1
|
Ledneczki I, Tapolcsányi P, Gábor E, Éles J, Barabás J, Béni Z, Varga B, Balázs O, Román V, Fodor L, Szikra J, Vastag M, Lévay G, Schmidt É, Lendvai B, Greiner I, Kiss B, Némethy Z, Mahó S. Discovery of Novel Steroid-Based Histamine H 3 Receptor Antagonists/Inverse Agonists. J Med Chem 2024; 67:3643-3667. [PMID: 38393759 DOI: 10.1021/acs.jmedchem.3c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Steroid-based histamine H3 receptor antagonists (d-homoazasteroids) were designed by combining distinct structural elements of HTS hit molecules. They were characterized, and several of them displayed remarkably high affinity for H3 receptors with antagonist/inverse agonist features. Especially, the 17a-aza-d-homolactam chemotype demonstrated excellent H3R activity together with significant in vivo H3 antagonism. Optimization of the chemotype was initiated with special emphasis on the elimination of the hERG and muscarinic affinity. Additionally, ligand-based SAR considerations and molecular docking studies were performed to predict binding modes of the molecules. The most promising compounds (XXI, XXVIII, and XX) showed practically no muscarinic and hERG affinity. They showed antagonist/inverse agonist property in the in vitro functional tests that was apparent in the rat in vivo dipsogenia test. They were considerably stable in human and rat liver microsomes and provided significant in vivo potency in the place recognition and novel object recognition cognitive paradigms.
Collapse
Affiliation(s)
| | - Pál Tapolcsányi
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Eszter Gábor
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - János Éles
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Júlia Barabás
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Zoltán Béni
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Balázs Varga
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Ottilia Balázs
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Viktor Román
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - László Fodor
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Judit Szikra
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Mónika Vastag
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - György Lévay
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Éva Schmidt
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Balázs Lendvai
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - István Greiner
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Béla Kiss
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Zsolt Némethy
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| | - Sándor Mahó
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest H-1103, Hungary
| |
Collapse
|
2
|
Kiss A, Wölfling J, Mernyák E, Frank É, Benke Z, Ashkan Senobar Tahaei S, Zupkó I, Mahó S, Schneider G. Stereocontrolled synthesis of the four possible 3-methoxy and 3-benzyloxy-16-triazolyl-methyl-estra-17-ol hybrids and their antiproliferative activities. Steroids 2019; 152:108500. [PMID: 31536732 DOI: 10.1016/j.steroids.2019.108500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
The four possible isomers of each of 3-methoxy- and 3-benzyloxyestra-1,3,5(10)-trien-17-ols (5-8 and 9-12) were converted through 16-p-tosyloxymethyl- or 16-bromomethyl derivatives into their 3-methoxy- and 3-benzyloxy-16-azidomethylestra(1,3,5(10)-triene derivatives (13-16 and 17-20). The regioselective Cu(I)-catalyzed 1,3-dipolar cycloaddition of these compounds with different terminal alkynes afforded novel 1,4-disubstituted diastereomers (21a-f, 22a-f, 23a-f, 24a-f and 25a-f, 26a-f, 27a-f, 28a-f). The antiproliferative activities of the structurally related triazoles were determined in vitro with the microculture tetrazolium assay on four malignant human cell lines of gynecological origin (Hela, SiHa, MCF-7 and MDA-MB-231).
