1
|
Ali I, Chemen ME, Piccini LE, Mukherjee S, Jana S, Damonte EB, Ray B, Garcia CC, Ray S. Chemically modified galactans of Grateloupia indica: From production to in vitro antiviral activity. Int J Biol Macromol 2024; 258:128824. [PMID: 38103665 DOI: 10.1016/j.ijbiomac.2023.128824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Herpes simplex viruses (HSVs) have an affinity for heparan sulfate proteoglycans on cell surfaces, which is a determinant for virus entry. Herein, several sulfated galactans that mimic the active domain of the entry receptor were employed to prevent HSV infection. They were produced from Grateloupia indica using chlorosulfonic acid-pyridine (ClSO3H.Py)/N,N-dimethylformamide reagent (fraction G-402), SO3.Py/DMF reagent (G-403), or by aqueous extraction (G-401). These galactans contained varied molecular masses (33-55 kDa), and sulfate contents (12-20 %), and have different antiviral activities. Especially, the galactan (G-402) generated by using ClSO3H.Py/DMF, a novel reagent, exhibited the highest level of antiviral activity (EC50 = 0.36 μg/mL) compared to G-403 (EC50 = 15.6 μg/mL) and G-401 (EC50 = 17.9 μg/mL). This most active sulfated galactan possessed a linear chain containing β-(1 → 3)- and α-(1 → 4)-linked Galp units with sulfate group at the O-2/4/6 and O-2/3/6 positions, respectively. The HSV-1 and HSV-2 strains were specifically inhibited by this novel 33 ± 15 kDa galactan, which also blocked the virus from entering the host cell. These results highlight the significant potential of this sulfated galactan for antiviral research and drug development. Additionally, the reagent used for the effective conversion of galactan hydroxy groups to sulfate during extraction may also be useful for the chemical transformation of other natural products.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Mathias E Chemen
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Luana E Piccini
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Elsa B Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Cybele C Garcia
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428 Buenos Aires, Argentina
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
2
|
Castro RH, Burgos I, Corredor LM, Llanos S, Franco CA, Cortés FB, Romero Bohórquez AR. Carboxymethyl Scleroglucan Synthesized via O-Alkylation Reaction with Different Degrees of Substitution: Rheology and Thermal Stability. Polymers (Basel) 2024; 16:207. [PMID: 38257006 PMCID: PMC10821296 DOI: 10.3390/polym16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/24/2024] Open
Abstract
This paper presents the methodology for synthesizing and characterizing two carboxymethyl EOR-grade Scleroglucans (CMS-A and CMS-B). An O-Alkylation reaction was used to insert a hydrophilic group (monochloroacetic acid-MCAA) into the biopolymer's anhydroglucose subunits (AGUs). The effect of the degree of the carboxymethyl substitution on the rheology and thermal stability of the Scleroglucan (SG) was also evaluated. Simultaneous thermal analysis (STA/TGA-DSC), differential scanning calorimetry (DSC), X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (SEM/EDS) were employed to characterize both CMS products. FTIR analysis revealed characteristic peaks corresponding to the carboxymethyl functional groups, confirming the modification. Also, SEM analysis provided insights into the structural changes in the polysaccharide after the O-Alkylation reaction. TGA results showed that the carboxymethylation of SG lowered its dehydroxylation temperature but increased its thermal stability above 300 °C. The CMS products and SG exhibited a pseudoplastic behavior; however, lower shear viscosities and relaxation times were observed for the CMS products due to the breakage of the SG triple helix for the chemical modification. Despite the viscosity results, the modified Scleroglucans are promising candidates for developing new engineering materials for EOR processes.
Collapse
Affiliation(s)
- Rubén H. Castro
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (C.A.F.); (F.B.C.)
| | - Isidro Burgos
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (I.B.); (S.L.); (A.R.R.B.)
| | - Laura M. Corredor
- Centro de Innovación y Tecnología—ICP, Ecopetrol S.A., Piedecuesta 681011, Colombia;
| | - Sebastián Llanos
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (I.B.); (S.L.); (A.R.R.B.)
