1
|
Selvam K, Najib MA, Khalid MF, Yunus MH, Wahab HA, Harun A, Zainulabid UA, Fadzli Mustaffa KM, Aziah I. Isolation and characterization of ssDNA aptamers against BipD antigen of Burkholderia pseudomallei. Anal Biochem 2024; 695:115655. [PMID: 39214325 DOI: 10.1016/j.ab.2024.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Melioidosis is difficult to diagnose due to its wide range of clinical symptoms. The culture method is time-consuming and less sensitive, emphasizing the importance of rapid and accurate diagnostic tests for melioidosis. Burkholderia invasion protein D (BipD) of Burkholderia pseudomallei is a potential diagnostic biomarker. This study aimed to isolate and characterize single-stranded DNA aptamers that specifically target BipD. METHODS The recombinant BipD protein was produced, followed by isolation of BipD-specific aptamers using Systematic Evolution of Ligands by EXponential enrichment. The binding affinity and specificity of the selected aptamers were evaluated using Enzyme-Linked Oligonucleotide Assay. RESULTS The fifth SELEX cycle showed a notable enrichment of recombinant BipD protein-specific aptamers. Sequencing analysis identified two clusters with a total of seventeen distinct aptamers. AptBipD1, AptBipD13, and AptBipD50 were chosen based on their frequency. Among them, AptBipD1 exhibited the highest binding affinity with a Kd value of 1.0 μM for the recombinant BipD protein. Furthermore, AptBipD1 showed significant specificity for B. pseudomallei compared to other tested bacteria. CONCLUSION AptBipD1 is a promising candidate for further development of reliable, affordable, and efficient point-of-care diagnostic tests for melioidosis.
Collapse
Affiliation(s)
- Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Muhammad Hafiznur Yunus
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ummu Afeera Zainulabid
- Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, 25200, Pahang, Malaysia
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| |
Collapse
|
2
|
BipD of Burkholderia pseudomallei: Structure, Functions, and Detection Methods. Microorganisms 2021; 9:microorganisms9040711. [PMID: 33808203 PMCID: PMC8067316 DOI: 10.3390/microorganisms9040711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/13/2023] Open
Abstract
Melioidosis is a severe disease caused by Burkholderia pseudomallei (B. pseudomallei), a Gram-negative environmental bacterium. It is endemic in Southeast Asia and Northern Australia, but it is underreported in many other countries. The principal routes of entry for B. pseudomallei are skin penetration, inhalation, and ingestion. It mainly affects immunocompromised populations, especially patients with type 2 diabetes mellitus. The laboratory diagnosis of melioidosis is challenging due to its non-specific clinical manifestations, which mimic other severe infections. The culture method is considered an imperfect gold standard for the diagnosis of melioidosis due to its low sensitivity. Antibody detection has low sensitivity and specificity due to the high seropositivity among healthy people in endemic regions. Antigen detection using various proteins has been tested for the rapid determination of B. pseudomallei; however, it presents certain limitations in terms of its sensitivity and specificity. Therefore, this review aims to frame the present knowledge of a potential target known as the Burkholderia invasion protein D (BipD), including future directions for its detection using an aptamer-based sensor (aptasensor).
Collapse
|
3
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
4
|
Chandola C, Kalme S, Casteleijn MG, Urtti A, Neerathilingam M. Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 2017; 41:535-61. [PMID: 27581942 DOI: 10.1007/s12038-016-9632-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aptamers are small, single-stranded oligonucleotides (DNA or RNA) that bind to their target with high specificity and affinity. Although aptamers are analogous to antibodies for a wide range of target recognition and variety of applications, they have significant advantages over antibodies. Since aptamers have recently emerged as a class of biomolecules with an application in a wide array of fields, we need to summarize the latest developments herein. In this review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging. We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/ toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and labelling of aptamers makes them a potential tool for diagnostics. Also, due to the reduced off-target effects of aptamers, their use as a potential drug delivery tool is emerging rapidly. Hence, we discuss their use in targeted delivery in conjugation with siRNAs, nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable for RNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior over protein-based binding molecules in terms of labelling and conjugation strategies.
Collapse
Affiliation(s)
- Chetan Chandola
- 1Center for Cellular and Molecular Platforms, NCBS-TIFR, Bangalore 560 065, India
| | | | | | | | | |
Collapse
|
5
|
Hamula CL, Zhang H, Li F, Wang Z, Chris Le X, Li XF. Selection and analytical applications of aptamers binding microbial pathogens. Trends Analyt Chem 2011; 30:1587-1597. [PMID: 32287535 PMCID: PMC7112775 DOI: 10.1016/j.trac.2011.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA aptamers specifically recognizing microbial cells and viruses have a range of analytical and therapeutic applications. This article describes recent advances in the development of aptamers targeting specific pathogens (e.g., live bacteria, whole viral particles, and virally-infected mammalian cells). Specific aptamers against pathogens have been used as affinity reagents to develop sandwich assays, to label and to image cells, to bind with cells for flow-cytometry analysis, and to act as probes for development of whole-cell biosensors. Future applications of aptamers to pathogens will benefit from recent advances in improved selection and new aptamers containing modified nucleotides, particularly slow off-rate modified aptamers (SOMAmers).
Collapse
Affiliation(s)
| | | | | | | | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
6
|
Cibiel A, Dupont DM, Ducongé F. Methods To Identify Aptamers against Cell Surface Biomarkers. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058655 DOI: 10.3390/ph4091216] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment). During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.
Collapse
Affiliation(s)
- Agnes Cibiel
- CEA, DSV, IBM, Service Hospitalier Frédéric Joliot (SHFJ), 4 place du général Leclerc, 91401 Orsay, France; E-Mail: (A.C.)
