1
|
Yu XH, Wu JB, Fan HY, Dai L, Xian HC, Chen BJ, Liao P, Huang MC, Pang X, Zhang M, Liang XH, Tang YL. Artemisinin suppressed tumour growth and induced vascular normalisation in oral squamous cell carcinoma via inhibition of macrophage migration inhibitory factor. Oral Dis 2024; 30:363-375. [PMID: 36321394 DOI: 10.1111/odi.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Tumour vascular normalisation therapy advocates a balance between pro-angiogenic factors and anti-angiogenic factors in tumours. Artemisinin (ART), which is derived from traditional Chinese medicine, has been shown to inhibit tumour growth; however, the relationship between ART and tumour vascular normalisation in oral squamous cell carcinoma (OSCC) has not been previously reported. METHODS Different concentrations(0 mg/kg, 25 mg/kg, 50 mg/kg, 100 mg/kg)of ART were used to treat the xenograft nude mice model of OSCC. The effects of ART on migration and proliferation of OSCC and human umbilical vein endothelial cells (HUVEC) cells were detected by scratch assay and CCK-8 assay. OSCC cells with macrophage migration inhibitory factor (MIF) silenced were constructed to explore the effect of MIF. RESULTS Treatment with ART inhibited the growth and angiogenesis of OSCC xenografts in nude mice and downregulated vascular endothelial growth factor (VEGF), IL-8, and MIF expression levels. ART reduced the proliferation, migration, and tube formation of HUVEC, as well as the expression of VEGFR1 and VEGFR2. When the dose of ART was 50 mg/kg, vascular normalisation of OSCC xenografts was induced. Moreover, VEGF and IL-8 were needed in rhMIF restoring tumour growth and inhibit vascular normalisation after the addition of rhMIF to ART-treated cells. CONCLUSION Artemisinin might induce vascular normalisation and inhibit tumour growth in OSCC through the MIF-signalling pathway.
Collapse
Affiliation(s)
- Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Bing-Jun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Peng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
2
|
Xu C, Xiao L, Lin P, Yang X, Zou X, Mu L, Yang X. Synthesis and Antitumor Activities of Novel Mitochondria-Targeted Dihydroartemisinin Ether Derivatives. ACS OMEGA 2022; 7:38832-38846. [PMID: 36340114 PMCID: PMC9631890 DOI: 10.1021/acsomega.2c04562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ten novel mitochondria-targeted dihydroartemisinin ether derivatives were designed, synthesized, and evaluated for antitumor activity against five cancer cell lines in vitro. Profoundly, compound D8-T (IC50 = 56.9 nM) showed the most potent antiproliferative activity against the T24 cells with low cytotoxicity in normal human umbilical vein endothelial cells. High-performance liquid chromatography analysis confirmed that D8-T targeted mitochondria 6.3-fold higher than DHA. ATP content assay demonstrated that D8-T decreased the ATP level of bladder cancer cells. The effect of D8-T on cell apoptosis was determined by flow cytometry and western blot of Bax and Bcl-2. Surprisingly, the results indicated that D8-T did not induce bladder cancer cell apoptosis. In contrast, the cell cycle analysis and western blot of CDK4, CDK6, cyclin D1, and p21 demonstrated that the cancer cell cycle was arrested at the G1 phase after D8-T treatment. Furthermore, the consistent results were received by RNA-seq assay. These promising findings implied that D8-T could serve as a great candidate against bladder cancer for further investigation.
Collapse
|
3
|
The Artemiside-Artemisox-Artemisone-M1 Tetrad: Efficacies against Blood Stage P. falciparum Parasites, DMPK Properties, and the Case for Artemiside. Pharmaceutics 2021; 13:pharmaceutics13122066. [PMID: 34959347 PMCID: PMC8704606 DOI: 10.3390/pharmaceutics13122066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
Because of the need to replace the current clinical artemisinins in artemisinin combination therapies, we are evaluating fitness of amino-artemisinins for this purpose. These include the thiomorpholine derivative artemiside obtained in one scalable synthetic step from dihydroartemisinin (DHA) and the derived sulfone artemisone. We have recently shown that artemiside undergoes facile metabolism via the sulfoxide artemisox into artemisone and thence into the unsaturated metabolite M1; DHA is not a metabolite. Artemisox and M1 are now found to be approximately equipotent with artemiside and artemisone in vitro against asexual P. falciparum (Pf) blood stage parasites (IC50 1.5–2.6 nM). Against Pf NF54 blood stage gametocytes, artemisox is potently active (IC50 18.9 nM early-stage, 2.7 nM late-stage), although against the late-stage gametocytes, activity is expressed, like other amino-artemisinins, at a prolonged incubation time of 72 h. Comparative drug metabolism and pharmacokinetic (DMPK) properties were assessed via po and iv administration of artemiside, artemisox, and artemisone in a murine model. Following oral administration, the composite Cmax value of artemiside plus its metabolites artemisox and artemisone formed in vivo is some 2.6-fold higher than that attained following administration of artemisone alone. Given that efficacy of short half-life rapidly-acting antimalarial drugs such as the artemisinins is associated with Cmax, it is apparent that artemiside will be more active than artemisone in vivo, due to additive effects of the metabolites. As is evident from earlier data, artemiside indeed possesses appreciably greater efficacy in vivo against murine malaria. Overall, the higher exposure levels of active drug following administration of artemiside coupled with its synthetic accessibility indicate it is much the preferred drug for incorporation into rational new artemisinin combination therapies.
