1
|
Solanki C, Williams J, Andrews C, Fayed I, Wu C. Insula in epilepsy - "untying the gordian knot": A systematic review. Seizure 2023; 106:148-161. [PMID: 36878050 DOI: 10.1016/j.seizure.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
PURPOSE Despite significant advances in epileptology, there are still many uncertainties about the role of the insula in epilepsy. Until recently, most insular onset seizures were wrongly attributed to the temporal lobe. Further, there are no standardised approaches to the diagnosis and treatment of insular onset seizures. This systematic review gathers the available information about insular epilepsy and synthesizes current knowledge as a basis for future research. METHOD Adhering to the PRISMA guidelines, studies were meticulously extracted from the PubMed database. The empirical data pertaining to the semiology of insular seizures, insular networks in epilepsy, techniques of mapping the insula, and the surgical intricacies of non-lesional insular epilepsy were reviewed from published studies. The corpus of information available was then subjected to a process of concise summarization and astute synthesis. RESULTS Out of 235 studies identified for full-text review, 86 studies were included in the systematic review. The insula emerges as a brain region with a number of functional subdivisions. The semiology of insular seizures is diverse and depends on the involvement of particular subdivisions. The semiological heterogeneity of insular seizures is explained by the extensive connectivity of the insula and its subdivisions with all four lobes of the brain, deep grey matter structures, and remote brainstem areas. The mainstay of the diagnosis of seizure onset in the insula is stereoelectroencephalography (SEEG). The surgical resection of the insular epileptogenic zone (when possible) is the most effective treatment. Open surgery on the insula is challenging but magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) also holds promise. CONCLUSION The physiological and functional roles of the insula in epilepsy have remained obfuscated. The dearth of precisely defined diagnostic and therapeutic protocols acts as an impediment to scientific advancement. This review could potentially facilitate forthcoming research endeavours by establishing a foundational framework for uniform data collection protocols, thereby enhancing the feasibility of comparing findings across future studies and promoting progress in this domain.
Collapse
Affiliation(s)
- Chirag Solanki
- Consultant Neurosurgeon, Department of Neurosurgery, Sterling Hospital, Ahmedabad, Gujarat, India.
| | - Justin Williams
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, United States.
| | - Carrie Andrews
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, United States.
| | - Islam Fayed
- Stereotactic and Functional Neurosurgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.
| | - Chengyuan Wu
- Associate Professor of Neurosurgery and Radiology, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.
| |
Collapse
|
2
|
Bottan JS, Rubino PA, Lau JC, MacDougall KW, Parrent AG, Burneo JG, Steven DA. Robot-Assisted Insular Depth Electrode Implantation Through Oblique Trajectories: 3-Dimensional Anatomical Nuances, Technique, Accuracy, and Safety. Oper Neurosurg (Hagerstown) 2021; 18:278-283. [PMID: 31245818 DOI: 10.1093/ons/opz154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The insula is a deep cortical structure that has renewed interest in epilepsy investigation. Invasive EEG recordings of this region have been challenging. Robot-assisted stereotactic electroencephalography has improved feasibility and safety of such procedures. OBJECTIVE To describe technical nuances of three-dimensional (3D) oblique trajectories for insular robot-assisted depth electrode implantation. METHODS Fifty patients who underwent robot-assisted depth electrode implantation between June 2017 and December 2018 were retrospectively analyzed. Insular electrodes were implanted through oblique, orthogonal, or parasagittal trajectories. Type of trajectories, accuracy, number of contacts within insular cortex, imaging, and complication rates were analyzed. Cadaveric and computerized tomography/magnetic resonance imaging 3D reconstructions were used to visualize insular anatomy and the technical implications of oblique trajectories. RESULTS Forty-one patients (98 insular electrodes) were included. Thirty (73.2%) patients had unilateral insular coverage. Average insular electrodes per patient was 2.4. The mean number of contacts was 7.1 (SD ± 2.91) for all trajectories and 8.3 (SD ± 1.51) for oblique insular trajectories. The most frequently used was the oblique trajectory (85 electrodes). Mean entry point error was 1.5 mm (0.2-2.8) and target error was 2.4 mm (0.8-4.0), 2.0 mm (1.1-2.9) for anterior oblique and 2.8 mm (0.8-4.9) for posterior oblique trajectories. There were no complications related to insular electrodes. CONCLUSION Oblique trajectories are the preferred method for insular investigation at our institution, maximizing the number of contacts within insular cortex without traversing through sulci or major CSF fissures. Robot-assisted procedures are safe and efficient. 3D understanding of the insula's unique anatomical features can help the surgeon to improve targeting of this structure.