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (C.A.F.); (F.B.C.)
| | - Farid B. Cortés
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (C.A.F.); (F.B.C.)
| | - Arnold R. Romero Bohórquez
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia; (I.B.); (S.L.); (A.R.R.B.)
| |
Collapse
|
3
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
4
|
Partial depolymerization of capsular polysaccharides isolated from Streptococcus pneumoniae serotype 2 by various methods. Carbohydr Res 2022; 512:108503. [DOI: 10.1016/j.carres.2022.108503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
|
5
|
Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM. Progress in Bioactive Polysaccharide-Derivatives: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1935998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miray Simsek
- Department of Plant Sciences, North High School, Fargo ND and North Dakota State University, Fargo, North Dakota, United States
| | | | - Nurudeen Rasaq
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| | - Ademola Monsur Hammed
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
6
|
Gaikwad WK, Kodam KM, Dhere RM, Jana SK, Gautam M, Mallya AD, Soni D, Bhagade S, Gulahne A. Simultaneous purification and depolymerization of Streptococcus pneumoniae serotype 2 capsular polysaccharides by trifluoroacetic acid. Carbohydr Polym 2021; 261:117859. [PMID: 33766348 DOI: 10.1016/j.carbpol.2021.117859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Development of an effective purification process in order to provide low cost and high-quality vaccine is the necessity of glycoconjugate vaccine manufacturing industries. In the present study, we have attempted to develop a method for simultaneous purification and depolymerization process for capsular polysaccharides (CPS) derived from Streptococcus pneumoniae serotype 2. Trifluoroacetic acid (TFA) was used to precipitate impurities which were then removed by centrifugation. It was observed that the TFA treatment could simultaneously depolymerize the CPS and purify it. The purified and depolymerized CPS was analyzed for its purity, structural identity and conformity, molecular size, antigenicity to meet desired quality specifications. The obtained results showed that the purification and depolymerization of S. pneumoniae serotype 2 CPS did not affect the antigenicity of CPS.
Collapse
Affiliation(s)
- Walmik Karbhari Gaikwad
- Department of Technology, Savitribai Phule Pune University, Pune, 411007, India; Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, 411028, Maharashtra, India
| | - Kisan M Kodam
- Division of Biochemistry, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| | - Rajeev M Dhere
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, 411028, Maharashtra, India.
| | - Swapan K Jana
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, 411028, Maharashtra, India
| | - Manish Gautam
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, 411028, Maharashtra, India
| | - Asha D Mallya
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, 411028, Maharashtra, India
| | - Dipen Soni
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, 411028, Maharashtra, India
| | - Sudhakar Bhagade
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, 411028, Maharashtra, India
| | - Ashishkumar Gulahne
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, 411028, Maharashtra, India
| |
Collapse
|
7
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
8
|
Magnetite nanoparticle embedded Pectin-graft-poly(N-hydroxyethylacrylamide) hydrogel: Evaluation as adsorbent for dyes and heavy metal ions from waste water. Int J Biol Macromol 2020; 156:1408-1417. [DOI: 10.1016/j.ijbiomac.2019.11.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022]
|
9
|
Ultra-Fast Selective Fructose Dehydration Promoted by a Kraft Lignin Sulfonated Carbon Under Microwave Heating. Catal Letters 2020. [DOI: 10.1007/s10562-020-03305-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Tudino TC, Nunes RS, Mandelli D, Carvalho WA. Influence of Dimethylsulfoxide and Dioxygen in the Fructose Conversion to 5-Hydroxymethylfurfural Mediated by Glycerol's Acidic Carbon. Front Chem 2020; 8:263. [PMID: 32322574 PMCID: PMC7156976 DOI: 10.3389/fchem.2020.00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
Both the catalytic production of 5-hydroxymethylfurfural (5-HMF) from carbohydrates and the use of a catalyst obtained from residues stand out for adding value to by-products and wastes. These processes contribute to the circular economy. In this work it was evaluated optimized conditions for 5-HMF production from fructose with high yield and selectivity. The reaction was catalyzed by an acidic carbon obtained from glycerol, a byproduct of the biodiesel industry. Special attention has been given to the use of dimethyl sulfoxide (DMSO) as a solvent and its influence on system activity, both in the presence and absence of O2. Glycerol's carbon with acidic properties can be effectively used as catalyst in fructose dehydration, allowed achieving conversions close to 100% with 5-HMF selectivities higher than 90%. The catalyst can be reused in consecutive batch runs. The influence of DMSO in the presence of O2 should be considered in the catalytic activity, as the stabilization of a reaction intermediate by the [O2:DMSO] complex is favored and, both fructose conversion and 5-HMF yield increase.