Collapse
|
4
|
Pacios-Michelena A, Kasaragod VB, Schindelin H. Artemisinins and their impact on inhibitory neurotransmission. Curr Opin Pharmacol 2021; 59:19-25. [PMID: 34051675 DOI: 10.1016/j.coph.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
Artemisinin, a major extract of the annual mugwort Artemisia annua, and its semisynthetic derivatives represent state-of-the-art antimalarial drugs. These compounds also target, via poorly understood mechanisms, various mammalian pathways, thereby exhibiting anticancer and immunomodulatory properties. Recently, crystal structures of artemisinins with two mammalian targets were determined, namely, gephyrin, the prime scaffolding protein at inhibitory postsynapses, and pyridoxal kinase, a central metabolic enzyme synthesizing vitamin B6. These structures and corresponding functional studies demonstrate that artemisinins play a dual role in modulating inhibitory synapses, acting on postsynaptic sites by impeding inhibitory neurotransmitter receptor clustering and on presynaptic terminals by limiting the biosynthesis of the inhibitory neurotransmitter γ-aminobutyric acid. These studies pave the way for further investigations of artemisinins as inhibitory neurotransmission modulators in humans.
Collapse
Affiliation(s)
- Anabel Pacios-Michelena
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider Str. 2, 97080, Würzburg, Germany
| | - Vikram Babu Kasaragod
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH, Cambridge, United Kingdom
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
5
|
Zhu Y, Klausen C, Zhou J, Guo X, Zhang Y, Zhu H, Li Z, Cheng JC, Xie S, Yang W, Li Y, Leung PCK. Novel dihydroartemisinin dimer containing nitrogen atoms inhibits growth of endometrial cancer cells and may correlate with increasing intracellular peroxynitrite. Sci Rep 2019; 9:15528. [PMID: 31664127 PMCID: PMC6820742 DOI: 10.1038/s41598-019-52108-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/13/2019] [Indexed: 12/13/2022] Open
Abstract
In the present study, a novel dimer, SM1044, selected from a series of dihydroartemisinin (DHA) derivatives containing nitrogen atoms comprising simple aliphatic amine linkers, showed strong growth inhibition in six types of human endometrial cancer (EC) cells, with half maximal inhibitory concentration (IC50) and 95% confidence interval (CI) < 3.6 (1.16~11.23) μM. SM1044 evoked apoptosis and activated caspase-3, -8 and -9 in a concentration- and time-dependent manner, and these effects were manifested early in RL95-2 compared to KLE cells, possibly correlated with the induction of intracellular ONOO-. Catalase and uric acid attenuated the growth inhibitory effects of SM1044 on EC cells, but sodium pyruvate did not. In vivo, the average xenograft tumour growth inhibition rates ranged from 35.8% to 49.9%, respectively, after 2.5 and 5.0 mg/kg SM1044 intraperitoneal treatment, and no obvious behavioural and histopathological abnormalities were observed in SM1044-treated mice in this context. SM1044 predominantly accumulated in the uteri of mice after a single injection. SM1044 displayed efficacy as a tumour suppressor with distinct mechanism of action and unique tissue distribution, properties that distinguish it from other artemisinin analogues. Our findings provide a new clue for artemisinin analogue against cancer.
