right hemidiaphragm was also removed at 4, 8 or 16 h after the surgical procedure in each group.
RESULTS
In a septic model involving rats, we observed that diaphragmatic muscles were fatigable and myeloperoxidase activity increased. We also demonstrated that intraperitoneal administration of olprinone improves diaphragmatic fatigability and inhibits an increase in myeloperoxidase activity induced by abdominal sepsis.
CONCLUSION
Olprinone represents a potential therapy for cases of respiratory failure with diaphragmatic fatigability resulting from inhibition of neutrophil activation.
Collapse