Collapse
Affiliation(s)
- Tatiane C Tudino
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, Brazil
| | - Renan S Nunes
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, Brazil
| | - Dalmo Mandelli
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, Brazil
| | - Wagner A Carvalho
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, Brazil
| |
Collapse
|
11
|
Bellich B, D'Agostino I, Semeraro S, Gamini A, Cesàro A. "The Good, the Bad and the Ugly" of Chitosans. Mar Drugs 2016; 14:E99. [PMID: 27196916 PMCID: PMC4882573 DOI: 10.3390/md14050099] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
The objective of this paper is to emphasize the fact that while consistent interest has been paid to the industrial use of chitosan, minor attention has been devoted to spread the knowledge of a good characterization of its physico-chemical properties. Therefore, the paper attempts to critically comment on the conflicting experimental results, highlighting the facts, the myths and the controversies. The goal is to indicate how to take advantage of chitosan versatility, to learn how to manage its variability and show how to properly tackle some unexpected undesirable features. In the sections of the paper various issues that relate chitosan properties to some basic features and to advanced solutions and applications are presented. The introduction outlines some historical pioneering works, where the chemistry of chitosan was originally explored. Thereafter, particular reference is made to analytical purity, characterization and chain modifications. The macromolecular characterization is mostly related to molecular weight and to degree of acetylation, but also refers to the conformational and rheological properties and solution stability. Then, the antimicrobial activity of chitosan in relation with its solubility is reviewed. A section is dedicated to the formulation of chitosan biomaterials, from gel to nanobeads, exploring their innovative application as active carrier nanoparticles. Finally, the toxicity issue of chitosan as a polymer and as a constructed nanomaterial is briefly commented in the conclusions.
Collapse
Affiliation(s)
- Barbara Bellich
- Laboratory of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Ilenia D'Agostino
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy. ilenia.d'
| | - Sabrina Semeraro
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Amelia Gamini
- Laboratory of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Attilio Cesàro
- Laboratory of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
- Elettra-Sincrotrone Trieste, Strada Statale 14 km 163.5, Area Science Park, 34149 Trieste, Italy.
| |
Collapse
|
12
|
Christmann M, Hu J, Kitamura M, Stoltz B. Tetrahedron reports on organic chemistry. Tetrahedron 2015. [DOI: 10.1016/s0040-4020(15)00744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Park KM, Kim YN, Choi SJ, Park JH, Chang PS. Chemoselective Oxidation of C6 Primary Hydroxyl Groups of Polysaccharides in Rice Bran for the Application as a Novel Water-Soluble Dietary Fiber. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2014. [DOI: 10.1080/10942912.2014.926370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Chemical modification of polysaccharides. ISRN ORGANIC CHEMISTRY 2013; 2013:417672. [PMID: 24151557 PMCID: PMC3787328 DOI: 10.1155/2013/417672] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/09/2013] [Indexed: 11/18/2022]
Abstract
This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives.