Collapse
Affiliation(s)
- Juan S Bottan
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Division of Neurosurgery, Hospital General de Niños "Pedro De Elizalde," Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo A Rubino
- Hospital de Alta Complejidad en Red "El Cruce," Florencio Varela, Argentina
| | - Jonathan C Lau
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Keith W MacDougall
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Andrew G Parrent
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
3
|
Missey F, Rusina E, Acerbo E, Botzanowski B, Trébuchon A, Bartolomei F, Jirsa V, Carron R, Williamson A. Orientation of Temporal Interference for Non-invasive Deep Brain Stimulation in Epilepsy. Front Neurosci 2021; 15:633988. [PMID: 34163317 PMCID: PMC8216218 DOI: 10.3389/fnins.2021.633988] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
In patients with focal drug-resistant epilepsy, electrical stimulation from intracranial electrodes is frequently used for the localization of seizure onset zones and related pathological networks. The ability of electrically stimulated tissue to generate beta and gamma range oscillations, called rapid-discharges, is a frequent indication of an epileptogenic zone. However, a limit of intracranial stimulation is the fixed physical location and number of implanted electrodes, leaving numerous clinically and functionally relevant brain regions unexplored. Here, we demonstrate an alternative technique relying exclusively on non-penetrating surface electrodes, namely an orientation-tunable form of temporally interfering (TI) electric fields to target the CA3 of the mouse hippocampus which focally evokes seizure-like events (SLEs) having the characteristic frequencies of rapid-discharges, but without the necessity of the implanted electrodes. The orientation of the topical electrodes with respect to the orientation of the hippocampus is demonstrated to strongly control the threshold for evoking SLEs. Additionally, we demonstrate the use of Pulse-width-modulation of square waves as an alternative to sine waves for TI stimulation. An orientation-dependent analysis of classic implanted electrodes to evoke SLEs in the hippocampus is subsequently utilized to support the results of the minimally invasive temporally interfering fields. The principles of orientation-tunable TI stimulation seen here can be generally applicable in a wide range of other excitable tissues and brain regions, overcoming several limitations of fixed electrodes which penetrate tissue and overcoming several limitations of other non-invasive stimulation methods in epilepsy, such as transcranial magnetic stimulation (TMS).