Collapse
Affiliation(s)
- Yan Zhu
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China. .,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jieyun Zhou
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Xiangjie Guo
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Yu Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Zhao Li
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Shuwu Xie
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Wenjie Yang
- Laboratory of Reproductive Pharmacology, Shanghai Institute of Planned Parenthood Research; Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Ying Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
6
|
Jana S, Iram S, Thomas J, Hayat MQ, Pannecouque C, Dehaen W. Application of the Triazolization Reaction to Afford Dihydroartemisinin Derivatives with Anti-HIV Activity. Molecules 2017; 22:molecules22020303. [PMID: 28218680 PMCID: PMC6155659 DOI: 10.3390/molecules22020303] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/12/2022] Open
Abstract
Artemisinin and synthetic derivatives of dihydroartemisinin are known to possess various biological activities. Post-functionalization of dihydroartemisinin with triazole heterocycles has been proven to lead to enhanced therapeutic potential. By using our newly developed triazolization strategy, a library of unexplored fused and 1,5-disubstituted 1,2,3-triazole derivatives of dihydroartemisinin were synthesized in a single step. All these newly synthesized compounds were characterized and evaluated for their anti-HIV (Human Immunodeficiency Virus) potential in MT-4 cells. Interestingly; three of the synthesized triazole derivatives of dihydroartemisinin showed activities with half maximal inhibitory concentration (IC50) values ranging from 1.34 to 2.65 µM.
Collapse
Affiliation(s)
- Sampad Jana
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Shabina Iram
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan.
| | - Joice Thomas
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Muhammad Qasim Hayat
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan.
| | - Christophe Pannecouque
- Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Dwivedi A, Mazumder A, Fox LT, Brümmer A, Gerber M, du Preez JL, Haynes RK, du Plessis J. In vitro skin permeation of artemisone and its nano-vesicular formulations. Int J Pharm 2016; 503:1-7. [DOI: 10.1016/j.ijpharm.2016.02.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
|
8
|
Ramos-Martín V, González-Martínez C, Mackenzie I, Schmutzhard J, Pace C, Lalloo DG, Terlouw DJ. Neuroauditory toxicity of artemisinin combination therapies-have safety concerns been addressed? Am J Trop Med Hyg 2014; 91:62-73. [PMID: 24865683 PMCID: PMC4080570 DOI: 10.4269/ajtmh.13-0702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although artemisinin-based combination therapies (ACTs) are widely viewed as safe drugs with a wide therapeutic dose range, concerns about neuroauditory safety of artemisinins arose during their development. A decade ago, reviews of human data suggested a potential neuro-ototoxic effect, but the validity of these findings was questioned. With 5–10 years of programmatic use, emerging artemisinin-tolerant falciparum malaria in southeast Asia, and the first calls to consider an increased dose of artemisinins, we review neuroauditory safety data on ACTs to treat uncomplicated falciparum malaria. Fifteen studies reported a neurological or auditory assessment. The large heterogeneity of neuro-ototoxic end points and assessment methodologies and the descriptive nature of assessments hampered a formal meta-analysis and definitive conclusions, but they highlight the persistent lack of data from young children. This subgroup is potentially most vulnerable to any neuroauditory toxicity because of their development stage, increased malaria susceptibility, and repeated ACT exposure in settings lacking robust safety monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dianne J. Terlouw
- *Address correspondence to Dianne J. Terlouw, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom. E-mail:
| |
Collapse
|
9
|
Singh H, Shelat AA, Singh A, Boulos N, Williams RT, Guy RK. A screening-based approach to circumvent tumor microenvironment-driven intrinsic resistance to BCR-ABL+ inhibitors in Ph+ acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 19:158-67. [PMID: 23989453 DOI: 10.1177/1087057113501081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients with Ph+ ALL. While host-derived growth factors in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically defined murine Ph+ ALL cells, we identified interleukin 7 (IL-7) as the dominant host factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7-dependent BCR-ABL-KI-resistant phenotype, we screened a small-molecule library including Food and Drug Administration-approved drugs. Among the validated hits, the well-tolerated antimalarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI-resistant Ph+ ALL. Strikingly, cotreatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI-resistant phenotype of human Ph+ ALL. This cotreatment protocol durably cured 90% of treated animals, suggesting that this cell-based screening approach efficiently identified drugs that could be rapidly moved to human clinical testing.
Collapse
Affiliation(s)
- Harpreet Singh
- 1Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Malaria chemotherapy is under constant threat from the emergence and spread of multidrug resistance of Plasmodium falciparum. Resistance has been observed to almost all currently used antimalarials. Some drugs are also limited by toxicity. A fundamental component of the strategy for malaria chemotherapy is based on prompt, effective and safe antimalarial drugs. To counter the threat of resistance of P. falciparum to existing monotherapeutic regimens, current malaria treatment is based principally on the artemisinin group of compounds, either as monotherapy or artemisinin-based combination therapies for treatment of both uncomplicated and severe falciparum malaria. Key advantages of artemisinins over the conventional antimalarials include their rapid and potent action, with good tolerability profiles. Their action also covers transmissible gametocytes, resulting in decreased disease transmission. Up to now there has been no prominent report of drug resistance to this group of compounds. Treatment of malaria in pregnant women requires special attention in light of limited treatment options caused by potential teratogenicity coupled with a paucity of safety data for the mother and fetus. Treatment of other malaria species is less problematic and chloroquine is still the drug of choice, although resistance of P. vivax to chloroquine has been reported. Multiple approaches to the identification of new antimalarial targets and promising antimalarial drugs are being pursued in order to cope with drug resistance.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Faculty of Allied Health Sciences, Thammasat University (Rangsit Campus), Paholyothin Road, Klong Luang District, Pathumtanee 12121, Thailand.
