1
|
Bressan C, Celma A, Alechaga É, Monfort N, Ventura R, Sancho JV. Effects of structural characteristics of (un)conjugated steroid metabolites in their collision cross section value. Anal Chim Acta 2023; 1254:341128. [PMID: 37005032 DOI: 10.1016/j.aca.2023.341128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
In this work, the collision cross section (CCS) value of 103 steroids (including unconjugated metabolites and phase II metabolites conjugated with sulfate and glucuronide groups) was determined by liquid chromatography coupled to traveling wave ion mobility spectrometry (LC-TWIMS). A time of flight (QTOF) mass analyzer was used to perform the analytes determination at high-resolution mass spectrometry. An electrospray ionization source (ESI) was used to generate [M+H]+, [M + NH4]+ and/or [M - H]- ions. High reproducibility was observed for the CCS determination in both urine and standard solutions, obtaining RSD lower than 0.3% and 0.5% in all cases respectively. CCS determination in matrix was in accordance with the CCS measured in standards solution showing deviations below 2%. In general, CCS values were directly correlated with the ion mass and allowed differentiating between glucuronides, sulfates and free steroids although differences among steroids of the same group were less significant. However, more specific information was obtained for phase II metabolites observing differences in the CCS value of isomeric pairs concerning the conjugation position or the α/β configuration, which could be useful in the structural elucidation of new steroid metabolites in the anti-doping field. Finally, the potential of IMS reducing interferences from the sample matrix was also tested for the analysis of a glucuronide metabolite of bolasterone (5β-androstan-7α,17α-dimethyl-3α,17β-diol-3-glucuronide) in urine samples.
Collapse
Affiliation(s)
- Claudia Bressan
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain.
| | - Juan Vicente Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| |
Collapse
|
2
|
Savkovic S, Ly LP, Desai R, Howa J, Nair V, Eichner D, Handelsman DJ. Detection of testosterone microdosing in healthy females. Drug Test Anal 2021; 14:653-666. [PMID: 34811948 DOI: 10.1002/dta.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
The ready detectability of synthetic androgens by mass spectrometry (MS)-based antidoping tests has reoriented androgen doping to using testosterone (T), which must be distinguished from its endogenous counterpart making detection of exogenous T harder. We investigated urine and serum steroid and hematological profiling individually and combined to determine the optimal detection model for T administration in women. Twelve healthy females provided six paired blood and urine samples over 2 weeks prior to treatment consisting of 12.5-mg T in a topical transdermal gel applied daily for 7 days. Paired blood and urine samples were then obtained at the end of treatment and Days 1, 2, 4, 7, and 14 days later. Compliance with treatment and sampling was high, and no adverse effects were reported. T treatment significantly increased serum and urine T, serum dihydrotestosterone (DHT), urine 5α-androstane-3α,17β-diol (5α-diol) epitestosterone (E), and urine T/E ratio with a brief window of detection (2-4 days) as well as total and immature (medium and high fluorescence) reticulocytes that remained elevated over the full 14 posttreatment days. Carbon isotope ratio MS and the OFF score and Abnormal Blood Profile score (ABPS) were not discriminatory. The optimal multivariate model to identify T exposure combined serum T, urine T/E ratio with three hematological variables (% high fluorescence reticulocytes, mean corpuscular hemoglobin, and volume) with the five variables providing 93% correct classification (4% false positive, 10% false negatives). Hence, combining select serum and urine steroid MS variables with reticulocyte measures can achieve a high but imperfect detection of T administration to healthy females.
Collapse
Affiliation(s)
- Sasha Savkovic
- Andrology Department, Concord Hospital & ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Lam P Ly
- Andrology Department, Concord Hospital & ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Reena Desai
- Andrology Department, Concord Hospital & ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - John Howa
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Vinod Nair
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - David J Handelsman
- Andrology Department, Concord Hospital & ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Abstract
Adrenarche is the maturational increase in adrenal androgen production that normally begins in early childhood. It results from changes in the secretory response to adrenocorticotropin (ACTH) that are best indexed by dehydroepiandrosterone sulfate (DHEAS) rise. These changes are related to the development of the zona reticularis (ZR) and its unique gene/enzyme expression pattern of low 3ß-hydroxysteroid dehydrogenase type 2 with high cytochrome b5A, sulfotransferase 2A1, and 17ß-hydroxysteroid dehydrogenase type 5. Recently 11-ketotestosterone was identified as an important bioactive adrenarchal androgen. Birth weight, body growth, obesity, and prolactin are related to ZR development. Adrenarchal androgens normally contribute to the onset of sexual pubic hair (pubarche) and sebaceous and apocrine gland development. Premature adrenarche causes ≥90% of premature pubarche (PP). Its cause is unknown. Affected children have a significantly increased growth rate with proportionate bone age advancement that typically does not compromise growth potential. Serum DHEAS and testosterone levels increase to levels normal for early female puberty. It is associated with mildly increased risks for obesity, insulin resistance, and possibly mood disorder and polycystic ovary syndrome. Between 5% and 10% of PP is due to virilizing disorders, which are usually characterized by more rapid advancement of pubarche and compromise of adult height potential than premature adrenarche. Most cases are due to nonclassic congenital adrenal hyperplasia. Algorithms are presented for the differential diagnosis of PP. This review highlights recent advances in molecular genetic and developmental biologic understanding of ZR development and insights into adrenarche emanating from mass spectrometric steroid assays.
Collapse
Affiliation(s)
- Robert L Rosenfield
- University of Chicago Pritzker School of Medicine, Section of Adult and Pediatric Endocrinology, Metabolism, and Diabetes, Chicago, IL, USA.,Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
De Wilde L, Van Renterghem P, Van Eenoo P. Long-term stability study and evaluation of intact steroid conjugate ratios after the administration of endogenous steroids. Drug Test Anal 2021; 14:851-863. [PMID: 33982451 DOI: 10.1002/dta.3096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
The most frequently detected substances prohibited by the World Anti-Doping Agency (WADA) belong to the anabolic steroids class. The most challenging compounds among this class are the endogenous anabolic steroids, which are detected by quantitative measurement of testosterone (T) and its metabolites with a so-called "steroid profiling" method. The current steroid profile is based on the concentrations and ratios of the sum of free and glucuronidated steroids. Recently, our group developed a steroid profiling method for the detection of three free steroids and 14 intact steroid conjugates, including both the glucuronic acid conjugated and sulfated fraction. The study aimed at evaluating the long-term stability of steroid conjugate concentrations and ratios, and the influence of different endogenous steroids on this extended steroid profile. A single dose of oral T undecanoate (TU), topical T gel, topical dihydrotestosterone (DHT) gel, and oral dehydroepiandrosterone (DHEA) was administered to six healthy male volunteers. One additional volunteer with a homozygote deletion of the UGT2B17 gene (del/del genotype) received a single topical dose of T gel. An intramuscular dose of TU was administered to another volunteer. To avoid fluctuation of steroid concentrations caused by variations in urinary flow rates, steroid ratios were calculated and evaluated as possible biomarkers for the detection of endogenous steroid abuse with low doses. Overall, sulfates do not have substantial additional value in prolonging detection times for the investigated endogenous steroids and administration doses. The already monitored glucuronides were overall the best markers and were sufficient to detect the administered steroids.