Collapse
Affiliation(s)
- Florian Missey
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Evgeniia Rusina
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Emma Acerbo
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Boris Botzanowski
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Agnès Trébuchon
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Fabrice Bartolomei
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Viktor Jirsa
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France
| | - Romain Carron
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France.,Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Adam Williamson
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (INS) UMR_S 1106, Marseille, France.,Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
| |
Collapse
|
4
|
Yu K, Yu T, Qiao L, Liu C, Wang X, Zhou X, Ni D, Zhang G, Li Y. Electrical stimulation of the insulo-opercular region: visual phenomena and altered body-ownership symptoms. Epilepsy Res 2018; 148:96-106. [DOI: 10.1016/j.eplepsyres.2018.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/16/2018] [Accepted: 09/26/2018] [Indexed: 01/08/2023]
|
5
|
|
6
|
Buklina SB, Bykanov AE, Pitskhelauri DI. [Clinical characteristics of epileptic seizures in insular gliomas]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 116:13-19. [PMID: 28139619 DOI: 10.17116/jnevro201611612113-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the characteristics of epileptic seizures in insular gliomas. MATERIAL AND METHODS Forty-five patients with insular gliomas were examined. The spread of a tumor was established by MRI results and intraoperational findings. A tumor within the insular only was found in 9 out of 45 patients (7 left-sided and 2 right-sided). In 36 patients, a tumor slightly spread into temporal lobe pole and medial-basal regions of the frontal lobe (27 left-sided and 18 right-sided). The control group consisted of 50 patients with tumors of temporal and frontal lobes. RESULTS Paroxysmal symptoms were similar in patients with tumors of the insular and patients with tumors of temporal lobes. Seizures in patients with frontal lobe tumors differed significantly from insular and temporal tumors, with the exception of a tumor localized in the opercula area. The following quantitative differences were identified: different forms of unconsciousness were significantly less frequent in symptomatic epilepsy in patients with insular tumor than in epilepsy caused by temporal lobe tumors (36% of patients vs 84% in temporal tumors (p<0.0001)). In patients with insular tumors, olfactory and taste hallucinations occur more often compared to temporal lobe tumors (51% vs 16% (p<0.003). The frequency of paroxysmal seizures of fear and anxiety in patients with those tumors was similar (20% with insular tumors and 14 with temporal tumors). An autonomic component of episeizures did not differ between tumors of both localizations. Olfactory and taste hallucinations were qualitatively similar in insular and temporal lobe tumors: smell and taste were unpleasant or associated with a danger: smell of burning, gas, something spoiled, sour, tart chemistry, taste of somethong metallic, chemical, sour. No pleasant smell or taste were reported. CONCLUSION Epileptic seizures in insular tumors had similarities and certain differences compared with temporal seizures that well reflect function of the insula and its links, in the first turn, with limbic system structures.
Collapse
Affiliation(s)
- S B Buklina
- FGBOU 'Nauchno-issledovatel'skij institut nejrohirurgii', Moskva, Rossija
| | - A E Bykanov
- FGBOU 'Nauchno-issledovatel'skij institut nejrohirurgii', Moskva, Rossija
| | - D I Pitskhelauri
- FGBOU 'Nauchno-issledovatel'skij institut nejrohirurgii', Moskva, Rossija
| |
Collapse
|
7
|
Abstract
SummaryIntroduction.Medial temporal lobe epilepsy (MTLE) is the most frequent form of epilepsy in adulthood. It is classified as local/regional epilepsy. However, there is increasing evidence of the involvement of both temporal lobes and this provides abundant arguments to question this view, and consider MTLE as one of the typical bilateral system epilepsies.Aim.To provide a contemporary review of medial temporal lobe epilepsy, discussing the bilateral aspects, with reference to epilepsy surgery.Methods.A literature review and a resume of the author’s own experiences with MTLE patients.Results.Recent electrophysiological and neuroimaging data provide convincing data supporting that MTLE is a bilateral disease. The uni-and bilateral features form a continuum and the participation rate of the two temporal lobes determine course and surgical perspective of the individual patient.Conclusions.The contradictory data of invasive presurgical evaluations of MTLE patients suggest that there need to identify further indicatory markers of bilaterality and thus change the presurgical evaluation from the non-invasive towards the invasive ways. The mechanisms of the interrelationship between the two temporal lobes in MTLE warrants further research.