| |
Collapse
|
11
|
Abstract
BACKGROUND Severe malaria results in over a million deaths every year, most of them in children aged under five years and living in sub-Saharan Africa. This review examines whether treatment with artesunate, instead of the standard treatment quinine, would result in fewer deaths and better treatment outcomes. OBJECTIVES To compare artesunate with quinine for treating severe malaria. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library), MEDLINE, EMBASE, LILACS, ISI Web of Science, the metaRegister of Controlled trials (mRCT), conference proceedings, and reference lists of articles to November 2010. SELECTION CRITERIA Randomized controlled trials comparing intravenous, intramuscular, or rectal artesunate with intravenous or intramuscular quinine for treating adults and children with severe malaria who are unable to take medication by mouth. DATA COLLECTION AND ANALYSIS Two authors independently assessed the eligibility and risk of bias of trials, and extracted and analysed data. The primary outcome was all-cause death. Dichotomous outcomes were summarized using risk ratios (RR) and continuous outcomes by mean differences (MD). Where appropriate, we combined data in meta-analyses. MAIN RESULTS Eight trials enrolling 1664 adults and 5765 children are included in this review.Treatment with artesunate significantly reduced the risk of death both in adults (RR 0.61, 95% Confidence Interval (CI) 0.50 to 0.75; 1664 participants, five trials) and children (RR 0.76, 95% CI 0.65 to 0.90; 5765 participants, four trials)In children, treatment with artesunate increased the incidence of neurological sequelae at the time of hospital discharge. The majority of these sequelae were transient and no significant difference between treatments was seen at later follow up. AUTHORS' CONCLUSIONS The evidence clearly supports the superiority of parenteral artesunate over quinine for the treatment of severe malaria in both adults and children and in different regions of the world.
Collapse
Affiliation(s)
- David Sinclair
- International Health Group, Liverpool School of Tropical Medicine, Liverpool,
| | | | | | | |
Collapse
|
12
|
Tilley L, Charman SA, Vennerstrom JL. Semisynthetic Artemisinin and Synthetic Peroxide Antimalarials. NEGLECTED DISEASES AND DRUG DISCOVERY 2011. [DOI: 10.1039/9781849733496-00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since the discovery of the endoperoxide sesquiterpene lactone artemisinin, numerous second-generation semisynthetic artemisinins and synthetic peroxides have been prepared and tested for their antimalarial properties. Using a case-study approach, we describe the discovery of the investigational semisynthetic artemisinins artelinic acid (8) and artemisone (9), and the structurally diverse synthetic peroxides arteflene (10), fenozan B07 (11), arterolane (12), PA1103/SAR116242 (13), and RKA182 (14).
Collapse
Affiliation(s)
- Leann Tilley
- Department of Biochemistry and Centre of Excellence for Coherent X-rayScience, La Trobe University Melbourne, Victoria 3086 Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052 Australia
| | - Jonathan L. Vennerstrom
- College of Pharmacy University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha NE USA
| |
Collapse
|
13
|
Abstract
BACKGROUND Severe malaria results in over a million deaths every year, most of them in children aged under five years and living in sub-Saharan Africa. This review examines whether treatment with artesunate, instead of the standard treatment quinine, would result in fewer deaths and better treatment outcomes. OBJECTIVES To compare artesunate with quinine for treating severe malaria. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library), MEDLINE, EMBASE, LILACS, ISI Web of Science, the metaRegister of Controlled trials (mRCT), conference proceedings, and reference lists of articles to November 2010. SELECTION CRITERIA Randomized controlled trials comparing intravenous, intramuscular, or rectal artesunate with intravenous or intramuscular quinine for treating adults and children with severe malaria who are unable to take medication by mouth. DATA COLLECTION AND ANALYSIS Two authors independently assessed the eligibility and risk of bias of trials, and extracted and analysed data. The primary outcome was all-cause death. Dichotomous outcomes were summarized using risk ratios (RR) and continuous outcomes by mean differences (MD). Where appropriate, we combined data in meta-analyses. MAIN RESULTS Eight trials enrolling 1664 adults and 5765 children are included in this review.Treatment with artesunate significantly reduced the risk of death both in adults (RR 0.61, 95% Confidence Interval (CI) 0.50 to 0.75; 1664 participants, five trials) and children (RR 0.76, 95% CI 0.65 to 0.90; 5765 participants, four trials)In children, treatment with artesunate increased the incidence of neurological sequelae at the time of hospital discharge. The majority of these sequelae were transient and no significant difference between treatments was seen at later follow up. AUTHORS' CONCLUSIONS The evidence clearly supports the superiority of parenteral artesunate over quinine for the treatment of severe malaria in both adults and children and in different regions of the world.