Collapse
Affiliation(s)
- Laurie De Wilde
- Department Diagnostic Sciences, Doping Control Laboratory (DoCoLab), Ghent University (UGent), Ghent, Belgium
| | - Pieter Van Renterghem
- Department Diagnostic Sciences, Doping Control Laboratory (DoCoLab), Ghent University (UGent), Ghent, Belgium
| | - Peter Van Eenoo
- Department Diagnostic Sciences, Doping Control Laboratory (DoCoLab), Ghent University (UGent), Ghent, Belgium
| |
Collapse
|
5
|
Development and application of analytical procedures for the GC–MS/MS analysis of the sulfates metabolites of anabolic androgenic steroids: The pivotal role of chemical hydrolysis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122280. [DOI: 10.1016/j.jchromb.2020.122280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022]
|
6
|
Nair VS, Doman CE, Morrison MS, Miller GD, Husk J, Eenoo P, Crouch AK, Eichner D. Evaluation of epiandrosterone as a long‐term marker of testosterone use. Drug Test Anal 2020; 12:1554-1560. [DOI: 10.1002/dta.2903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Vinod S. Nair
- Sports Medicine Research and Testing Laboratory, South Jordan UT USA
| | | | | | | | - Jacob Husk
- Sports Medicine Research and Testing Laboratory, South Jordan UT USA
| | - Peter Eenoo
- DoCoLab, Department of Chemical Biology, Microbiology and Immunology Ghent University Ghent Belgium
| | - Andre K. Crouch
- Sports Medicine Research and Testing Laboratory, South Jordan UT USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, South Jordan UT USA
| |
Collapse
|
7
|
Järvinen E, Kidron H, Finel M. Human efflux transport of testosterone, epitestosterone and other androgen glucuronides. J Steroid Biochem Mol Biol 2020; 197:105518. [PMID: 31704245 DOI: 10.1016/j.jsbmb.2019.105518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 01/01/2023]
Abstract
Several drug-metabolizing enzymes are known to control androgen homeostasis in humans. UDP-glucuronosyltransferases convert androgens to glucuronide conjugates in the liver and intestine, which enables subsequent elimination of these conjugated androgens via urine. The most important androgen is testosterone, while others are the testosterone metabolites androsterone and etiocholanolone, and the testosterone precursor dehydroepiandrosterone. Epitestosterone is another endogenous androgen, which is included as a crucial marker in urine doping tests. Since glucuronide conjugates are hydrophilic, efflux transporters mediate their excretion from tissues. In this study, we employed the membrane vesicle assay to identify the efflux transporters for glucuronides of androsterone, dehydroepiandrosterone, epitestosterone, etiocholanolone and testosterone. The human hepatic and intestinal transporters MRP2 (ABCC2), MRP3 (ABCC3), MRP4 (ABCC4), BCRP (ABCG2) and MDR1 (ABCB1) were studied in vitro. Of these transporters, only MRP2 and MRP3 transported the androgen glucuronides investigated. In kinetic analyses, MRP3 transported glucuronides of androsterone, epitestosterone and etiocholanolone at low Km values, between 0.4 and 4 μM, while the Km values for glucuronides of testosterone and dehydroepiandrosterone were 14 and 51 μM, respectively. MRP2 transported the glucuronides at lower affinity, as indicated by Km values over 100 μM. Interestingly, the MRP2-mediated transport of androsterone and epitestosterone glucuronides was best described by sigmoidal kinetics. The inability of BCRP to transport any of the androgen glucuronides investigated is drastically different from its highly active transport of several estrogen conjugates. Our results explain the transporter-mediated disposition of androgen glucuronides in humans, and shed light on differences between the human efflux transporters MRP2, MRP3, MRP4, BCRP and MDR1.
Collapse
Affiliation(s)
- Erkka Järvinen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland.
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Moshe Finel
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
8
|
Martinez‐Brito D, Torre X, Colamonici C, Curcio D, Botrè F. 7‐keto‐DHEAmetabolism in humans. Pitfalls in interpreting the analytical results in the antidoping field. Drug Test Anal 2019; 11:1629-1643. [DOI: 10.1002/dta.2734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | - Francesco Botrè
- Laboratorio Antidoping FMSI Rome Italy
- Department of Experimental Medicine“Sapienza” University of Rome Rome Italy
| |
Collapse
|
9
|
Esquivel A, Alechaga É, Monfort N, Yang S, Xing Y, Moutian W, Ventura R. Evaluation of sulfate metabolites as markers of intramuscular testosterone administration in Caucasian and Asian populations. Drug Test Anal 2019; 11:1218-1230. [PMID: 30932347 DOI: 10.1002/dta.2598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 01/29/2023]
Abstract
The introduction of alternative markers to the steroid profile can be an effective approach to improving the screening capabilities for the detection of testosterone (T) misuse. In this work, endogenous steroid sulfates were evaluated as potential markers to detect intramuscular (IM) T administration. Fourteen sulfate metabolites were quantified using mixed-mode solid-phase extraction and analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Urine samples after a single IM injection (100 mg) of T cypionate to six Caucasian and six Asian healthy male volunteers were analyzed. Principal component analysis (PCA) was used to characterize the sample cohort and to obtain the most useful markers for discrimination between pre- and post-administration samples. For Caucasian volunteers, a separation between pre- and post-administration samples was observed in PCA, whereas for Asian volunteers no separation was obtained. Seventeen ratios between sulfate metabolites were selected and further considered. Detection times (DTs) of each marker were evaluated using individual thresholds for each volunteer. The best results were obtained using ratios involving T and epitestosterone (E) sulfates in the denominator. The best marker was the ratio androsterone sulfate/testosterone sulfate (A-S/T-S) which prolonged the DT 1.2-2.1 times in respect to those obtained using T/E ratio in all Caucasian volunteers and 1.3-1.5 times in two Asian volunteers. Other ratios between A-S or etiocholanolone sulfate and E-S, and sulfates of etiocholanolone, dehydroandrosterone or epiandrosterone, and T-S were also found adequate. These ratios improve the DT after IM T administration and their incorporation to complement the current steroid profile is recommended.
Collapse
Affiliation(s)
- Argitxu Esquivel
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Sheng Yang
- National Anti-Doping Laboratory, China Anti-Doping Agency, 100029, Beijing, China
| | - Yanyi Xing
- National Anti-Doping Laboratory, China Anti-Doping Agency, 100029, Beijing, China
| | - Wu Moutian
- China Anti-Doping Agency, 100029, Beijing, China
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM, Doctor Aiguader 88, 08003, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain.,Barcelona Antidoping Laboratory, Doping Control Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
10
|
Esquivel A, Alechaga É, Monfort N, Ventura R. Sulfate metabolites improve retrospectivity after oral testosterone administration. Drug Test Anal 2018; 11:392-402. [PMID: 30362276 DOI: 10.1002/dta.2529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
The detection of testosterone (T) misuse is performed using the steroid profile that includes concentrations of T and related metabolites excreted free and glucuronoconjugated, and the ratios between them. In this work, the usefulness of 14 endogenous steroid sulfates to improve the detection capabilities of oral T administration has been evaluated. Quantitation of the sulfate metabolites was performed using solid-phase extraction and analysis by liquid chromatography-tandem mass spectrometry. Urine samples were collected up to 144 hours after a single oral dose of T undecanoate (120 mg) to five Caucasian male volunteers. Detection times (DTs) of each marker were estimated using reference limits based on a population study and also monitoring the individual threshold for each volunteer. High inter-individual variability was observed for sulfate metabolites and, therefore, better DTs were obtained using individual thresholds. Using individual threshold limits, epiandrosterone sulfate (epiA-S) improved the DT with respect to testosterone/epitestosterone (T/E) ratio in all volunteers. Androsterone, etiocholanolone, and two androstanediol sulfates also improved DTs for some volunteers. Principal component analysis was used to characterize the sample cohort, obtaining 13 ratios useful for discrimination. These ratios as well as the ratio epiA-S/dehydroepiandrosterone sulfate were further examined. The most promising results were obtained using ratios between sulfates of epiA, androsterone, or androstanediol 1 and E, and also sulfates of epiA or androstanediol 1, and dehydroandrosterone. These selected ratios prolonged the DT of oral T administration up to 144 hours, which corresponded to a significantly higher retrospectivity compared to those obtained using concentrations or the conventional T/E ratio.
Collapse
Affiliation(s)
- Argitxu Esquivel
- Doping Control Research Group, Catalonian Antidoping Laboratory, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Élida Alechaga
- Doping Control Research Group, Catalonian Antidoping Laboratory, Barcelona, Spain
| | - Nuria Monfort
- Doping Control Research Group, Catalonian Antidoping Laboratory, Barcelona, Spain
| | - Rosa Ventura
- Doping Control Research Group, Catalonian Antidoping Laboratory, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
11
|
Cook I, Wang T, Leyh TS. Isoform-specific therapeutic control of sulfonation in humans. Biochem Pharmacol 2018; 159:25-31. [PMID: 30423313 DOI: 10.1016/j.bcp.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
The activities of hundreds, perhaps thousands, of metabolites are regulated by human cytosolic sulfotransferases (SULTs) - a 13-member family of disease relevant enzymes that catalyze transfer of the sulfuryl moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfonate) to the hydroxyls and amines of acceptors. SULTs harbor two independent allosteric sites, one of which, the focus of this work, binds non-steroidal anti-inflammatory drugs (NSAIDs). The structure of the first NSAID-binding site - that of SULT1A1 - was elucidated recently and homology modeling suggest that variants of the site are present in all SULT isoforms. The objective of the current study was to assess whether the NSAID-binding site can be used to regulate sulfuryl transfer in humans in an isoform specific manner. Mefenamic acid (Mef) is a potent (Ki 27 nM) NSAID-inhibitor of SULT1A1 - the predominant SULT isoform in small intestine and liver. Acetaminophen (APAP), a SULT1A1 specific substrate, is extensively sulfonated in humans. Dehydroepiandrosterone (DHEA) is specific for SULT2A1, which we show here is insensitive to Mef inhibition. APAP and DHEA sulfonates are readily quantified in urine and thus the effects of Mef on APAP and DHEA sulfonation could be studied non-invasively. Compounds were given orally in a single therapeutic dose to a healthy, adult male human with a typical APAP-metabolite profile. Mef profoundly decreased APAP sulfonation during first pass metabolism and substantially decreased systemic APAP sulfonation without influencing DHEA sulfonation; thus, it appears the NSAID site can be used to control sulfonation in humans in a SULT-isoform specific manner.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461-1926, United States
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461-1926, United States
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461-1926, United States.