Collapse
|
8
|
Weil AG, Fallah A, Lewis EC, Bhatia S. Medically resistant pediatric insular-opercular/perisylvian epilepsy. Part 1: invasive monitoring using the parasagittal transinsular apex depth electrode. J Neurosurg Pediatr 2016; 18:511-522. [PMID: 27472667 DOI: 10.3171/2016.4.peds15636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Insular lobe epilepsy (ILE) is an under-recognized cause of extratemporal epilepsy and explains some epilepsy surgery failures in children with drug-resistant epilepsy. The diagnosis of ILE usually requires invasive investigation with insular sampling; however, the location of the insula below the opercula and the dense middle cerebral artery vasculature renders its sampling challenging. Several techniques have been described, ranging from open direct placement of orthogonal subpial depth and strip electrodes through a craniotomy to frame-based stereotactic placement of orthogonal or oblique electrodes using stereo-electroencephalography principles. The authors describe an alternative method for sampling the insula, which involves placing insular depth electrodes along the long axis of the insula through the insular apex following dissection of the sylvian fissure in conjunction with subdural electrodes over the lateral hemispheric/opercular region. The authors report the feasibility, advantages, disadvantages, and role of this approach in investigating pediatric insular-opercular refractory epilepsy. METHODS The authors performed a retrospective analysis of all children (< 18 years old) who underwent invasive intracranial studies involving the insula between 2002 and 2015. RESULTS Eleven patients were included in the study (5 boys). The mean age at surgery was 7.6 years (range 0.5-16 years). All patients had drug-resistant epilepsy as defined by the International League Against Epilepsy and underwent comprehensive noninvasive epilepsy surgery workup. Intracranial monitoring was performed in all patients using 1 parasagittal insular electrode (1 patient had 2 electrodes) in addition to subdural grids and strips tailored to the suspected epileptogenic zone. In 10 patients, extraoperative monitoring was used; in 1 patient, intraoperative electrocorticography was used alone without extraoperative monitoring. The mean number of insular contacts was 6.8 (range 4-8), and the mean number of fronto-parieto-temporal hemispheric contacts was 61.7 (range 40-92). There were no complications related to placement of these depth electrodes. All 11 patients underwent subsequent resective surgery involving the insula. CONCLUSIONS Parasagittal transinsular apex depth electrode placement is a feasible alternative to orthogonally placed open or oblique-placed stereotactic methodologies. This method is safe and best suited for suspected unilateral cases with a possible extensive insular-opercular epileptogenic zone.
Collapse
Affiliation(s)
| | | | - Evan C Lewis
- Pediatric Neurology, Miami (Nicklaus) Children's Hospital, Miami, Florida
| | | |
Collapse
|
9
|
Weil AG, Le NMD, Jayakar P, Resnick T, Miller I, Fallah A, Duchowny M, Bhatia S. Medically resistant pediatric insular-opercular/perisylvian epilepsy. Part 2: outcome following resective surgery. J Neurosurg Pediatr 2016; 18:523-535. [PMID: 27472665 DOI: 10.3171/2016.4.peds15618] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Seizure onset in the insular cortex as a cause of refractory epilepsy is underrepresented in the pediatric population, possibly due to difficulties localizing seizure onset in deep anatomical structures and limited surgical access to the insula, a complex anatomical structure with a rich overlying vascular network. Insular seizure semiology may mimic frontal, temporal, or parietal lobe semiology, resulting in false localization, incomplete resection, and poor outcome. METHODS The authors retrospectively reviewed the records of all pediatric patients who underwent insular cortical resections for intractable epilepsy at Miami Children's Hospital from 2009 to 2015. Presurgical evaluation included video electroencephalography monitoring and anatomical/functional neuroimaging. All patients underwent excisional procedures utilizing intraoperative electrocorticography or extraoperative subdural/depth electrode recording. RESULTS Thirteen children (age range 6 months-16 years) with intractable focal epilepsy underwent insular-opercular resection. Seven children described symptoms that were suggestive of insular seizure origin. Discharges on scalp EEG revealed wide fields. Four patients were MRI negative (i.e., there were no insular or brain abnormalities on MRI), 4 demonstrated insular signal abnormalities, and 5 had extrainsular abnormalities. Ten patients had insular involvement on PET/SPECT. All patients underwent invasive investigation with insular sampling; in 2 patients resection was based on intraoperative electrocorticography, whereas 11 underwent surgery after invasive EEG monitoring with extraoperative monitoring. Four patients required an extended insular resection after a failed initial surgery. Postoperatively, 2 patients had transient hemiplegia. No patients had new permanent neurological deficits. At the most recent follow-up (mean 43.8 months), 9 (69%) children were seizure free and 1 had greater than 90% seizure reduction. CONCLUSIONS Primary insular seizure origin should be considered in children with treatment-resistant focal seizures that are believed to arise within the perisylvian region based on semiology, widespread electrical field on scalp EEG, or insular abnormality on anatomical/functional neuroimaging. There is a reasonable chance of seizure freedom in this group of patients, and the surgical risks are low.