Collapse
Affiliation(s)
- Anita Kiss
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Eötvös u. 6, H-6720 Szeged. Hungary
| | | | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Sándor Mahó
- Chemical Works of Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
3
|
Kiss A, Wölfling J, Mernyák E, Frank É, Gyovai A, Kulmány Á, Zupkó I, Schneider G. Stereoselective synthesis of new type of estradiol hybrid molecules and their antiproliferative activities. Steroids 2019; 148:63-72. [PMID: 31085213 DOI: 10.1016/j.steroids.2019.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 11/21/2022]
Abstract
To prepare new type of estrane hybrid molecules, we chose 3-methoxy- and 3-benzyloxy-17β,16β-epoxymethylene-estra-1,3,5(10)-trienes as starting materials (2 and 5). These steroid oxetanes were transformed with ethylene glycol in the presence of BF3.OEt2 into 3-methoxy- and 3-benzyloxy-16β-(2'-oxa-4'-hydroxy)butyl-17β-hydroxy-estra-1,3,5(10)-trien-17β-ols (3a and 6a). Iodination of the terminal hydroxy group afforded iodo derivatives 3b and 6b, which underwent one-pot 3-O-alkylation with unprotected ascorbic acid to yield 3c and 6c. The same process with salicylic acid led to 2-O-alkylated salicylic acid derivatives 3d and 6d. Iodo derivatives 3b and 6b underwent nucleophilic exchange reaction with NaN3 furnishing the corresponding azido compounds 3e and 6e. These compounds were subjected to azide-alkyne CuAAC reactions with phenylacetylene and their p-substituted derivatives to form 1,4-substituted triazoles 3f-h and 6f-h. The reduction of 3e and 6e with hydrazine hydrate in the presence of Raney Ni provided the corresponding amino derivatives 3i and 6i. These compounds were reacted further with varied substituted benzoic acids to deliver terminal benzamido derivatives 3j-m and 6j-m. We determined the in vitro antiproliferative activities of compounds 2, 5, 3a-m and 6a-m by means of MTT assays on a panel of human adherent cancer cell lines A2780, MCF-7, MB-231 and SiHa.
Collapse
Affiliation(s)
- Anita Kiss
- Depertment of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Depertment of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Depertment of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Éva Frank
- Depertment of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - András Gyovai
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ágnes Kulmány
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Depertment of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
4
|
Improved stereoselective synthesis of 3-methoxy- and 3-benzyloxy-16-hydroxymethyl-13α-estra-1,3,5(10)-trien-17-ol isomers by transfer hydrogenation using chiral Ru catalysts. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Sinka I, Kiss A, Mernyák E, Wölfling J, Schneider G, Ocsovszki I, Kuo CY, Wang HC, Zupkó I. Antiproliferative and antimetastatic properties of 3-benzyloxy-16-hydroxymethylene-estradiol analogs against breast cancer cell lines. Eur J Pharm Sci 2018; 123:362-370. [PMID: 30010030 DOI: 10.1016/j.ejps.2018.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/22/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022]
Abstract
Despite emerging new therapeutic opportunities, cancer is still a major health problem and a leading cause of death worldwide. Breast tumors are the most frequently diagnosed female malignancies, and the triple-negative subtype is associated with poorer prognosis and lower survival rates than other breast cancer types. The aims of the present study were to determine the anticancer potency of a set of C-3 and C-16 modified estradiol-derivatives against a panel of breast cancer cell lines, and to characterize the mechanism of action of two selected compounds (1 and 5) against the MDA-MB-231 triple-negative breast cancer cell line. Growth-inhibitory properties were investigated by an MTT-assay. Cell cycle analysis by flow cytometry has revealed G1 phase accumulation and indicated the proapoptotic effect of 1 and 5 through the elevation of the apoptotic subG1 phase on MDA-MB-231 cells after 24 h treatment. The antimetastatic activities of these compounds were examined by wound healing and Boyden chamber assays, and both compounds were shown to significantly inhibit the migration and invasion of MDA-MB-231 cells at sub-antiproliferative concentrations. Gelatin zymography assay has indicated that matrix metalloproteinase-2 and -9 are not involved in the antimetastatic action of the molecules. Western blot analysis was performed with 24 h incubation to examine the possible changes in the level of focal adhesion kinase (FAK), and both compounds were found to inhibit the phosphorylation of FAK in a concentration-dependent manner in MDA-MB-231 cells. The results of this study demonstrate that C-3 and C-16 modified estradiol derivatives are potent antiproliferative and antimetastatic compounds against a triple-negative breast cancer cell line with a mechanism of action involving the inhibition of FAK, a novel anticancer therapeutic target. Therefore, these findings can be utilized in the development of promising anticancer agents with steroid skeleton.