Collapse
|
15
|
Stoltz B, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2013. [DOI: 10.1016/s0040-4020(13)01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Petronijevic Z, Maluckov B, Smelcerovic A. Crosslinking of polysaccharides with activated dimethylsulfoxide. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Petzold K, Klemm D, Stein A, Günther W. Synthesis and NMR characterization of regiocontrolled starch alkyl ethers. Des Monomers Polym 2012. [DOI: 10.1163/156855502760408099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Optimizing Conditions for TEMPO/NaOCl-Mediated Chemoselective Oxidation of Primary Alcohols in Sweet Potato Residue. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0740-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Stoltz B, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2011. [DOI: 10.1016/s0040-4020(11)00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Stoltz B, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2010. [DOI: 10.1016/s0040-4020(10)01735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Liu J, Tabata Y. Photodynamic therapy of fullerene modified with pullulan on hepatoma cells. J Drug Target 2010; 18:602-10. [DOI: 10.3109/10611861003599479] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Model alpha-mannoside conjugates: immunogenicity and induction of candidacidal activity. ACTA ACUST UNITED AC 2009; 58:307-13. [PMID: 20113351 DOI: 10.1111/j.1574-695x.2009.00642.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effect of Candida cell wall mannan-derived alpha-oligomannoside structural components on the modulation of the immune system and their role in protective immunity are studied here. Semi-synthetic alpha-mannoside-bovine serum albumin conjugates were used for immunization of rabbits. Dimeric alpha-mannoside, representing Candida antigenic factor 1, was used as a model of linear alpha-mannoside, and pentameric alpha-mannoside was used as a model of branched oligomannoside side chain structure. The induction of humoral immune response and the functionality of the serum tested by induction of peripheral blood leukocyte (PBL) candidacidal activity are documented. Anti-Candida albicans serotype B immunoglobulins (IgG and IgM) levels were higher than anti-serotype A following immunization with both conjugates. Dimer-conjugate postimmunization sera evidently enhanced C. albicans killing activity of PBLs in candidacidal assay. The study shows the importance of alpha-mannoside structures in perspective anti-Candida vaccine with a broad spectrum of effectiveness.
Collapse
|
23
|
Chemical modification of polysaccharides by the use of intramolecular associations in polar organic solvents. Polym Bull (Berl) 2009. [DOI: 10.1007/s00289-009-0219-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Yalpani M, Hedman PO. Preparation and Applications of Dextran-Derived Products in Biotechnology and Related Areas. Crit Rev Biotechnol 2008. [DOI: 10.3109/07388558509150789] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Tetrahedron reports on organic chemistry. Tetrahedron 2008. [DOI: 10.1016/s0040-4020(08)00897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Tetrahedron reports on organic chemistry. Tetrahedron 2007. [DOI: 10.1016/s0040-4020(07)01371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Tetrahedron reports on organic chemistry. Tetrahedron 2007. [DOI: 10.1016/s0040-4020(07)00834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Tetrahedron reports on organic chemistry. Tetrahedron 2007. [DOI: 10.1016/s0040-4020(07)00205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Lectka T, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2006. [DOI: 10.1016/s0040-4020(06)01801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Zhang S, Sun B, Wang W, Zhu M, Chen J. Adsorption of Cd2+and Cu2+by Oxidized Cellulose from TEMPO‐mediated Selective Oxidation of Alkaline Natural Cellulose Pulp. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2006. [DOI: 10.1080/10601320600941318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 2006; 44:3358-93. [PMID: 15861454 DOI: 10.1002/anie.200460587] [Citation(s) in RCA: 3119] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As the most important skeletal component in plants, the polysaccharide cellulose is an almost inexhaustible polymeric raw material with fascinating structure and properties. Formed by the repeated connection of D-glucose building blocks, the highly functionalized, linear stiff-chain homopolymer is characterized by its hydrophilicity, chirality, biodegradability, broad chemical modifying capacity, and its formation of versatile semicrystalline fiber morphologies. In view of the considerable increase in interdisciplinary cellulose research and product development over the past decade worldwide, this paper assembles the current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs. New frontiers, including environmentally friendly cellulose fiber technologies, bacterial cellulose biomaterials, and in-vitro syntheses of cellulose are highlighted together with future aims, strategies, and perspectives of cellulose research and its applications.