Collapse
Affiliation(s)
- David Sinclair
- International Health Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK, L3 5QA
| | | | | |
Collapse
|
14
|
Toxicokinetic and toxicodynamic (TK/TD) evaluation to determine and predict the neurotoxicity of artemisinins. Toxicology 2011; 279:1-9. [DOI: 10.1016/j.tox.2010.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/18/2010] [Accepted: 09/14/2010] [Indexed: 11/23/2022]
|
15
|
A golden phoenix arising from the herbal nest — A review and reflection on the study of antimalarial drug Qinghaosu. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11458-010-0214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
|
17
|
Gomes M, Ribeiro I, Warsame M, Karunajeewa H, Petzold M. Rectal artemisinins for malaria: a review of efficacy and safety from individual patient data in clinical studies. BMC Infect Dis 2008; 8:39. [PMID: 18373841 PMCID: PMC2364627 DOI: 10.1186/1471-2334-8-39] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 03/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rectal administration of artemisinin derivatives has potential for early treatment for severe malaria in remote settings where injectable antimalarial therapy may not be feasible. Preparations available include artesunate, artemisinin, artemether and dihydroartemisinin. However each may have different pharmacokinetic properties and more information is needed to determine optimal dose and comparative efficacy with each another and with conventional parenteral treatments for severe malaria. METHODS Individual patient data from 1167 patients in 15 clinical trials of rectal artemisinin derivative therapy (artesunate, artemisinin and artemether) were pooled in order to compare the rapidity of clearance of Plasmodium falciparum parasitaemia and the incidence of reported adverse events with each treatment. Data from patients who received comparator treatment (parenteral artemisinin derivative or quinine) were also included. Primary endpoints included percentage reductions in parasitaemia at 12 and 24 hours. A parasite reduction of >90% at 24 hours was defined as parasitological success. RESULTS Artemisinin and artesunate treatment cleared parasites more rapidly than parenteral quinine during the first 24 hours of treatment. A single higher dose of rectal artesunate treatment was five times more likely to achieve >90% parasite reductions at 24 hours than were multiple lower doses of rectal artesunate, or a single lower dose administration of rectal artemether. CONCLUSION Artemisinin and artesunate suppositories rapidly eliminate parasites and appear to be safe. There are less data on artemether and dihydroartemisinin suppositories. The more rapid parasite clearance of single high-dose regimens suggests that achieving immediate high drug concentrations may be the optimal strategy.
Collapse
Affiliation(s)
- Melba Gomes
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, World Health Organization, 20 Avenue Appia, Geneva 27, Switzerland.
| | | | | | | | | |
Collapse
|
18
|
D'Alessandro S, Gelati M, Basilico N, Parati EA, Haynes RK, Taramelli D. Differential effects on angiogenesis of two antimalarial compounds, dihydroartemisinin and artemisone: Implications for embryotoxicity. Toxicology 2007; 241:66-74. [PMID: 17897768 DOI: 10.1016/j.tox.2007.08.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Artemisinin derivatives are highly effective and well-tolerated antimalarial drugs that now form the basis of antimalarial combination therapies recommended by the World Health Organization. Although not yet reported to be a problem in clinical use, neurotoxicity and embryotoxicity are displayed by the compound class in in vitro and in vivo experimental models, in particular by dihydroartemisinin, the main metabolite of all current clinical artemisinins. Embryotoxicity appears to be connected with defective angiogenesis and vasculogenesis in certain stages of embryo development. This may prevent the use of artemisinin derivatives in malaria during pregnancy, when both mother and fetus are at high risk of death. Artemisone is a novel 10-alkylamino derivative which is not metabolised to dihydroartemisinin. It was selected as a clinical drug candidate on the basis of its high efficacy against Plasmodium falciparum in vitro and its lack of detectable neurotoxicity in both in vitro and in vivo screens. Here we describe the results of a comparative study of the anti-angiogenic properties of both artemisone and dihydroartemisinin in different model systems. We evaluated the proliferation of human endothelial cells and their migration on a fibronectin matrix, the sprouting of new vessels from rat aorta sections grown in collagen and the production of pro-angiogenic cytokines such as vascular endothelial growth factor (VEGF) and interleukin-8 (CXCL-8). The data show that artemisone is significantly less anti-angiogenic than dihydroartemisinin in all the experimental models, suggesting that it will be safer to use than the current clinical artemisinins during pregnancy.