Collapse
Affiliation(s)
- Alexander G Weil
- Pediatric Neurosurgery, Miami (Nicklaus) Children's Hospital, Miami, Florida
| | | | | | | | - Ian Miller
- Departments of 1 Pediatric Neurology and
| | - Aria Fallah
- Pediatric Neurosurgery, Miami (Nicklaus) Children's Hospital, Miami, Florida
| | | | - Sanjiv Bhatia
- Pediatric Neurosurgery, Miami (Nicklaus) Children's Hospital, Miami, Florida
| |
Collapse
|
10
|
Hutchings F, Han CE, Keller SS, Weber B, Taylor PN, Kaiser M. Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations. PLoS Comput Biol 2015; 11:e1004642. [PMID: 26657566 PMCID: PMC4675531 DOI: 10.1371/journal.pcbi.1004642] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/29/2015] [Indexed: 02/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder resulting in disruptive seizures. In the case of drug resistant epilepsy resective surgery is often considered. This is a procedure hampered by unpredictable success rates, with many patients continuing to have seizures even after surgery. In this study we apply a computational model of epilepsy to patient specific structural connectivity derived from diffusion tensor imaging (DTI) of 22 individuals with left TLE and 39 healthy controls. We validate the model by examining patient-control differences in simulated seizure onset time and network location. We then investigate the potential of the model for surgery prediction by performing in silico surgical resections, removing nodes from patient networks and comparing seizure likelihood post-surgery to pre-surgery simulations. We find that, first, patients tend to transit from non-epileptic to epileptic states more often than controls in the model. Second, regions in the left hemisphere (particularly within temporal and subcortical regions) that are known to be involved in TLE are the most frequent starting points for seizures in patients in the model. In addition, our analysis also implicates regions in the contralateral and frontal locations which may play a role in seizure spreading or surgery resistance. Finally, the model predicts that patient-specific surgery (resection areas chosen on an individual, model-prompted, basis and not following a predefined procedure) may lead to better outcomes than the currently used routine clinical procedure. Taken together this work provides a first step towards patient specific computational modelling of epilepsy surgery in order to inform treatment strategies in individuals. Temporal lobe epilepsy (TLE) is a disorder characterised by unpredictable seizures, where surgical removal of brain tissue is often the final treatment option. In roughly 30% of cases surgery procedures are unsuccessful at preventing future seizures. This paper shows the application of a computational model which uses patient derived brain connectivity to predict the success rates of surgery in people with TLE. We consider the brains of 22 patients as networks, with brain regions as nodes and the white matter connections between them as edges. The brain network is unique to each subject and produced from brain imaging scans of 22 patients and 39 controls. Seizures are simulated before and after surgery, where surgery in the model is the removal of nodes from the network. The model successfully identifies regions known to be involved in TLE, and its predicted success rates for surgery are close to the results found in reality. The model additionally provides patient specific recommendations for surgical procedures, which in simulations show improved results compared to standard surgery in every case. This is a first step towards designing personalised surgery procedures in order to improve surgery success rates.