Collapse
Affiliation(s)
- Dieter Klemm
- Institut für Organische Chemie und Makromolekulare Chemie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
32
|
Fernández C, Hattan CM, Kerns RJ. Semi-synthetic heparin derivatives: chemical modifications of heparin beyond chain length, sulfate substitution pattern and N-sulfo/N-acetyl groups. Carbohydr Res 2006; 341:1253-65. [PMID: 16712822 DOI: 10.1016/j.carres.2006.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 04/04/2006] [Accepted: 04/09/2006] [Indexed: 11/24/2022]
Abstract
The glycosaminoglycan heparin is a polyanionic polysaccharide most recognized for its anticoagulant activity. Heparin binds to cationic regions in hundreds of prokaryotic and eukaryotic proteins, termed heparin-binding proteins. The endogenous ligand for many of these heparin-binding proteins is a structurally similar glycosaminoglycan, heparan sulfate (HS). Chemical and biosynthetic modifications of heparin and HS have been employed to discern specific sequences and charge-substitution patterns required for these polysaccharides to bind specific proteins, with the goal of understanding structural requirements for protein binding well enough to elucidate the function of the saccharide-protein interactions and/or to develop new or improved heparin-based pharmaceuticals. The most common modifications to heparin structure have been alteration of sulfate substitution patterns, carboxyl reduction, replacement N-sulfo groups with N-acetyl groups, and chain fragmentation. However, an accumulation of reports over the past 50 years describe semi-synthetic heparin derivatives obtained by incorporating aliphatic, aryl, and heteroaryl moieties into the heparin structure. A primary goal in many of these reports has been to identify heparin-derived structures as new or improved heparin-based therapeutics. Presented here is a perspective on the introduction of non-anionic structural motifs into heparin structure, with a focus on such modifications as a strategy to generate novel reduced-charge heparin-based bind-and-block antagonists of HS-protein interactions. The chemical methods employed to synthesize such derivatives, as well as other unique heparin conjugates, are reviewed.
Collapse
Affiliation(s)
- Cristina Fernández
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
33
|
Lectka T, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2006. [DOI: 10.1016/s0040-4020(06)00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: faszinierendes Biopolymer und nachhaltiger Rohstoff. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200460587] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Posner PG, Motherwell PW. Tetrahedron reports on organic chemistry. Tetrahedron 2004. [DOI: 10.1016/s0040-4020(04)01396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Tetrahedron reports on organic chemistry. Tetrahedron 2004. [DOI: 10.1016/s0040-4020(04)00315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Posner PG, Motherwell PW. Tetrahedron reports on organic chemistry. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)01884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Posner PG, Motherwell PW. Tetrahedron reports on organic chemistry. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)01130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Posner PG, Motherwell PW. Tetrahedron reports on organic chemistry. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Teranishi K, Ueno F. Mechanism of 2-O→3-O silyl migration in cyclomaltohexaose (α-cyclodextrin). Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01149-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Teranishi K. Practical and convenient modifications of the A,C-secondary hydroxyl face of cyclodextrins. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00259-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Tetrahedron reports on organic chemistry. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
|
44
|
Posner G, Motherwell W. Tetrahedron reports on organic chemistry. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)01503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Kasapis S, Desbrières J, Al-Marhoobi IM, Rinaudo M. Disentangling alpha from beta mechanical relaxations in the rubber-to-glass transition of high-sugar-chitosan mixtures. Carbohydr Res 2002; 337:595-605. [PMID: 11909592 DOI: 10.1016/s0008-6215(02)00020-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The occurrence of molecular motions in addition to those of the glass-transition region (alpha mechanism) were investigated in chitosan and a branched derivative substituted with alkyl chains having eight carbon atoms. Once hydrophobic interactions of the alkyl groups in aqueous solution were demonstrated, polymers were mixed with glucose syrup at high levels of solids. The real (G') and imaginary (G") components of the complex dynamic modulus in high-solid mixtures were measured between 0.1 and 100 rad s(-1) in the temperature range from -55 to 50 degrees C. The method of reduced variables gave superposed curves of G' and G", which unveiled an anomaly in the dispersion of the alkylated derivative both in terms of higher modulus values and dominant elastic component of the polymeric network, as compared with the glass-transition region of chitosan. It was proposed that the new mechanical feature was due to beta mechanism, and master curves of viscoelastic functions and relaxation processes were constructed to rationalize it.