Collapse
Affiliation(s)
- Sarah D'Alessandro
- Dipartimento di Sanità Pubblica-Microbiologia-Virologia, Università degli Studi di Milano, via Pascal 36, 20133 Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Genovese RF, Newman DB. Understanding artemisinin-induced brainstem neurotoxicity. Arch Toxicol 2007; 82:379-85. [DOI: 10.1007/s00204-007-0252-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/15/2007] [Indexed: 11/28/2022]
|
20
|
Abstract
BACKGROUND Severe malaria kills over a million people every year. We sought evidence of superiority of artesunate compared with the standard treatment quinine. OBJECTIVES To compare artesunate with quinine for treating severe malaria. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group Specialized Register (January 2007), CENTRAL (The Cochrane Library 2006, Issue 4), MEDLINE (1966 to January 2007), EMBASE (1974 to January 2007), LILACS (1982 to January 2007), ISI Web of Science (1945 to January 2007), the metaRegister of Controlled trials (mRCT), conference proceedings, and reference lists of articles. We contacted researchers and the World Health Organization. SELECTION CRITERIA Randomized controlled trials comparing intravenous, intramuscular, or rectal artesunate with intravenous or intramuscular quinine for treating adults and children with severe malaria who are unable to take medication by mouth. DATA COLLECTION AND ANALYSIS Two authors assessed the eligibility and methodological quality of trials, extracted and analysed data, and drafted the review. The third author contributed to the design and writing of the review. Death was the primary outcome. Dichotomous outcomes were summarized using relative risks and continuous outcomes by mean differences. Where appropriate, we combined data in meta-analyses. Heterogeneity was investigated for the primary outcome using subgroup analyses. MAIN RESULTS Six trials enrolling 1938 participants (1664 adults and 274 children) met our inclusion criteria. All six trials were conducted in Asia, and only one small trial enrolled only children. Five trials used intravenous artesunate and one trial intramuscular artesunate; all six used intravenous quinine. Treatment with artesunate significantly reduced the risk of death (RR 0.62, 95% CI 0.51 to 0.75; 1938 participants, 6 trials), reduced parasite clearance time (WMD 8.14 h, 95% CI 11.55 to 4.73; 292 participants, 3 trials), and hypoglycaemia detected by routine monitoring (RR 0.46, 95% CI 0.25 to 0.87; 185 participants, 2 trials). There was no evidence of a difference in neurological sequelae, coma recovery time, time to hospital discharge, fever clearance time, or adverse effects other than hypoglycaemia. AUTHORS' CONCLUSIONS Intravenous artesunate is the drug of choice for adults with severe malaria, particularly if acquired in Asia. This review did not identify sufficient data to make firm conclusions about the treatment of children or the effectiveness of intramuscular artesunate. There is an urgent need to compare the effects of artesunate with quinine in African children with severe malaria. The applicability of these results to Asian children and the ethics of further research are points of debate.
Collapse
Affiliation(s)
- K L Jones
- Liverpool School of Tropical Medicine, International Health Group, Pembroke Place, Liverpool, Merseyside, UK, L3 5QA.
| | | | | |
Collapse
|
21
|
Kongpatanakul S, Chatsiricharoenkul S, Sathirakul K, Suputtamongkol Y, Atipas S, Watnasirichaikul S, Pongnarin P, Sangvanich P. Evaluation of the safety and relative bioavailability of a new dihydroartemisinin tablet formulation in healthy Thai volunteers. Trans R Soc Trop Med Hyg 2007; 101:972-9. [PMID: 17681360 DOI: 10.1016/j.trstmh.2007.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 05/24/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022] Open
Abstract
A new dihydroartemisinin (DHA) tablet formulation has been developed by the Thai Government Pharmaceutical Organization (GPO). In this report, its in vitro dissolution and in vivo pharmacokinetics as well as its safety in healthy volunteers were evaluated, using the DHA tablet made by Dafra Pharma NV as a reference. A two-period crossover clinical study design was utilised. Twenty-four volunteers were randomly allocated to two sequences (12 volunteers in each) to receive a 200mg single oral dose of either the GPO or Dafra formulation with a wash-out period of 5-7 days. In vitro, the GPO formulation dissolved more readily. In vivo, the GPO formulation had a higher maximum plasma concentration and approximately 149% (90% CI 125-179%) greater bioavailability. Both formulations were well tolerated. Interestingly, significant decreases in haemoglobin and haematocrit values (P<0.001) were noted following administration of one dose of DHA (decrease of 0.73 g/dl haemoglobin and 2.0% haematocrit compared with baseline) or two doses of DHA (decrease of 0.95 g/dl haemoglobin and 3.3% haematocrit compared with baseline). The second dose was associated with additional toxicity compared with one dose with regard to haematocrit (P<0.001) but not haemoglobin. This finding warrants further investigation, since the drug will be used for the treatment of malaria in which anaemia is a consequence.