| |
Collapse
|
12
|
Buisson C, Frelat C, Privat K, Martinat N, Audran M, Collomp K. Metabolic and isotopic signature of short-term DHEA administration in women: Comparison with findings in men. Drug Test Anal 2018; 10:1744-1754. [PMID: 30315670 DOI: 10.1002/dta.2519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
The impact of dehydroepiandrosterone (DHEA) administration has been widely studied for anti-doping purposes in men, whereas only a few studies have been performed in women. In the present study, the impact of DHEA on the steroid profile parameters and their carbon isotopic ratios was explored. Eleven healthy young women and 10 healthy young men received two treatments: One with 100 mg/day of DHEA for 28 days and one with a placebo according to a double-blind crossover protocol. Urine and saliva (only in females) samples were collected before and for 72 hours after each short-term treatment. In all female subjects, concentrations of the urinary parameters of the steroid profile were highly impacted by short-term DHEA administration including epitestosterone (E). Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) analysis was performed and positive results were observed for E in the four female subjects where E concentration was adequate for such analysis, whereas men results remained negative for E. Last, the ability of the Anti-Doping Administration and Management System (ADAMS) software used for the athlete biological passport to identify such doping was assessed. Of the 11 passports generated for female subjects, 10 were automatically classified as an atypical passport finding (ATPF). For the remaining passport with normal status in one woman, the variability of the concentrations prevented the ADAMS software from adjusting individual limits. The most impacted markers in women were T/E and 5αAdiol/E, with a detection window of 36 hours for 5αAdiol/E. In addition, good correlations were observed for DHEA and T concentrations in urine and saliva in females.
Collapse
Affiliation(s)
| | - Claire Frelat
- AFLD - Département des Analyses, Chatenay-Malabry, France
| | - Kévin Privat
- AFLD - Département des Analyses, Chatenay-Malabry, France
| | | | - Michel Audran
- AFLD - Département des Analyses, Chatenay-Malabry, France
| | - Katia Collomp
- AFLD - Département des Analyses, Chatenay-Malabry, France
- CIAMS - Université Paris Sud, Université Paris Saclay, Orsay, France
- CIAMS - Université d'Orléans, Orléans, France
| |
Collapse
|
13
|
Hoefel AL, Arbo BD, Vieira-Marques C, Cecconello AL, Cozer AG, Ribeiro MFM, Kucharski LC. Female rats are more susceptible to metabolic effects of dehydroepiandrosterone treatment. Can J Physiol Pharmacol 2018; 96:1069-1075. [PMID: 30011383 DOI: 10.1139/cjpp-2018-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a steroid hormone that presents several effects on metabolism; however, most of the studies have been performed on male animals, while few authors have investigated possible sex differences regarding the metabolic effects of DHEA. Therefore, the aim of this study was to evaluate the effect of different doses of DHEA on metabolic parameters of male and ovariectomized female Wistar rats. Sex differences were found in the metabolism of distinct substrates and in relation to the effect of DHEA. In respect to the glucose metabolism in the liver, the conversion of glucose to CO2 and the synthesis of lipids from glucose were 53% and 33% higher, respectively, in males. Also, DHEA decreased hepatic lipogenesis only in females. Regarding the hepatic glycogen synthesis pathway, females presented 73% higher synthesis than males, and the effect of DHEA was observed only in females, where it decreased this parameter. In the adipose tissue, glucose uptake was 208% higher in females and DHEA decreased this parameter. In the muscle, glucose uptake was 168% higher in females and no DHEA effect was observed. In summary, males and females present a different metabolic profile, with females being more susceptible to the metabolic effects of DHEA.
Collapse
Affiliation(s)
- Ana Lúcia Hoefel
- a Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,b Laboratório de Interação Neuro-humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- c Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Claudia Vieira-Marques
- a Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.,b Laboratório de Interação Neuro-humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Lúcia Cecconello
- b Laboratório de Interação Neuro-humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Aline Gonçalves Cozer
- a Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Flávia Marques Ribeiro
- b Laboratório de Interação Neuro-humoral, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Carlos Kucharski
- a Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Esquivel A, Alechaga É, Monfort N, Ventura R. Direct quantitation of endogenous steroid sulfates in human urine by liquid chromatography‐electrospray tandem mass spectrometry. Drug Test Anal 2018; 10:1734-1743. [DOI: 10.1002/dta.2413] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Argitxu Esquivel
- Catalonian Antidoping Laboratory, Doping Control Research Group Barcelona Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona Spain
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group Barcelona Spain
| | - Núria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group Barcelona Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group Barcelona Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona Spain
| |
Collapse
|
15
|
Anawalt BD. Detection of anabolic androgenic steroid use by elite athletes and by members of the general public. Mol Cell Endocrinol 2018; 464:21-27. [PMID: 28943276 DOI: 10.1016/j.mce.2017.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
Because national and international sports competitions are sources of community pride and financial revenue, there have been great efforts to prevent and detect the use of performance-enhancing drugs such as anabolic androgenic steroids by elite athletes. The World Anti-Doping Agency and its national affiliate anti-doping agencies have created sophisticated monitoring systems and advanced testing techniques to detect the use of banned substances including anabolic androgenic steroids by participants in international and national athletic competitions. The creation of a longitudinal monitoring program known as the biological passport is a recent, important development in the efforts to prevent and detect the use of banned performance-enhancing drugs and methods. The biological passport program consists of the measurement of urinary and blood markers of anabolic androgenic steroid use (and other banned drugs or methods) at baseline and at random times. A panel of experts reviews the longitudinal data and interprets the likelihood of the use of banned drugs and methods. These advances in anti-doping appear to be highly effective, but some athletes persist in their efforts to cheat the detection process. In addition, some members of the general public use anabolic androgenic steroids for a variety of reasons including to improve physical appearance or to enhance performance in athletics. Clinicians must depend on clinical acumen and the measurement of serum testosterone and gonadotropins to guide them in making a tentative diagnosis of anabolic androgenic steroid use. Definitive diagnosis requires that the patient disclose the use of the drugs. Because anabolic androgenic steroids are effective for improving certain aspects of physical performance, some elite athletes (and members of the general public) will continue to use these drugs. Effective efforts to curtail the use of these drugs will require decreasing the ease of access to them, continued advancements in laboratory techniques, and perhaps a shift in societal approbation for athletic performance and muscular appearance.
Collapse
Affiliation(s)
- Bradley D Anawalt
- Department of Medicine, University of Washington, Box 356420, 1959 NE Pacific Street, Seattle, WA 98195, United States.