Collapse
Affiliation(s)
- Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Anita Kiss
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Ching-Ying Kuo
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary; Interdisciplinary Centre for Natural Products, University of Szeged, Szeged, Hungary.
| |
Collapse
|
6
|
Kiss A, Mernyák E, Wölfling J, Sinka I, Zupkó I, Schneider G. Stereoselective synthesis of the four 16-hydroxymethyl-3-methoxy- and 16-hydroxymethyl-3-benzyloxy-13α-estra-1,3,5(10)-trien-17-ol isomers and their antiproliferative activities. Steroids 2018; 134:67-77. [PMID: 29501755 DOI: 10.1016/j.steroids.2018.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 11/30/2022]
Abstract
The reduction of 16-hydroxymethylene-3-methoxy-13α-estra-1,3,5(10)-trien-17-one (14) and 16-hydroxymethylene-3-benzyloxy-13α-estra-1,3,5(10)-trien-17-one (16) yielded a mixture of two diastereomeric diols, the 16α-hydroxymethyl,17β-hydroxy and 16β-hydroxymethyl,17α-hydroxy isomers (17a-20a) in a ratio of 6:1. We describe a straightforward synthetic route to transform the isomers with trans functional groups attached to ring D (17a-20a) into isomers with cis functional groups (25a-28a). We determined the in vitro antiproliferative activities of compounds 17a-20a and 25a-28a by means of MTT assays against a panel of human adherent cancer cell lines HeLa, A2780, MCF-7, T47D, MDA-MB-231 and MDA-MB-361.
Collapse
Affiliation(s)
- Anita Kiss
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
7
|
Szájli Á, Wölfling J. The Synthesis of D-Heteroannulated 3β-Hydroxy-13α-androst-5-ene Derivatives via α-Oxoketene Dithioacetal and α-Oxohydroxymethylidene Synthons. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0544-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Szájli A, Wölfling J, Mernyák E, Minorics R, Márki A, Falkay G, Schneider G. Neighboring group participation. Part 16. Stereoselective synthesis and receptor-binding examination of the four stereoisomers of 16-bromomethyl-3,17-estradiols. Steroids 2006; 71:141-53. [PMID: 16297947 DOI: 10.1016/j.steroids.2005.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 08/31/2005] [Accepted: 09/08/2005] [Indexed: 11/30/2022]
Abstract
The four possible isomers of 3-benzyloxy-16-hydroxymethylestra-1,3,5(10)-trien-17-ol (1a-4a) with proven configurations were converted into the corresponding 3-benzyloxy-16-bromomethylestra-1,3,5(10)-triene-3,17-diols (5e-8e). Depending on the reaction conditions the cis isomers of 3-benzyloxy-16-hydroxymethylestra-1,3,5(10)-trien-17-ol (1a and 2a) were transformed into 3-benzyloxy-16-bromomethylestra-1,3,5(10)-trien-17-yl acetate (5b and 6b) or 16-bromomethyl-3-hydroxyestra-1,3,5(10)-trien-17-yl acetate (5c and 6c) on treatment with HBr and acetic acid. The mechanism of the process can be interpreted as involving front-side neighboring group participation. Under similar experimental conditions, the trans isomers (3a and 4a) yielded only 3-benzyloxy-16-acetoxymethylestra-1,3,5(10)-trien-17-yl acetates (3b and 4b) or 16-acetoxymethylestra-1,3,5(10)-triene-3,17-diyl diacetates (3d and 4d). Both the cis (1a and 2a) and the trans (3a, and 4a) isomers were transformed into 16-bromomethylestra-1,3,5(10)-trien-17-ol (5a-8a) by the Appel reaction on treatment with CBr4/Ph3P. Debenzylation of 5a-8a was carried out with HBr and acetic acid to yield 5e-8e. The debenzylation process in the presence of acetic anhydride produces the diacetates 5d-8d. The structures of the compounds were determined by means of MS, 1H NMR and 13C NMR spectroscopic methods. Compounds 5c-8c and 5e-8e were tested in a radioligand-binding assay. Except for the affinity of 7e for the estrogen receptor (Ki=2.55 nM), the affinities of the eight compounds (5c-8c and 5e-8e) for the estrogen, androgen and progesterone receptors are low (Ki > 0.55, 0.52 and 0.21 microM, respectively).