Collapse
Affiliation(s)
- Supornchai Kongpatanakul
- Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Toovey S. Are currently deployed artemisinins neurotoxic? Toxicol Lett 2006; 166:95-104. [PMID: 16828992 DOI: 10.1016/j.toxlet.2006.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 01/25/2023]
Abstract
In vitro, animal, and human clinical studies suggest currently deployed artemisinins possess neurotoxic potential. A specific and consistent pattern of brainstem injuries that includes auditory processing centers has been reported from all laboratory animals studied. Hearing loss, ataxia, and tremor are reported from humans. Neurotoxicity appears mediated in part through artemisinin induced oxidative stress in exposed brainstems. In vitro studies suggest that artemisinin neurotoxicity does not manifest immediately upon exposure, but that once commenced it is inevitable and irreversible; extrapolation from in vitro data suggests that 14 days may possibly be required for full development, casting doubt upon some animal safety studies and human necropsy studies. Uncertainty remains over the neurotoxicity of currently deployed artemisinins, and their safety profile should be reviewed, especially in pediatric use. The development of non-neurotoxic artemisinins is possible and should be encouraged.
Collapse
Affiliation(s)
- Stephen Toovey
- Royal Free and University College Medical School, London, UK; Travel Clinic, Cape Town, South Africa.
| |
Collapse
|
23
|
Ribeiro-dos-Santos G, Verjovski-Almeida S, Leite LCC. Schistosomiasis--a century searching for chemotherapeutic drugs. Parasitol Res 2006; 99:505-21. [PMID: 16636847 DOI: 10.1007/s00436-006-0175-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 02/23/2006] [Indexed: 12/22/2022]
Abstract
Schistosomiasis affects 200 million individuals in underdeveloped and developing regions and is a growing concern for travelers worldwide. There has been evidence of resistance to the praziquantel-based therapy and reports of acute-disease manifestation; therefore, other drugs affecting different stages of the schistosome parasites life cycle and alternative therapeutic regimens should be developed and become accessible. The present review results from a comprehensive search in the scientific literature for substances and compounds tested in the past centennial for schistosomiasis therapy. We gathered over 40 drugs providing information on therapeutic action in humans or animal model, toxicity, susceptible Schistosoma stages, species, etc. The drugs were grouped according to their known metabolic effects on the parasite, whether they are on membrane structure and function, carbohydrate metabolism, protein synthesis and function, or on nucleic acid metabolism. We discuss the current knowledge of drug-target interactions, their mechanism of action and possible therapy combinations. Furthermore, based in the literature and in our own experience with large-scale Schistosoma mansoni genome and transcriptome analyses, we put forward several recently described gene products that are promising target candidates for existing or new drugs.
Collapse
|
24
|
Toovey S, Jamieson A. Audiometric changes associated with the treatment of uncomplicated falciparum malaria with co-artemether. Trans R Soc Trop Med Hyg 2004; 98:261-7; discussion 268-9. [PMID: 15109547 DOI: 10.1016/j.trstmh.2003.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 11/01/2003] [Accepted: 11/12/2003] [Indexed: 11/30/2022] Open
Abstract
Animal studies have demonstrated artemisinin brain stem toxicity with auditory centres being especially affected; there has, to date, been no evidence of such toxicity with oral artemisinins in humans. Subjects working at a construction site in Mozambique had audiometric assessments taken on joining and leaving the project. Subjects with uncomplicated malarias received co-artemether (artemether-lumefantrine) (n = 150) while age-, gender-, weight- and race-matched controls (n = 150) neither suffered malaria nor received antimalarial therapy. Hearing thresholds were measured at predefined frequencies in treated subjects and controls. Subjects receiving co-artemether had a significantly greater heating loss than controls at all frequencies except 250 Hz and 500 Hz (P values ranging from <0.001 to 0.04, Mann-Whitney U). Mean changes at the different frequencies in subjects ranged from -6.50 dB (95% CI -8.19 to -4.81) [at 1kHz frequency] to -0.07 dB (95% CI -2.19 to 2.05) [at 6 kHz frequency]. Mean changes in the control group ranged from -4.20 dB (95% CI -5.97 to -2.43) [at 1 kHz frequency] to +2.7 dB (95% CI -0.93 to 4.47) [at 6 kHz frequency]. Treatment of uncomplicated malaria with co-artemether is associated with hearing loss, possibly from synergy between potentially ototoxic agents in combination. The safety and neurotoxicity of artemesinins and other endoperoxides needs to be more fully evaluated.