Collapse
Affiliation(s)
- Frances Hutchings
- Interdisciplinary Computing and Complex BioSystems, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Cheol E. Han
- Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea
- Department of Brain Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Simon S. Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Peter N. Taylor
- Interdisciplinary Computing and Complex BioSystems, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
|
12
|
Ghareeb F, Duffau H. Intractable epilepsy in paralimbic Word Health Organization Grade II gliomas: should the hippocampus be resected when not invaded by the tumor? J Neurosurg 2012; 116:1226-34. [PMID: 22404676 DOI: 10.3171/2012.1.jns112120] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECT Beyond its oncological benefit, surgery could improve seizure control in paralimbic frontotemporoinsular or temporoinsular WHO Grade II gliomas generating intractable seizures. However, no studies have examined the impact of hippocampal resection on chronic epilepsy when the hippocampus is not invaded by Grade II gliomas. Here, the authors compared the epileptological outcomes and return to work in 2 groups of patients who underwent surgery with or without hippocampectomy for paralimbic Grade II gliomas eliciting intractable epilepsy despite no tumoral involvement of the hippocampus. METHODS Surgery was performed in 15 consecutive patients who were unable to work (median Karnofsky Performance Scale [KPS] Score 70) because of refractory epilepsy due to paralimbic Grade II gliomas that were not invading the hippocampus. In Group A (8 patients), the hippocampus was preserved. In Group B (7 patients), glioma removal was associated with hippocampectomy. RESULTS No patient died or suffered a permanent deficit after surgery. Postoperatively, in Group A, no patients were seizure free (4 patients were in Engel Class II and 4 were in Class III). In Group B, all 7 patients were seizure free (Class I) (p = 0.02). Only 62.5% of patients returned to work in Group A, whereas all patients are working full time in Group B. The postsurgical median KPS score was 85 in Group A, that is, not significantly improved in comparison with the preoperative score, while the postsurgical median KPS was 95 in Group B, that is, significantly improved in comparison with the preoperative score (p = 0.03). CONCLUSIONS The authors' data support, for the first time, the significant impact of hippocampectomy in patients with intractable epilepsy generated by a paralimbic Grade II glioma, even if it does not invade the hippocampus. Hippocampal resection allowed seizure control in all patients, with an improvement in KPS scores, since all patients resumed their social and professional activities. Thus, the authors suggest performing a resection of the nontumoral hippocampus in addition to resection of the tumor in patients with refractory epilepsy due to paralimbic Grade II gliomas.
Collapse
Affiliation(s)
- Fadi Ghareeb
- Department of Neurosurgery, Riyadh Military Hospital, Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
Musilová K, Kuba R, Brázdil M, Tyrlíková I, Rektor I. Occurrence and lateralizing value of "rare" peri-ictal vegetative symptoms in temporal lobe epilepsy. Epilepsy Behav 2010; 19:372-5. [PMID: 20800552 DOI: 10.1016/j.yebeh.2010.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
We retrospectively investigated rare peri-ictal vegetative symptoms (PIVS) in 380 seizures of 97 patients with temporal lobe epilepsy (TLE): 234 seizures of 60 patients with TLE with mesiotemporal sclerosis (TLE/MTS) and 146 seizures of 37 patients with TLE with other lesions (TLE/non-MTS) who were at least 2 years after epilepsy surgery and classified as Engel I. We assessed the following PIVS: peri-ictal cough (pC), peri-ictal water drinking (pWD), peri-ictal vomiting (pV), and peri-ictal spitting (pS). We observed pC in 24.7% of patients and 10% of seizures; pWD in 14.4% of patients and 5.9% of seizures; pV and pS occurred more rarely. Both pWD and pC occurred significantly more often in those with TLE of the non- language-dominant hemisphere. The limited occurrence of pV and pS made it impossible to perform statistical analysis for these symptoms. In patients with TLE, pC and pWD were quite frequent; we observed pV and pS less frequently. Both pC and pWD have a significant lateralizing value in TLE.