| |
Collapse
|
16
|
Torre X, Colamonici C, Curcio D, Botrè F. Fast IRMS screening of pseudoendogenous steroids in doping analyses. Drug Test Anal 2017; 9:1804-1812. [DOI: 10.1002/dta.2321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Xavier Torre
- Laboratorio AntidopingFederazione Medico Sportiva Italiana Largo Giulio Onesti 1 00197 Rome Italy
| | - Cristiana Colamonici
- Laboratorio AntidopingFederazione Medico Sportiva Italiana Largo Giulio Onesti 1 00197 Rome Italy
| | - Davide Curcio
- Laboratorio AntidopingFederazione Medico Sportiva Italiana Largo Giulio Onesti 1 00197 Rome Italy
| | - Francesco Botrè
- Laboratorio AntidopingFederazione Medico Sportiva Italiana Largo Giulio Onesti 1 00197 Rome Italy
- Dipartimento di Medicina Sperimentale‘Sapienza’ Università di Roma Viale Regina Elena 324 00161 Rome Italy
| |
Collapse
|
17
|
Piper T, Putz M, Schänzer W, Pop V, McLeod MD, Uduwela DR, Stevenson BJ, Thevis M. Epiandrosterone sulfate prolongs the detectability of testosterone, 4-androstenedione, and dihydrotestosterone misuse by means of carbon isotope ratio mass spectrometry. Drug Test Anal 2017; 9:1695-1703. [PMID: 28836353 DOI: 10.1002/dta.2291] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 01/13/2023]
Abstract
In the course of investigations into the metabolism of testosterone (T) by means of deuterated T and hydrogen isotope ratio mass spectrometry, a pronounced influence of the oral administration of T on sulfoconjugated steroid metabolites was observed. Especially in case of epiandrosterone sulfate (EPIA_S), the contribution of exogenous T to the urinary metabolite was traceable up to 8 days after a single oral dose of 40 mg of T. These findings initiated follow-up studies on the capability of EPIA_S to extend the detection of T and T analogue misuse by carbon isotope ratio (CIR) mass spectrometry in sports drug testing. Excretion study urine samples obtained after transdermal application of T and after oral administration of 4-androstenedione, dihydrotestosterone, and EPIA were investigated regarding urinary concentrations and CIR. With each administered steroid, EPIA_S was significantly depleted and prolonged the detectability when compared to routinely used steroidal target compounds by a factor of 2 to 5. In order to simplify the sample preparation procedure for sulfoconjugated compounds, enzymatic cleavage by Pseudomonas aeruginosa arylsulfatase was tested and implemented into CIR measurements for the first time. Further simplification was achieved by employing multidimensional gas chromatography to ensure the required peak purity for CIR determinations, instead of sample purification strategies using liquid chromatographic fractionation. Taking into account these results that demonstrate the unique and broad applicability of EPIA_S for the detection of illicit administrations of T or T-related steroids, careful consideration of how this steroid can be implemented into routine doping control analysis appears warranted. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Thomas Piper
- German Sport University Cologne, Center for Preventive Doping Research, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Marlen Putz
- German Sport University Cologne, Center for Preventive Doping Research, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Schänzer
- German Sport University Cologne, Center for Preventive Doping Research, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Valentin Pop
- Romanian Doping Control Laboratory, National Anti-Doping Agency, Bvd. Basarabia, nr. 37-39, Bucharest, Romania
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Dimanthi R Uduwela
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Bradley J Stevenson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Mario Thevis
- German Sport University Cologne, Center for Preventive Doping Research, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
18
|
Fabresse N, Grassin-Delyle S, Etting I, Alvarez JC. Detection and quantification of 12 anabolic steroids and analogs in human whole blood and 20 in hair using LC-HRMS/MS: application to real cases. Int J Legal Med 2017; 131:989-999. [DOI: 10.1007/s00414-017-1552-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/31/2017] [Indexed: 01/31/2023]
|
19
|
Collomp K, Buisson C, Lasne F, Collomp R. DHEA, physical exercise and doping. J Steroid Biochem Mol Biol 2015; 145:206-12. [PMID: 24704255 DOI: 10.1016/j.jsbmb.2014.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/03/2014] [Accepted: 03/16/2014] [Indexed: 12/21/2022]
Abstract
The dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) concentrations during acute and chronic exercise (training) have been investigated only fairly recently. DHEA is generally preferred to DHEA-S for exploring the acute exercise repercussions in laboratory or field tests because of its shorter elimination half-life. Conversely, DHEA-S is preferred to estimate chronic adaptations. Both can be measured noninvasively in saliva, and it is therefore possible to follow these hormone responses in elite athletes during competitive events and in healthy and pathological populations, without imposing additional stress. Indeed, the correlation between saliva and serum concentrations is high for steroid hormones, both at rest and during exercise. In this review, we will first summarize the current knowledge on the DHEA/DHEA-S responses to exercise and examine the potential modulating factors: exercise intensity, gender, age, and training. We will then discuss the ergogenic effects that athletes expect from the exogenous administration of DHEA and the antidoping methods of analysis currently used to detect this abuse.
Collapse
Affiliation(s)
- K Collomp
- Laboratoire CIAMS, EA 4532, Université Paris Sud - Université Orléans, France; Département des Analyses, Agence Française de Lutte contre le Dopage, Chatenay-Malabry, France.
| | - C Buisson
- Département des Analyses, Agence Française de Lutte contre le Dopage, Chatenay-Malabry, France
| | - F Lasne
- Département des Analyses, Agence Française de Lutte contre le Dopage, Chatenay-Malabry, France
| | - R Collomp
- Laboratoire de Soins Pharmaceutiques et de Santé Publique, Pôle Pharmacie, CHU Nice, France
| |
Collapse
|
20
|
Knych H, Arthur R, Stanley S, McKemie D. Disposition and metabolic profile of the weak androgen Dehydroepiandrosterone (DHEA) following administration as part of a nutritional supplement to exercised horses. Drug Test Anal 2014; 7:39-47. [DOI: 10.1002/dta.1716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/11/2022]
Affiliation(s)
- H.K. Knych
- K.L. Maddy Equine Analytical Chemistry Laboratory School of Veterinary Medicine; University of California; Davis 620 West Health Science Drive Davis CA 95616 USA
- Department of Veterinary Molecular Biosciences, School of Veterinary Medicine; University of California; Davis CA USA
| | - R.M. Arthur
- School of Veterinary Medicine; University of California; Davis CA USA
| | - S.D. Stanley
- K.L. Maddy Equine Analytical Chemistry Laboratory School of Veterinary Medicine; University of California; Davis 620 West Health Science Drive Davis CA 95616 USA
- Department of Veterinary Molecular Biosciences, School of Veterinary Medicine; University of California; Davis CA USA
| | - D.S. McKemie
- K.L. Maddy Equine Analytical Chemistry Laboratory School of Veterinary Medicine; University of California; Davis 620 West Health Science Drive Davis CA 95616 USA
| |
Collapse
|
21
|
Badoud F, Boccard J, Schweizer C, Pralong F, Saugy M, Baume N. Profiling of steroid metabolites after transdermal and oral administration of testosterone by ultra-high pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J Steroid Biochem Mol Biol 2013; 138:222-35. [PMID: 23796409 DOI: 10.1016/j.jsbmb.2013.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 11/23/2022]
Abstract
The screening of testosterone (T) misuse for doping control is based on the urinary steroid profile, including T, its precursors and metabolites. Modifications of individual levels and ratio between those metabolites are indicators of T misuse. In the context of screening analysis, the most discriminant criterion known to date is based on the T glucuronide (TG) to epitestosterone glucuronide (EG) ratio (TG/EG). Following the World Anti-Doping Agency (WADA) recommendations, there is suspicion of T misuse when the ratio reaches 4 or beyond. While this marker remains very sensitive and specific, it suffers from large inter-individual variability, with important influence of enzyme polymorphisms. Moreover, use of low dose or topical administration forms makes the screening of endogenous steroids difficult while the detection window no longer suits the doping habit. As reference limits are estimated on the basis of population studies, which encompass inter-individual and inter-ethnic variability, new strategies including individual threshold monitoring and alternative biomarkers were proposed to detect T misuse. The purpose of this study was to evaluate the potential of ultra-high pressure liquid chromatography (UHPLC) coupled with a new generation high resolution quadrupole time-of-flight mass spectrometer (QTOF-MS) to investigate the steroid metabolism after transdermal and oral T administration. An approach was developed to quantify 12 targeted urinary steroids as direct glucuro- and sulfo-conjugated metabolites, allowing the conservation of the phase II metabolism information, reflecting genetic and environmental influences. The UHPLC-QTOF-MS(E) platform was applied to clinical study samples from 19 healthy male volunteers, having different genotypes for the UGT2B17 enzyme responsible for the glucuroconjugation of T. Based on reference population ranges, none of the traditional markers of T misuse could detect doping after topical administration of T, while the detection window was short after oral TU ingestion. The detection ability of the 12 targeted steroids was thus evaluated by using individual thresholds following both transdermal and oral administration. Other relevant biomarkers and minor metabolites were studied for complementary information to the steroid profile, including sulfoconjugated analytes and hydroxy forms of glucuroconjugated metabolites. While sulfoconjugated steroids may provide helpful screening information for individuals with homozygotous UGT2B17 deletion, hydroxy-glucuroconjugated analytes could enhance the detection window of oral T undecanoate (TU) doping.
Collapse
Affiliation(s)
- F Badoud
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Geneva and Lausanne, Chemin des Croisettes 22, 1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Gómez C, Pozo OJ, Marcos J, Segura J, Ventura R. Alternative long-term markers for the detection of methyltestosterone misuse. Steroids 2013; 78:44-52. [PMID: 23127819 DOI: 10.1016/j.steroids.2012.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/28/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Methyltestosterone (MT) is one of the most frequently detected anabolic androgenic steroids in doping control analysis. MT misuse is commonly detected by the identification of its two main metabolites excreted as glucuronide conjugates, 17α-methyl-5α-androstan-3α,17β-diol and 17α-methyl-5β-androstan-3α,17β-diol. The detection of these metabolites is normally performed by gas chromatography-mass spectrometry, after previous hydrolysis with β-glucuronidase enzymes, extraction and derivatization steps. The aim of the present work was to study the sulphate fraction of MT and to evaluate their potential to improve the detection of the misuse of the drug in sports. MT was administered to healthy volunteers and urine samples were collected up to 30days after administration. After an extraction with ethyl acetate, urine extracts were analysed by liquid chromatography tandem mass spectrometry using electrospray ionisation in negative mode by monitoring the transition m/z 385 to m/z 97. Three diol sulphate metabolites (S1, S2 and S3) were detected. Potential structures for these metabolites were proposed after solvolysis and mass spectrometric experiments: S1, 17α-methyl-5β-androstan-3α,17β-diol 3α-sulphate; S2, 17β-methyl-5α-androstan-3α,17α-diol 3α-sulphate; and S3, 17β-methyl-5β-androstan-3α,17α-diol 3α-sulphate. Synthesis of reference compounds will be required in order to confirm the structures. The retrospectivity of these sulphate metabolites in the detection of MT misuse was compared with the obtained with previously described metabolites. Metabolite S2 was detected up to 21days after MT administration, improving between 2 and 3 times the retrospectivity of the detection compared to the last long-term metabolite of MT previously described, 17α-hydroxy-17β-methylandrostan-4,6-dien-3-one.