Collapse
Affiliation(s)
- Agota Szájli
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
9
|
Efficient heterogeneous racemization of secondary alcohols: Convenient synthesis of 17α-estradiol 3-methyl ether. CATAL COMMUN 2005. [DOI: 10.1016/j.catcom.2005.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Campana G, Pasini P, Roda A, Spampinato S. Regulation of ileal bile acid-binding protein expression in Caco-2 cells by ursodeoxycholic acid: Role of the farnesoid X receptor. Biochem Pharmacol 2005; 69:1755-63. [PMID: 15935148 DOI: 10.1016/j.bcp.2005.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 03/23/2005] [Indexed: 12/21/2022]
Abstract
Ursodeoxycholic acid (UDCA) is beneficial in cholestatic diseases but its molecular mechanisms of action remain to be clearly elucidated. Other bile acids, such as chenodeoxycholic (CDCA), are agonists for the nuclear farnesoid X receptor (FXR) and regulate the expression of genes relevant for bile acid and cholesterol homeostasis. In ileal cells CDCA, through the FXR, up-regulates the expression of the ileal bile acid-binding protein (IBABP), implicated in the enterohepatic circulation of bile acids. We report that UDCA (100 and 200 microM) induced a moderate increase of IBABP mRNA (approximately 10% of the effect elicited by 50 microM CDCA) in enterocyte-like Caco-2 cells and approximately halved the potent effect of CDCA (50 microM). On the contrary, UDCA reduced by 80-90% CDCA-induced IBABP transcription in hepatocarcinoma derived HepG2 cells. We confirmed that these effects on IBABP transcription required the FXR by employing a cell-based transactivation assay. Finally, in a receptor binding assay, we found that UDCA binds to FXR expressed in CHO-K1 cells (K(d)=37.7 microM). Thus, UDCA may regulate IBABP in Caco-2 cells, which express it constitutively, by acting as a partial agonist through a FXR mediated mechanism. The observation that in HepG2 cells, which do not express constitutively IBABP, UDCA was able to almost completely prevent CDCA-induced activation of IBABP promoter, suggests that tissue-specific factors, other than FXR, may be required for bile acid regulation of FXR target genes.
Collapse
Affiliation(s)
- Gabriele Campana
- Department of Pharmacology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
11
|
Wölfling J, Mernyák E, Frank E, Falkay G, Márki A, Minorics R, Schneider G. Synthesis and receptor-binding examinations of the normal and 13-epi-D-homoestrones and their 3-methyl ethers. Steroids 2003; 68:277-88. [PMID: 12628691 DOI: 10.1016/s0039-128x(02)00181-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An effective epimerization of the normal estrone 3-methyl and 3-benzyl ethers by using o-phenylenediamine and AcOH made the possibility for facile entry into the 13alpha-estrone series. Combination of this synthetic methodology with an isolation step carried out by means of the Girard-P reagent, the corresponding ethers of 13-epi-estrone were obtained in excellent yields. The 3-hydroxy and 3-methoxy D-homoestrone derivatives in both the normal and the 13alpha-estrone series were then synthesized and tested in vitro in a radioligand-binding assay. The estrogen receptor recognizes these compounds, but their relative binding affinities (RBAs) are lower than that of the reference compound 3,17beta-estradiol. The progesterone receptor-binding affinities of the four D-homo derivatives were also tested showing low values for 13alpha-D-homoestrone and its 3-methyl ether. Pharmacologically, these 13alpha-D-homoestrone derivatives are estrogen receptor-selective molecules.
Collapse
Affiliation(s)
- János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Mernyák E, Wölfling J, Bunkóczi G, Luo L, Schneider TR, Schneider G. Stereoselective Synthesis of the Two trans-(16-Hydroxymethyl)-3-methoxy-13α-estra-1,3,5(10)-trien-17-ol Isomers. ACTA ACUST UNITED AC 2003. [DOI: 10.1135/cccc20031141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reduction of 16-(hydroxymethylidene)-3-methoxy-13α-estra-1,3,5(10)-trien-17-one yielded a mixture of two diastereomeric diols in the 6:1 ratio. The configurations of the newly formed stereogenic centres were determined by X-ray crystallography and NMR spectroscopy (NOE experiments) on the compounds in their cyclic acetaldehyde acetal forms.
Collapse
|