Collapse
Affiliation(s)
- K Musilová
- Epilepsy Centre Brno, First Department of Neurology, St Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
14
|
Afif A, Minotti L, Kahane P, Hoffmann D. Anatomofunctional organization of the insular cortex: a study using intracerebral electrical stimulation in epileptic patients. Epilepsia 2010; 51:2305-15. [PMID: 20946128 DOI: 10.1111/j.1528-1167.2010.02755.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Different lines of evidence suggest that the insular cortex has many important functional roles. Direct electrical stimulation (ES) of the human insular cortex during surgical procedures for epilepsy, functional imaging techniques, and lesion studies also occasionally induces clinical responses. METHODS In this study, we evaluated 25 patients with drug-refractory focal epilepsy by stereotactically implanting at least one electrode into the insular cortex using an oblique approach (transfrontal or transparietal). One hundred twenty-eight insular sites (each situated between two contiguous contacts within the same electrode) were examined within the gyral substructures. We located each stimulation site by fusing preimplantation three-dimensional (3D) magnetic resonance imaging (MRI) images with the postimplantation 3D computed tomography (CT) scans that revealed the electrode contacts. RESULTS Sixty-seven stimulations induced at least one clinical response. Stimulation from within the insular cortex evoked 83 responses, without evidence of afterdischarge in the insular or extrainsular regions. We classified the principal responses as sensory (paresthesias and localized warm sensations), motor, pain, auditory, oropharyngeal, speech disturbances (including speech arrest and reduced voice intensity) and neurovegetative phenomena, such as facial reddening, generalized sensations of warmth or cold, hypogastric sensations, anxiety attacks, respiratory accelerations, sensations of rotation, and nausea. CONCLUSIONS These findings may indicate a functional specificity for the insular gyri and show the need for exploring this structure during invasive presurgical evaluation of epileptic patients according to seizure manifestations.
Collapse
Affiliation(s)
- Afif Afif
- Department of Neurosurgery, Neurological Hospital, Hospices Civils de Lyon, Lyon, France.
| | | | | | | |
Collapse
|
15
|
Isnard J. L’épilepsie insulaire : un modèle d’épilepsie cryptique. L’expérience lyonnaise. Rev Neurol (Paris) 2009; 165:746-9. [PMID: 19732923 DOI: 10.1016/j.neurol.2009.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/21/2009] [Indexed: 11/15/2022]
Affiliation(s)
- J Isnard
- hôpital neurologique, Lyon, France.
| |
Collapse
|
16
|
Afif A, Minotti L, Kahane P, Hoffmann D. Middle short gyrus of the insula implicated in speech production: intracerebral electric stimulation of patients with epilepsy. Epilepsia 2009; 51:206-13. [PMID: 19694793 DOI: 10.1111/j.1528-1167.2009.02271.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Different lines of evidence have suggested an involvement of the insular cortex in speech production. These have included results from lesion studies, functional imaging techniques, and electrical stimulation of the human insular cortex during invasive evaluation of epileptic patients. METHODS We evaluated 25 patients who had drug refractory focal epilepsy with at least one electrode stereotactically implanted in the insular cortex. RESULTS Eight responses to insular cortex electrical stimulation were reported by five patients as speech arrest (five responses) and a lowering of voice intensity (three responses). CONCLUSIONS Data from this study implicate the middle short gyrus of the insula in the production of speech and show the importance of intrainsular electrode implantation during invasive pre-resection evaluation by stereo-electroencephalography (SEEG) when speech arrest occurs early in seizure semiology.
Collapse
Affiliation(s)
- Afif Afif
- Department of Neurosurgery, Neurological Hospital, Hospices Civils de Lyon, Lyon, France.