- INSERM U1023, 4 place du général Leclerc, 91401 Orsay, France
- Université Paris Sud, 4 place du général Leclerc, 91401 Orsay, France
| | - Daniel Miotto Dupont
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark; E-Mail: (D.M.D.)
| | - Frédéric Ducongé
- CEA, DSV, IBM, Service Hospitalier Frédéric Joliot (SHFJ), 4 place du général Leclerc, 91401 Orsay, France; E-Mail: (A.C.)
- INSERM U1023, 4 place du général Leclerc, 91401 Orsay, France
- Université Paris Sud, 4 place du général Leclerc, 91401 Orsay, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-169-867-766; Fax: +33-169-867-786
| |
Collapse
|
7
|
Kupakuwana GV, Crill JE, McPike MP, Borer PN. Acyclic identification of aptamers for human alpha-thrombin using over-represented libraries and deep sequencing. PLoS One 2011; 6:e19395. [PMID: 21625587 PMCID: PMC3098231 DOI: 10.1371/journal.pone.0019395] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/29/2011] [Indexed: 12/12/2022] Open
Abstract
Background Aptamers are oligonucleotides that bind proteins and other targets with high affinity and selectivity. Twenty years ago elements of natural selection were adapted to in vitro selection in order to distinguish aptamers among randomized sequence libraries. The primary bottleneck in traditional aptamer discovery is multiple cycles of in vitro evolution. Methodology/Principal Findings We show that over-representation of sequences in aptamer libraries and deep sequencing enables acyclic identification of aptamers. We demonstrated this by isolating a known family of aptamers for human α-thrombin. Aptamers were found within a library containing an average of 56,000 copies of each possible randomized 15mer segment. The high affinity sequences were counted many times above the background in 2–6 million reads. Clustering analysis of sequences with more than 10 counts distinguished two sequence motifs with candidates at high abundance. Motif I contained the previously observed consensus 15mer, Thb1 (46,000 counts), and related variants with mostly G/T substitutions; secondary analysis showed that affinity for thrombin correlated with abundance (Kd = 12 nM for Thb1). The signal-to-noise ratio for this experiment was roughly 10,000∶1 for Thb1. Motif II was unrelated to Thb1 with the leading candidate (29,000 counts) being a novel aptamer against hexose sugars in the storage and elution buffers for Concanavilin A (Kd = 0.5 µM for α-methyl-mannoside); ConA was used to immobilize α-thrombin. Conclusions/Significance Over-representation together with deep sequencing can dramatically shorten the discovery process, distinguish aptamers having a wide range of affinity for the target, allow an exhaustive search of the sequence space within a simplified library, reduce the quantity of the target required, eliminate cycling artifacts, and should allow multiplexing of sequencing experiments and targets.
Collapse
Affiliation(s)
- Gillian V. Kupakuwana
- Graduate Program in Structural Biology, Biochemistry and Biophysics, Syracuse University, Syracuse, New York, United States of America
| | - James E. Crill
- AptaMatrix, Inc., Syracuse, New York, United States of America
| | - Mark P. McPike
- AptaMatrix, Inc., Syracuse, New York, United States of America
| | - Philip N. Borer
- Graduate Program in Structural Biology, Biochemistry and Biophysics, Syracuse University, Syracuse, New York, United States of America
- AptaMatrix, Inc., Syracuse, New York, United States of America
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Qazi O, Rani M, Gnanam AJ, Cullen TW, Stead CM, Kensing H, McCaul K, Ngugi S, Prior JL, Lipka A, Nagy JM, Whitlock GC, Judy BM, Harding SV, Titball RW, Sidhu SS, Trent MS, Kitto GB, Torres A, Estes DM, Iverson B, Georgiou G, Brown KA. Development of reagents and assays for the detection of pathogenic Burkholderia species. Faraday Discuss 2011; 149:23-36; discussion 63-77. [PMID: 21413172 PMCID: PMC3593192 DOI: 10.1039/c005422b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid detection of the category B biothreat agents Burkholderia pseudomallei and Burkholderia mallei in acute infections is critical to ensure that appropriate treatment is administered quickly to reduce an otherwise high probability of mortality (ca. 40% for B. pseudomallei). We are developing assays that can be used in clinical laboratories or security applications for the direct detection of surface-localized and secreted macromolecules produced by these organisms. We present our current medium-throughout approach for target selection and production of Burkholderia macromolecules and describe the generation of a Fab molecule targeted to the B. mallei BimA protein. We also present development of prototype assays for detecting Burkholderia species using anti-lipopolysaccharide antibodies.
Collapse
Affiliation(s)
- Omar Qazi
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Mridula Rani
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Annie J. Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas W. Cullen
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Christopher M. Stead
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Haley Kensing
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kate McCaul
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Sarah Ngugi
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Joann L Prior
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Alexandria Lipka
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ; Deceased, UK
| | - Judit M. Nagy
- Institute of Biomedical Engineering and the Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Gregory C. Whitlock
- Department of Clinical Laboratory Sciences, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Barbara M. Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Sarah V. Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Richard W. Titball
- School of Biosciences, Geoffrey Pope Building, University of Exeter EX4 4QD, UK
| | - Sachdev S. Sidhu
- Terence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - M. Stephen Trent
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - G Barrie Kitto
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Alfredo Torres
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Microbiology and Immunology and the Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - D. Mark Estes
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Microbiology and Immunology and the Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Brent Iverson
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - George Georgiou
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Chemical Engineering and Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Katherine A. Brown
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ; Deceased, UK
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
9
|
In silico analysis of potential diagnostic targets from Burkholderia pseudomallei. Trans R Soc Trop Med Hyg 2008; 102 Suppl 1:S61-5. [DOI: 10.1016/s0035-9203(08)70017-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|