Collapse
Affiliation(s)
- C Gómez
- Bioanalysis Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Cawley AT, George AV. Complementary stable carbon isotope ratio and amount of substance measurements in sports anti-doping. Drug Test Anal 2012; 4:897-911. [DOI: 10.1002/dta.1378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 11/11/2022]
Affiliation(s)
| | - Adrian V. George
- School of Chemistry; University of Sydney; Sydney; NSW; 2006; Australia
| |
Collapse
|
24
|
Piper T, Baume N, Strahm E, Emery C, Saugy M. Influences of β-HCG administration on carbon isotope ratios of endogenous urinary steroids. Steroids 2012; 77:644-54. [PMID: 22369868 DOI: 10.1016/j.steroids.2012.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 11/28/2022]
Abstract
Several factors influencing the carbon isotope ratios (CIR) of endogenous urinary steroids have been identified in recent years. One of these should be the metabolism of steroids inside the body involving numerous different enzymes. A detailed look at this metabolism taking into account differences found between steroids excreted as glucuronides or as sulphates and hydrogen isotope ratios of different steroids pointed out possibility of unequal CIR at the main production sites inside the male body - the testes and the adrenal glands. By administration of β-HCG it is possible to strongly stimulate the steroid production within the testes without influencing the production at the adrenal glands. Therefore, this treatment should result in changed CIR of urinary androgens in contrast to the undisturbed pre-treatment values. Four male volunteers received three injections of β-HCG over a time course of 5 days and collected their urine samples at defined intervals after the last administration. Those samples showing the largest response in contrast to the pre-administration urines were identified by steroid profile measurements and subsequent analysed by GC/C/IRMS. CIR of androsterone, etiocholanolone, testosterone, 5α- and 5β-androstanediol and pregnanediol were compared. While pregnanediol was not influenced, most of the investigated androgens showed depleted values after treatment. The majority of differences were found to be statistically significant and nearly all showed the expected trend towards more depleted δ(13)C-values. These results support the hypothesis of different CIR at different production sites inside the human body. The impact of these findings on doping control analysis will be discussed.
Collapse
Affiliation(s)
- Thomas Piper
- Swiss Laboratory for Doping Analysis, University Center of Legal Medicine, Geneva and Lausanne, Centre Hospitalier Universitaire Vaudois and University Lausanne, Ch. des Croisettes 22, CH-1066 Epalinges, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Zhang Y, Tobias HJ, Auchus RJ, Brenna JT. Comprehensive 2-dimensional gas chromatography fast quadrupole mass spectrometry (GC × GC-qMS) for urinary steroid profiling: mass spectral characteristics with chemical ionization. Drug Test Anal 2011; 3:857-67. [PMID: 22147458 DOI: 10.1002/dta.380] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/06/2022]
Abstract
Comprehensive 2-dimensional gas chromatography (GC × GC), coupled to either a time of flight mass spectrometry (TOF-MS) or a fast scanning quadrupole MS (qMS) has greatly increased the peak capacity and separation space compared to conventional GC-MS. However, commercial GC × GC-TOFMS systems are not equipped with chemical ionization (CI) and do not provide dominant molecular ions or enable single ion monitoring for maximal sensitivity. A GC × GC-qMS in mass scanning mode was investigated with electron ionization (EI) and positive CI (PCI), using CH(4) and NH(3) as reagent gases. Compared to EI, PCI-NH(3) produced more abundant molecular ions and high mass, structure-specific ions for steroid acetates. Chromatography in two dimensions was optimized with a mixture of 12 endogenous and 3 standard acetylated steroids (SM15-AC) relevant to doping control. Eleven endogenous target steroid acetates were identified in normal urine based on their two retention times, and EI and PCI-NH(3) mass spectra; nine of these endogenous target steroid acetates were identified in congenital adrenal hyperplasia (CAH) patients. The difference between the urinary steroids profiles of normal individuals and those from CAH patients can easily be visually distinguished by their GC × GC-qMS chromatograms. We focus here on the comparison and interpretation of the various mass spectra of the targeted endogenous steroids. PCI-NH(3) mass spectra were most useful for unambiguous molecular weight determination and for establishing the number of -OH by the losses of one or more acetate groups. We conclude that PCI-NH(3) with GC × GC-qMS provides improved peak capacity and pseudomolecular ions with structural specificity.
Collapse
Affiliation(s)
- Ying Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
26
|
Boccard J, Badoud F, Grata E, Ouertani S, Hanafi M, Mazerolles G, Lantéri P, Veuthey JL, Saugy M, Rudaz S. A steroidomic approach for biomarkers discovery in doping control. Forensic Sci Int 2011; 213:85-94. [DOI: 10.1016/j.forsciint.2011.07.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 11/24/2022]
|
27
|
Fabregat A, Pozo OJ, Van Renterghem P, Van Eenoo P, Marcos J, Segura J, Ventura R. Detection of dihydrotestosterone gel, oral dehydroepiandrosterone, and testosterone gel misuse through the quantification of testosterone metabolites released after alkaline treatment. Drug Test Anal 2011; 3:828-35. [DOI: 10.1002/dta.351] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/29/2011] [Accepted: 07/29/2011] [Indexed: 12/26/2022]
Affiliation(s)
- Andreu Fabregat
- Bioanalysis Research Group; IMIM, Hospital del Mar; Doctor Aiguader 88; 08003; Barcelona; Spain
| | - Oscar J. Pozo
- Bioanalysis Research Group; IMIM, Hospital del Mar; Doctor Aiguader 88; 08003; Barcelona; Spain
| | - Pieter Van Renterghem
- Doping Control Laboratory (DoCoLab), Ugent; Departament of Clinical Chemistry, Microbiology and Immunology; Technologiepark 30; B-9052; Zwijnaarde; Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory (DoCoLab), Ugent; Departament of Clinical Chemistry, Microbiology and Immunology; Technologiepark 30; B-9052; Zwijnaarde; Belgium
| | | | | | | |
Collapse
|
28
|
Cawley AT, Trout GJ, Kazlauskas R, George AV. The potential of urinary androstdiene markers to identify 4-androstenediol (4-ADIOL) administration in athletes. Forensic Sci Int 2011; 208:129-38. [DOI: 10.1016/j.forsciint.2010.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/08/2010] [Accepted: 11/22/2010] [Indexed: 11/25/2022]
|
29
|
The Assay of Endogenous and Exogenous Anabolic Androgenic Steroids. HORMONE USE AND ABUSE BY ATHLETES 2011. [DOI: 10.1007/978-1-4419-7014-5_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Van Renterghem P, Van Eenoo P, Delbeke FT. Population based evaluation of a multi-parametric steroid profiling on administered endogenous steroids in single low dose. Steroids 2010; 75:1047-57. [PMID: 20688095 DOI: 10.1016/j.steroids.2010.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 11/23/2022]
Abstract
Steroid profiling provides valuable information to detect doping with endogenous steroids. Apart from the traditionally monitored steroids, minor metabolites can play an important role to increase the specificity and efficiency of current detection methods. The applicability of several minor steroid metabolites was tested on administration studies with low doses of oral testosterone (T), T gel, dihydrotestosterone (DHT) gel and oral dehydroepiandrosterone (DHEA). The collected data for all monitored parameters were evaluated with the respective population based reference ranges. Besides the traditional markers T/E, T and DHT, minor metabolites 4-OH-Adion and 6α-OH-Adion were found as most sensitive metabolites to detect oral T administration. The most sensitive metabolites for the detection of DHEA were identified as 16α-OH-DHEA and 7β-OH-DHEA but longest detection up to three days (after oral administration of 50 mg) was obtained with non-specific 5β-steroids and its ratios. Steroids applied as a gel had longer effects on the metabolism but were generally not detectable with universal decision criteria. It can be concluded that population based reference ranges show limited overall performance in detecting misuse of small doses of natural androgens. Although some minor metabolites provide additional information for the oral testosterone and DHEA formulations, the topical administered steroids could not be detected for all volunteers using universal reference limits. Application of other population based threshold limits did not lead to longer detection times.