| | | | | | | |
Collapse
|
17
|
Elliott B, Joyce E, Shorvon S. Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena. Epilepsy Res 2009; 85:162-71. [DOI: 10.1016/j.eplepsyres.2009.03.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/08/2009] [Accepted: 03/15/2009] [Indexed: 11/27/2022]
|
18
|
Afif A, Hoffmann D, Minotti L, Benabid AL, Kahane P. Middle short gyrus of the insula implicated in pain processing. Pain 2008; 138:546-555. [PMID: 18367333 DOI: 10.1016/j.pain.2008.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 12/26/2007] [Accepted: 02/04/2008] [Indexed: 11/30/2022]
Abstract
Different lines of evidence have suggested an involvement of the insular cortex in pain processing. Direct electrical stimulation (ES) of the human insular cortex during surgical procedure sometimes induces painful sensations and painful stimuli induce activation of the insular cortex as shown by functional neuroimaging. Invasive evaluation of epileptic patients by deep brain stereotactically implanted electrodes provides an opportunity to analyze responses induced by ES of the insular cortex in awake and fully conscious patients. For this study, we included 25 patients suffering from drug refractory focal epilepsy with at least one electrode stereotactically implanted in the insular cortex using an oblique approach (transfrontal or transparietal). Out of the 83 responses induced by insular ES, eight (9.6%) were reported by five patients as painful sensations. Four were restricted to the cephalic region and four were felt on the ipsilateral or bilateral upper limbs, the shoulders and the trunk (pinprick sensations). The eight stimulation sites were anatomically localized via image fusion between pre-implantation 3D MRI and post-implantation 3D CT scans revealing the electrode contacts. All sites inducing painful sensations were restricted to the upper portion of the middle short gyrus of the insula. The findings of this study suggest that middle short gyrus is involved in the processing of pain-producing stimuli.
Collapse
Affiliation(s)
- Afif Afif
- Neurosurgery Department, INSERM U318, Grenoble University Hospital, BP 217, 38043 Grenoble Cedex 9, France Neurology Department, INSERM U704, Grenoble University Hospital, BP 217, 38043 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Ortigue S, Grafton ST, Bianchi-Demicheli F. Correlation between insula activation and self-reported quality of orgasm in women. Neuroimage 2007; 37:551-60. [PMID: 17601749 DOI: 10.1016/j.neuroimage.2007.05.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 05/08/2007] [Accepted: 05/13/2007] [Indexed: 11/26/2022] Open
Abstract
Current multidimensional models of women's sexual function acknowledge the implicit impact of psychosocial factors on women's sexual function. Interaction between human sexual function and intensity of love has been also assumed, even if love is not an absolute condition. Yet, whereas great insights have been made in understanding the central mechanisms of the peripheral manifestations of women's sexual response, including orgasm, the cerebral correlates sustaining the interaction between women's sexual satisfaction and the unconscious role of the partner in this interpersonal experience remain unknown. Using functional imaging, we assessed brain activity elicited when 29 healthy female volunteers were unconsciously exposed to the subliminal presentation of their significant partner's name (a task known to elicit a partner-related neural network) and correlated it with individual scores obtained from different sexual dimensions: self-reported partnered orgasm quality (ease, satisfaction, frequency), love intensity and emotional closeness with that partner. Behavioral results identified a correlation between love and self-reported partnered orgasm quality. The more women were in love/emotionally close to their partner, the more they tended to report being satisfied with the quality of their partnered orgasm. However, no relationship was found between intensity of love and partnered orgasm frequency. Neuroimaging data expanded these behavioral results by demonstrating the involvement of a specific left-lateralized insula focus of neural activity correlating with orgasm scores, irrespective of dimension (frequency, ease, satisfaction). In contrast, intensity of being in love was correlated with a network involving the angular gyrus. These findings strongly suggest that intimate and sexual relationships are sustained by partly different mechanisms, even if they share some emotional-related mechanisms. The critical correlation between self-reports of orgasm quality and activation of the left anterior insula, a part of the partner-related neural network known to play a pivotal role in somatic processes, suggests the importance of somatic information in the integration of sexual experience. On the other hand, the correlation between activation of the angular gyrus and love intensity reinforces the assumption that the representation of love calls for higher order cognitive levels, such as those related to the generation of abstract concepts. By highlighting the specific role of the anterior insula in the way women integrate components of physical satisfaction in the context of an intimate relationship with a partner, the current findings take a step in the understanding of a woman's sexual pleasure.
Collapse
Affiliation(s)
- Stephanie Ortigue
- Dartmouth Brain Imaging Center, Center for Cognitive Neuroscience, Dartmouth College, 6162 Moore Hall, Hanover, NH, USA.
| | | | | |
Collapse
|