Collapse
Affiliation(s)
- Stephen Toovey
- SAA-Netcare Travel Clinics, South Africa and Mozambique, P.O. Box 786692, Sandton, 2146, South Africa.
| | | |
Collapse
|
25
|
Abstract
A discrepancy seems to prevail with regard to the toxicity and safety of the artemisinin family of antimalarials. While these compounds have been found to be virtually void of any serious side effects in humans, their neurotoxicity in animal models has raised concerns about their use. In this paper, we present selected examples of both pre-clinical and clinical studies dealing with adverse effects of artemisinin drugs. We suggest that the prolonged presence of artemisinins upon slow release from oil-based intramuscular formulations is the main cause of the observed toxicity in laboratory animals. In contrast, oral intake of these compounds, which is by far the most common formulation used for treatment of malaria patients, results in rapid clearance of these drugs and is thus unlikely to cause any toxicity in human subjects. Another plausible factor may be the relatively high doses of artemisinin compounds used in animal studies. In conclusion, the observation of the toxicity of artemisinin compounds in animals, but not in humans, is most likely due to different pharmacokinetic profiles after different routes of administrations.
Collapse
Affiliation(s)
- Toufigh Gordi
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | |
Collapse
|
26
|
Satayavivad J, Watcharasit P, Khamkong P, Tuntawiroon J, Pavaro C, Ruchirawat S. The pharmacodynamic study of a potent new antimalarial (MC1). Acta Trop 2004; 89:343-9. [PMID: 14744560 DOI: 10.1016/j.actatropica.2003.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,3-bis(Trifluoromethyl)-4-(3-hydroxyquinuclidinylquinoline) or MC(1) is a new synthetic compound with potent antimalarial activity in vitro and in vivo studies. The IC(50) values of MC(1) and chloroquine in in vitro culture of Plasmodium falciparum are 7.0x10(-8) and 6.06x10(-7)M, respectively. In an in vivo study using Plasmodium berghei infected mice as the test model, the survival time of the infected mice without drug treatment was 6.00+0.58 days. Chloroquine and MC(1) at an equal dose of 7.5mg/kg, orally administered once daily for 4 days, prolonged the survival time of the infected mice from 6 to 14 days, and more than 28 days, respectively. At the doses that exhibit potent antimalarial activity in vivo, there are no observable toxic effects. Preliminary studies of the pharmacodynamic activity of this newly synthesized compound revealed that at the doses which exhibit potent antimalarial activity, there is no alteration in motor activity such as distance traveled, rotational behavior, and stereotypic activity. The blood glucose was not significantly altered. In the spontaneous beating, isolated right atria of mice, MC(1) exhibits direct negative chronotropism at high concentrations (10(-4)M). This effect is augmented in hyper-K(+) bathing solution. A direct negative chronotropic effect was also observed when mefloquine at 5x10(-5)M was used. Preliminary pharmacodynamic study suggested that MC(1) is a potential new antimalarial drug that should be studied further.
Collapse
Affiliation(s)
- Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | | | | | | | | | | |
Collapse
|
27
|
Giao PT, de Vries PJ, Hung LQ, Binh TQ, Nam NV, Kager PA. CV8, a new combination of dihydroartemisinin, piperaquine, trimethoprim and primaquine, compared with atovaquone-proguanil against falciparum malaria in Vietnam. Trop Med Int Health 2004; 9:209-16. [PMID: 15040557 DOI: 10.1046/j.1365-3156.2003.01180.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To study a new combination, based on dihydroartemisinin and piperaquine (CV8) and atovaquone/proguanil (Malarone) for treatment of uncomplicated falciparum malaria in Vietnam. METHODS Vietnamese adults with falciparum malaria were allocated randomly to treatment with dihydroartemisinin/piperaquine/trimethoprim/primaquine 256/2560/720/40 mg (CV8, n = 84) or Malarone 3000/1200 mg (n = 81), both over 3 days. Patients were followed-up for 28 days. RESULTS All patients recovered rapidly. The mean (95% CI) parasite elimination half-life of CV8 was 6.8 h (6.2-7.4) and of Malarone 6.5 h (6.1-6.9) (P = 0.4). Complete parasite clearance time was 35 (31-39) and 34 h (31-38) (P = 0.9). The 28-day cure rate was 94% and 95%, respectively (odds ratio 0.84, 95% CI 0.18-3.81). No significant side-effects were found. CONCLUSION CV8 and Malarone are effective combinations against multi-drug resistant falciparum malaria. CV8 has the advantage of a low price.
Collapse
Affiliation(s)
- Phan T Giao
- Division of Infectious Diseases, Tropical Medicine & AIDS, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
|