Collapse
Affiliation(s)
- Stefan Kasapis
- Department of Food Science and Nutrition, College of Agriculture, Sultan Qaboos University, PO Box 34, Al-Khod 123, Sultanate of Oman.
| | | | | | | |
Collapse
|
46
|
Petzold K, Einfeldt L, Günther W, Stein A, Klemm D. Regioselective functionalization of starch: synthesis and 1H NMR characterization of 6-O-silyl ethers. Biomacromolecules 2002; 2:965-9. [PMID: 11710057 DOI: 10.1021/bm010067u] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high regioselective 6-O silylation of starch by using thexyldimethylchlorosilane (TDSCl, chlorodimethyl-(2,3-dimethylbut-2-yl)silane) as bulky silylating agent in the reaction system N-methylpyrrolidone (NMP)/ammonia was carried out and investigated. The control of the degree of substitution (DSSi), the control of the regioselectivity, and the control of the reaction pathway are described in detail. After peracetylation of the silyl ethers of starch, the distribution of the silyl and acetyl substituents was characterized not only in the anhydroglucose repeating units (AGU) but also in the nonreducing end groups (NEG) by means of multidimensional 1H NMR techniques. In both cases, the silyl substituents were detected exclusively in the 6-O position, and the acetyl groups in the 2-O and 3-O positions of the AGU and in the 2-O, 3-O, and 4-O positions of the NEG, respectively. The described 6-O-thexyldimethylsilyl (TDS) units are potentially protecting groups of the primary OH position of starches.
Collapse
Affiliation(s)
- K Petzold
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstrasse 10, D-07743 Jena, Germany
| | | | | | | | | |
Collapse
|
47
|
Ebringerov� A, Hrom�dkov� Z, Malov�kov� A, Sasinkov� V, Hirsch J, Srokov� I. Structure and properties of water-solublep-carboxybenzyl polysaccharide derivatives. J Appl Polym Sci 2000. [DOI: 10.1002/1097-4628(20001107)78:6<1191::aid-app30>3.0.co;2-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Muzzarelli R, Muzzarelli C, Cosani A, Terbojevich M. 6-Oxychitins, novel hyaluronan-like regiospecifically carboxylated chitins. Carbohydr Polym 1999. [DOI: 10.1016/s0144-8617(99)00027-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Li J, Cheng HN, Nickol RG, Wang PG. Enzymatic modification of hydroxyethylcellulose by transgalactosylation with beta-galactosidases. Carbohydr Res 1999; 316:133-7. [PMID: 10420592 DOI: 10.1016/s0008-6215(99)00041-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
beta-galactosidases from A. oryzae and a thermophilic CLONEZYME glycosidase library were used to catalyze the transfer of the beta-D-galactopyranosyl moiety from lactose to the hydroxyl groups of hydroxyethylcellulose (HEC) in sodium acetate buffer. The degree of substitution was quantified by using galactose oxidase enzymatic assays. Depolymerization was also observed in the course of the transglycosylation reactions.
Collapse
Affiliation(s)
- J Li
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
50
|
Nyström B, Kjøniksen AL, Iversen C. Characterization of association phenomena in aqueous systems of chitosan of different hydrophobicity1Part of this paper was presented at the conference on `Associating Polymer', Fontevraud, France, November 1997.1. Adv Colloid Interface Sci 1999. [DOI: 10.1016/s0001-8686(98)00069-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|