Collapse
Affiliation(s)
- Pieter Van Renterghem
- Doping Control Laboratory (DoCoLab), UGent, Department of Clinical Chemistry, Microbiology and Immunology, Zwijnaarde, Belgium.
| | | | | |
Collapse
|
31
|
Van Renterghem P, Van Eenoo P, Sottas PE, Saugy M, Delbeke F. Subject-based steroid profiling and the determination of novel biomarkers for DHT and DHEA misuse in sports. Drug Test Anal 2010; 2:582-8. [DOI: 10.1002/dta.206] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/01/2010] [Accepted: 09/05/2010] [Indexed: 11/09/2022]
|
32
|
Piper T, Opfermann G, Thevis M, Schänzer W. Determination of (13)C/(12)C ratios of endogenous urinary steroids excreted as sulpho conjugates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3171-3181. [PMID: 20941765 DOI: 10.1002/rcm.4762] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The application of a comprehensive gas chromatography/combustion/isotope ratio mass spectrometry-based method for the measurement of stable carbon isotopes of endogenous urinary steroids excreted as sulphates is presented. The key element in sample preparation is the consecutive cleanup with high-performance liquid chromatography of underivatized and acetylated steroids, which allows the isolation of seven analytes (pregn-5-ene-3β,17α,20α-triol, etiocholanolone, androsterone, epiandrosterone, dehydroepiandrosterone (DHEA), androst-5-ene-3β,17β-diol and androst-5-ene-3β,17α-diol) from a single urine specimen. These steroids are of particular importance to doping controls as they should enable the sensitive and retrospective detection of DHEA abuse by athletes.Depending on the biological background, the determination limit for all steroids ranges from 5 to 10 ng/mL for a 10 mL specimen. The method is validated by means of linear mixing models for each steroid, which covers the items, repeatability and reproducibility. The specificity was further demonstrated by gas chromatography/mass spectrometry for each analyte, and no influence of the sample preparation or the quantity of analyte on carbon isotope ratios was observed. In order to determine naturally occurring (13)C/(12)C ratios and urinary concentrations of all implemented steroids, a reference population of n = 67 subjects was measured to enable the calculation of reference limits for all relevant steroidal Δ values.The applicability of the developed method was tested by means of a DHEA excretion study. Despite the fact that orally ingested DHEA is preferentially converted into sulphated metabolites and that the renal clearance of sulphated steroids is slow, only the (13)C/(12)C ratio of EpiA demonstrated the potential to prolong the detection time for DHEA misuse.
Collapse
Affiliation(s)
- Thomas Piper
- German Sport University Cologne, Institute of Biochemistry, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | | | | | | |
Collapse
|
33
|
Feasibility of a liver transcriptomics approach to assess bovine treatment with the prohormone dehydroepiandrosterone (DHEA). BMC Vet Res 2010; 6:44. [PMID: 20846423 PMCID: PMC2949829 DOI: 10.1186/1746-6148-6-44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/16/2010] [Indexed: 01/30/2023] Open
Abstract
Background Within the European Union the use of growth promoting agents in animal production is prohibited. Illegal use of natural prohormones like dehydroepiandrosterone (DHEA) is hard to prove since prohormones are strongly metabolized in vivo. In the present study, we investigated the feasibility of a novel effect-based approach for monitoring abuse of DHEA. Changes in gene expression profiles were studied in livers of bull calves treated orally (PO) or intramuscularly (IM) with 1000 mg DHEA versus two control groups, using bovine 44K DNA microarrays. In contrast to controlled genomics studies, this work involved bovines purchased at the local market on three different occasions with ages ranging from 6 to 14 months, thereby reflecting the real life inter-animal variability due to differences in age, individual physiology, season and diet. Results As determined by principal component analysis (PCA), large differences in liver gene expression profiles were observed between treated and control animals as well as between the two control groups. When comparing the gene expression profiles of PO and IM treated animals to that of all control animals, the number of significantly regulated genes (p-value <0.05 and a fold change >1.5) was 23 and 37 respectively. For IM and PO treated calves, gene sets were generated of genes that were significantly regulated compared to one control group and validated versus the other control group using Gene Set Enrichment Analysis (GSEA). This cross validation, showed that 6 out of the 8 gene sets were significantly enriched in DHEA treated animals when compared to an 'independent' control group. Conclusions This study showed that identification and application of genomic biomarkers for screening of (pro)hormone abuse in livestock production is substantially hampered by biological variation. On the other hand, it is demonstrated that comparison of pre-defined gene sets versus the whole genome expression profile of an animal allows to distinguish DHEA treatment effects from variations in gene expression due to inherent biological variation. Therefore, DNA-microarray expression profiling together with statistical tools like GSEA represent a promising approach to screen for (pro)hormone abuse in livestock production. However, a better insight in the genomic variability of the control population is a prerequisite in order to define growth promoter specific gene sets that can be used as robust biomarkers in daily practice.
Collapse
|
34
|
Parr MK, Schänzer W. Detection of the misuse of steroids in doping control. J Steroid Biochem Mol Biol 2010; 121:528-37. [PMID: 20036329 DOI: 10.1016/j.jsbmb.2009.12.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/16/2009] [Accepted: 12/20/2009] [Indexed: 11/16/2022]
Abstract
The list of prohibited substances of the World Anti-Doping Agency (WADA) classifies the administration of several steroids in sports as doping. Their analysis is generally performed using urine specimen as matrix. Lots of the steroids are extensively metabolised in the human body. Thus, knowledge of urinary excretion is extremely important for the sensitive detection of steroid misuse in doping control. The methods routinely used in steroid screening mainly focus on substances, that are excreted unconjugated or as glucuronides. Common procedures include deconjugation using a beta-glucuronidase enzyme. Following extraction and concentration the analytes are submitted to LC-MS(/MS) analysis and/or GC-MS(/MS) analyses. Besides the classical steroids, more and more products appear on the market for "dietary supplements" containing steroids that have never been marketed as approved drugs, mostly without proper labelling of the contents. To cover the whole range of potential products comprehensive screening tools have to be utilised in addition to the classical methods. Endogenous steroids, e.g. testosterone, represent a special group of compounds. As classical chemical methodology is incapable of discriminating synthetic hormones from the biosynthesised congeners, the method of steroid profiling is used for screening purpose. Additionally, based on isotope signatures a discrimination of synthetic and natural hormones can be achieved.
Collapse
Affiliation(s)
- Maria Kristina Parr
- Institute of Biochemistry, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany.
| | | |
Collapse
|
35
|
Abstract
CONTEXT Doping with anabolic androgenic steroids (AAS) both in sports (especially power sports) and among specific subsets of the population is rampant. With increasing availability of designer androgens, significant efforts are needed by antidoping authorities to develop sensitive methods to detect their use. EVIDENCE ACQUISITION The PubMed and Google Scholar search engines were used to identify publications addressing various forms of doping, methods employed in their detection, and adverse effects associated with their use. EVIDENCE SYNTHESIS The list of drugs prohibited by the World Anti-Doping Agency (WADA) has grown in the last decade. The newer entries into this list include gonadotropins, estrogen antagonists, aromatase inhibitors, androgen precursors, and selective androgen receptor modulators. The use of mass spectrometry has revolutionized the detection of various compounds; however, challenges remain in identifying newer designer androgens because their chemical signature is unknown. Development of high throughput bioassays may be an answer to this problem. It appears that the use of AAS continues to be associated with premature mortality (especially cardiovascular) in addition to suppressed spermatogenesis, gynecomastia, and virilization. CONCLUSION The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. The development of sensitive detection techniques may help discourage (at least to some extent) the abuse of these compounds. Investigations are needed to identify ways to hasten the recovery of the gonadal axis in AAS users and to determine the mechanism of cardiac damage by these compounds.
Collapse
Affiliation(s)
- Shehzad Basaria
- Department of Medicine, Division of Endocrinology and Metabolism, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
36
|
Investigation of urinary steroid metabolites in calf urine after oral and intramuscular administration of DHEA. Anal Bioanal Chem 2009; 396:799-808. [DOI: 10.1007/s00216-009-3265-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
|
37
|
Rijk JCW, Lommen A, Essers ML, Groot MJ, Van Hende JM, Doeswijk TG, Nielen MWF. Metabolomics Approach to Anabolic Steroid Urine Profiling of Bovines Treated with Prohormones. Anal Chem 2009; 81:6879-88. [DOI: 10.1021/ac900874m] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jeroen C. W. Rijk
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium, Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC, Wageningen, The Netherlands, and Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Arjen Lommen
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium, Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC, Wageningen, The Netherlands, and Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Martien L. Essers
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium, Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC, Wageningen, The Netherlands, and Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Maria J. Groot
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium, Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC, Wageningen, The Netherlands, and Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Johan M. Van Hende
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium, Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC, Wageningen, The Netherlands, and Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Timo G. Doeswijk
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium, Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC, Wageningen, The Netherlands, and Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Michel W. F. Nielen
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium, Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC, Wageningen, The Netherlands, and Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
38
|
Gomes RL, Meredith W, Snape CE, Sephton MA. Analysis of conjugated steroid androgens: deconjugation, derivatisation and associated issues. J Pharm Biomed Anal 2009; 49:1133-40. [PMID: 19304432 PMCID: PMC2684592 DOI: 10.1016/j.jpba.2009.01.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 12/31/2008] [Accepted: 01/22/2009] [Indexed: 11/22/2022]
Abstract
Gas chromatography/mass spectrometry (GC/MS) is the preferred technique for the detection of urinary steroid androgens for drug testing in athletics. Excreted in either the glucuronide or sulfated conjugated form, steroids must first undergo deconjugation followed by derivatisation to render them suitable for GC analysis. Discussed herein are the deconjugation and the derivatisation preparative options. The analytical challenges surrounding these preparatory approaches, in particular the inability to cleave the sulfate moiety have led to a focus on testing protocols that reply on glucuronide conjugates. Other approaches which alleviate the need for deconjugation and derivatisation are also highlighted.
Collapse
Key Words
- 13c/12c, stable carbon isotope ratio
- aps, adenosine-5′-phosphate
- atp, adenosine triphosphate
- bstfa, n,o-bis(trimethylsilyl)-trifluoroacetamide
- dhea, dehydroepiandrosterone
- es, external standard
- fid, flame ionisation detector
- fu, fishman unit
- g, glucuronide
- gc/c/irms, gas chromatography/combustion/isotopic ratio mass spectrometry
- gc/ms, gas chromatography/mass spectrometry
- is, internal standard
- iu, international unit
- lc/ms, liquid chromatography/mass spectrometry
- l–l, liquid–liquid
- mstfa, n-methyl-n-(trimethylsilyl)-trifluoroacetamide
- paps, 3′,5′-phosphoadenosine
- p-pi, pyrophosphate
- s, sulfate
- spe, solid phase extraction
- t/e ratio, testosterone to epitestosterone ratio
- tmcs, trimethylchlorosilane
- tmis, trimethyliodosilane
- tms, trimethylsilyating
- u, unit
- udpga, uridine diphosphoglucuronic acid
- ru, roy unit
- wada, world anti-doping agency
- conjugated steroids
- biological samples
- forensic drug testing
- deconjugation
- derivatisation
Collapse
Affiliation(s)
- Rachel L Gomes
- Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
39
|
Quantitative analysis of DHEA and androsterone in female urine: investigating the effects of menstrual cycle, oral contraception and training on exercise-induced changes in young women. Anal Bioanal Chem 2008; 393:1315-25. [PMID: 19096831 DOI: 10.1007/s00216-008-2549-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its metabolite androsterone (A) are natural steroids secreted in high quantities in human body. To assess the influence of oral contraceptives, menstrual cycle phase, and also physical exercise (acute and chronic such as training) on these metabolites excretions, a collection of 28 female urine specimens was organized. A three-extraction-step method was developed, and the analyses were performed by gas chromatography-mass spectrometry using deuterated 19-noretiocholanolone as the internal standard. Sample hydration state was found to be of great importance for kinetic studies, as it directly influenced the concentrations. No influence of menstrual cycle and training was found for androsterone and DHEA. However, oral contraceptive intake lowered DHEA excretion in urine and A seems to be slightly affected by exercise.
Collapse
|
40
|
Mareck U, Geyer H, Opfermann G, Thevis M, Schänzer W. Factors influencing the steroid profile in doping control analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:877-91. [PMID: 18570179 DOI: 10.1002/jms.1457] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Steroid profiling is one of the most versatile and informative screening tools for the detection of steroid abuse in sports drug testing. Concentrations and ratios of various endogenously produced steroidal hormones, their precursors and metabolites including testosterone (T), epitestosterone (E), dihydrotestosterone (DHT), androsterone (And), etiocholanolone (Etio), dehydroepiandrosterone (DHEA), 5alpha-androstane-3alpha,17beta-diol (Adiol), and 5beta-androstane-3alpha,17beta-diol (Bdiol) as well as androstenedione, 6alpha-OH-androstenedione, 5beta-androstane-3alpha,17alpha-diol (17-epi-Bdiol), 5alpha-androstane-3alpha,17alpha-diol (17-epi-Adiol), 3alpha,5-cyclo-5alpha-androstan-6beta-ol-17-one (3alpha,5-cyclo), 5alpha-androstanedione (Adion), and 5beta-androstanedione (Bdion) add up to a steroid profile that is highly sensitive to applications of endogenous as well as synthetic anabolic steroids, masking agents, and bacterial activity. Hence, the knowledge of factors that do influence the steroid profile pattern is a central aspect, and pharmaceutical (application of endogenous steroids and various pharmaceutical preparations), technical (hydrolysis, derivatization, matrix), and biological (bacterial activities, enzyme side activities) issues are reviewed.
Collapse
Affiliation(s)
- Ute Mareck
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | | | | | | | | |
Collapse
|
41
|
Saudan C, Baume N, Emery C, Strahm E, Saugy M. Short term impact of Tribulus terrestris intake on doping control analysis of endogenous steroids. Forensic Sci Int 2008; 178:e7-10. [DOI: 10.1016/j.forsciint.2008.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
|
42
|
|
43
|
Bazin MA, Travert C, Carreau S, Rault S, El Kihel L. First synthesis of 7α- and 7β-amino-DHEA, dehydroepiandrosterone (DHEA) analogues and preliminary evaluation of their cytotoxicity on Leydig cells and TM4 Sertoli cells. Bioorg Med Chem 2007; 15:3152-60. [PMID: 17350845 DOI: 10.1016/j.bmc.2007.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/13/2007] [Accepted: 02/20/2007] [Indexed: 11/16/2022]
Abstract
Efficient syntheses of new DHEA analogues, and their apoptotic and necrotic effects on Leydig cells and TM4 Sertoli cells are described. The key step in the synthetic strategy of 7-amino-DHEA derivatives involves a bromination on C-7 position to give an epimeric mixture of bromides which were substituted by azides and reduced to give 7alpha- and 7beta-amino-3beta-hydroxyandrost-5-en-17-ones. No cytotoxic effect induced by apoptosis mechanism was observed on Leydig and TM4 Sertoli cells by treatment with these amino-DHEA analogues. A necrotic effect was induced only in TM4 Sertoli cells. The best activity was obtained with 7alpha,beta-amino-androst-5-en-3beta-ol and 7beta-amino-3beta-hydroxy-androst-5-en-17-one.
Collapse
Affiliation(s)
- Marc-Antoine Bazin
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, UFR des Sciences Pharmaceutiques, Caen cedex, France
| | | | | | | | | |
Collapse
|
44
|
Mareck U, Geyer H, Flenker U, Piper T, Thevis M, Schänzer W. Detection of dehydroepiandrosterone misuse by means of gas chromatography- combustion-isotope ratio mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2007; 13:419-426. [PMID: 18417762 DOI: 10.1255/ejms.900] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
According to World Anti-Doping Agency (WADA) rules (WADA Technical Document-TD2004EAAS) urine samples containing dehydroepiandrosterone (DHEA) concentrations greater than 100 ng ML(-1) shall be submitted to isotope ratio mass spectrometry (IRMS) analysis. The threshold concentration is based on the equivalent to the glucuronide, and the DHEA concentrations have to be adjusted for a specific gravity value of 1.020. In 2006, 11,012 doping control urine samples from national and international federations were analyzed in the Cologne doping control laboratory, 100 (0.9%) of them yielding concentrations of DHEA greater than 100 ng mL(-1). Sixty-eight percent of the specimens showed specific gravity values higher than 1.020, 52% originated from soccer players, 95% were taken in competition, 85% were male urines, 99% of the IRMS results did not indicate an application of testosterone or related prohormones. Only one urine sample was reported as an adverse analytical finding having 319 ng mL(-1) DHEA (screening result), more than 10,000 ng mL(-1) androsterone and depleted carbon isotope ratio values for the testosterone metabolites androsterone and etiocholanolone. Statistical evaluation showed significantly different DHEA concentrations between specimens taken in- and out-of- competition, whereas females showed smaller DHEA values than males for both types of control. Also a strong influence of the DHEA excretion on different sport disciplines was detectable. The highest DHEA values were detected for game sports (soccer, basketball, handball, ice hockey), followed by boxing and wrestling. In 2007, 6622 doping control urine samples were analyzed for 3alpha,5-cyclo-5alpha-androstan-6beta-ol-17-one (3alpha,5-cyclo), a DHEA metabolite which was described as a useful gas chromatography-mass spectrometry (GC-MS) screening marker for DHEA abuse. Nineteen urine specimens showed concentrations higher than the suggested threshold of 140 ng mL(-1), six urine samples yielded additionally DHEA concentrations higher than 100 ng mL(-1), none of them showing positive IRMS findings. These results should be taken into consideration in future discussions about threshold values for endogenous steroids in doping control.
Collapse
Affiliation(s)
- Ute Mareck
- Institute of Biochemistry, German Sport University Cologne, Carl-Diem Weg 6, 50933 Cologne, Germany. - koeln.de
| | | | | | | | | | | |
Collapse
|
45
|
Van Eenoo P, Delbeke FT. Metabolism and excretion of anabolic steroids in doping control--new steroids and new insights. J Steroid Biochem Mol Biol 2006; 101:161-78. [PMID: 17000101 DOI: 10.1016/j.jsbmb.2006.06.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
The use of anabolic steroids in sports is prohibited by the World Anti-Doping Agency. Until the 1990s, anabolic steroids were solely manufactured by pharmaceutical companies, albeit sometimes on demand from national sports agencies as part of their doping program. Recently the list of prohibited anabolic steroids in sports has grown due to the addition of numerous steroids that have been introduced on the market by non-pharmaceutical companies. Moreover, several designer steroids, specifically developed to circumvent doping control, have also been detected. Because anabolic steroids are most often intensively subjected to phase I metabolism and seldom excreted unchanged, excretion studies need to be performed in order to detect their misuse. This review attempts to summarise the results of excretion studies of recent additions to the list of prohibited steroids in sports. Additionally an update and insight on new aspects for "older" steroids with respect to doping control is given.
Collapse
Affiliation(s)
- Peter Van Eenoo
- Doping Control Laboratory (DoCoLab), Ghent University (UGent), Technologiepark 30, B-9052 Zwijnaarde, Belgium.
| | | |
Collapse
|
46
|
Cawley AT, Hine ER, Trout GJ, George AV, Kazlauskas R. Searching for new markers of endogenous steroid administration in athletes: “looking outside the metabolic box”. Forensic Sci Int 2004; 143:103-14. [PMID: 15240029 DOI: 10.1016/j.forsciint.2004.02.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 02/13/2004] [Indexed: 11/17/2022]
Abstract
A simple means of detecting the abuse of steroids that also occur naturally is a problem facing doping control laboratories. Specific markers are required to allow the detection of the administration of these steroids. These markers are commonly measured using a set of data obtained from the screening of samples by gas chromatography-mass spectrometry (GC-MS). Doping control laboratories further need to confirm identified abuse using techniques such as gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). An interesting urinary species was found while following the pharmacokinetics and changes to the steroid profile from single and multiple oral doses of the International Olympic Committee/World Anti Doping Agency (IOC/WADA) prohibited substance, dehydroepiandrosterone (DHEA). The urine samples collected from the administration studies were subject to GC-MS and GC-C-IRMS steroid analysis following cleanup by solid phase extraction techniques. A useful urinary product of DHEA administration was detected in the urine samples from each of the administration studies and was identified by GC-MS experiments to be 3alpha,5-cyclo-5alpha-androstan-6beta-ol-17-one (3alpha,5-cyclo). This compound occurs naturally but the concentrations of 3alpha,5-cyclo were elevated following both the single DHEA administration (up to 385 ng/mL) and multiple DHEA administrations (up to 1240 ng/mL), in relation to those observed prior to these administrations (70 and 80 ng/mL, respectively). A reference distribution of urine samples collected from elite athletes (n = 632) enabled the natural concentration range of 3alpha,5-cyclo to be established (0-280 ng/mL), with a mean concentration of 22 ng/mL. Based on this an upper 3alpha,5-cyclo concentration limit of 140 ng/mL is proposed as a GC-MS screening marker of DHEA abuse in athletes. GC-C-IRMS analysis revealed significant 13C depletion of 3alpha,5-cyclo following DHEA administration. In the single administration study, the delta13C value of 3alpha,5-cyclo changed from -24.3 per thousand to a minimum value of -31.1 per thousand at 9 h post-administration, before returning to its original value after 48 h. The multiple administration study had a minimum delta13C 3alpha,5-cyclo of -33.9 per thousand during the administration phase in contrast to the initial value of -24.2 per thousand. Preliminary studies have shown 3alpha,5-cyclo to most likely be produced from DHEA sulfate found at high levels in urine. The complementary use of GC-MS and GC-C-IRMS to identify new markers of steroid abuse and the application of screening criteria incorporating such markers could also be adapted by doping control laboratories to detect metabolites of androstenedione, testosterone and dihydrotestosterone abuse.
Collapse
Affiliation(s)
- A T Cawley
- Australian Sports Drug Testing Laboratory, Australian Government Analytical Laboratories, Pymble NSW
| | | | | | | | | |
Collapse
|
47
|
Abstract
Dehydroepiandrosterone (DHEA), a 19-carbon steroid, is situated along the steroid metabolic pathway. It is the most abundant circulating hormone in the body and can be converted to either androgens or estrogens. It is readily conjugated to its sulphate ester DHEAS, and they are designated as DHEA(S) here when used together. Its secretion reaches a peak in early adulthood and thereafter decreases, until approximately age 70 years when it reaches a concentration of approximately 20%. Many hormonal changes may take place with aging but none is as marked as this. This "relative DHEA deficiency" resulted in DHEA being enthusiastically labelled by some as a fountain of youth or an antidote to aging that would prove to be the panacea they are seeking. Its use was also taken up enthusiastically by the athletic community and used as a prohormone in the belief or hope that it would be converted mainly to testosterone in the body.
Collapse
Affiliation(s)
- Brian Corrigan
- Institute of Sport, Concord Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
48
|
Le Bizec B, Bryand F, Gaudin I, Monteau F, Poulain F, Andre F. Endogenous nandrolone metabolites in human urine: preliminary results to discriminate between endogenous and exogenous origin. Steroids 2002; 67:105-10. [PMID: 11755174 DOI: 10.1016/s0039-128x(01)00139-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
When administered to human subjects, nandrolone is metabolized into two main products, 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE). Recent studies demonstrated the endogenous production of these compounds in man at concentrations very close to the threshold of the International Olympic Committee (IOC), i.e. 2 ng/ml. Because the possibility of reaching or exceeding this fateful limit is difficult to exclude, a complementary biochemical parameter is necessary for the differentiation of endogenous 19-NA and 19-NE production from residues resulting from nandrolone consumption. We measured the endogenous concentrations of 19-NA and 19-NE in 385 urine samples from professional football players, and we studied the phase II metabolite composition in individuals excreting the highest concentrations. The results showed that around 30% of endogenous 19-norandrosterone was sulfo-conjugated, whereas 100% of 19-norandrosterone was excreted conjugated to a glucuronic acid when nandrolone was administered. This significant qualitative difference appears to be a promising complementary criterion to more definitively conclude about an athlete's culpability, especially when nandrolone metabolites are found in the low ng/ml range.
Collapse
Affiliation(s)
- Bruno Le Bizec
- LABERCA, Ecole Nationale Vétérinaire, BP 50707, F-44087 Nantes Cedex 03, France. lebizec@ vet-nantes.fr
| | | | | | | | | | | |
Collapse
|
49
|
Shimada K, Mitamura K, Higashi T. Gas chromatography and high-performance liquid chromatography of natural steroids. J Chromatogr A 2001; 935:141-72. [PMID: 11762773 DOI: 10.1016/s0021-9673(01)00943-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review article underlines the importance of gas chromatography (GC), high-performance liquid chromatography (HPLC) and their hyphenated techniques using mass spectrometry (MS) for the determination of natural steroids, especially in human biological fluids. Steroids are divided into eight categories based on their structures and functions, and recent references using the above methodologies for the analysis of these steroids are cited. GC and GC-MS are commonly used for the determination of volatile steroids. Although HPLC is a widely used analytical method for the determination of steroids including the conjugated type in biological fluids, LC-MS is considered to be the most promising one for this purpose because of its sensitivity, specificity and versatility.
Collapse
Affiliation(s)
- K Shimada
- Faculty of Pharmaceutical Sciences, Kanazawa University, Japan.
| | | | | |
Collapse
|
50
|
Jia Q, Hong MF, Pan ZX, Orndorff S. Quantification of urine 17-ketosteroid sulfates and glucuronides by high-performance liquid chromatography-ion trap mass spectroscopy. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 750:81-91. [PMID: 11204226 DOI: 10.1016/s0378-4347(00)00435-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The measurement of androgen steroids has been utilized as a clinical indicator of adrenal function, androgen abuse, and as a prediction of general health or biological aging. An improved high-performance liquid chromatography-ion trap mass spectroscopic method with sonic spray ionization (SSI) technology for the quantification of individual urinary 17-ketosteroid sulfates and glucuronides was developed and validated. Sample preparation was simplified using a C18 cartridge followed by direct injection onto a reversed-phase HPLC column. Individual 17-ketosteroid from 63 urinary specimens collected in a 24-h period was measured. 17-Ketosteroid conjugates, total 17-KS-S and the ratio of total 17-KS-S to creatinine referred to herein as the Anabolic/Catabolic Index (ACI) showed statistically significant negative correlations with age.
Collapse
Affiliation(s)
- Q Jia
- Univera Pharmaceuticals, Inc., Broomfield, CO 80021, USA.
| | | | | | | |
Collapse
|