1
|
Bose P, Singh M, Gupta A, Kumar S, Ansari FJ, Pandey VK, Singh AS, Tiwari VK. Design, synthesis, and docking study of saccharin N-triazolyl glycoconjugates. Carbohydr Res 2024; 538:109101. [PMID: 38574410 DOI: 10.1016/j.carres.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
To achieve better-repurposed motifs, saccharin has been merged with biocompatible sugar molecules via a 1,2,3-triazole linker, and ten novel 1,2,3-triazole-appended saccharin glycoconjugates were developed in good yield by utilizing modular CuAAC click as regioselective triazole forming tool. The docking study indicated that the resulting hybrid molecules have an overall substantial interaction with the CAXII macromolecule. Moreover, the galactose triazolyl saccharin analogue 3h has a binding energy of -8.5 kcal/mol with 5 H-bonds, and xylosyl 1,2,3-triazolyl saccharin analogue 3d has a binding energy of -8.2 kcal/mol with 6 H-bond interactions and have exhibited the highest binding interaction with the macromolecule system.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal Jaah Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anoop S Singh
- Chemistry Innovation Research Center, Jubilant Biosys Ltd, Greater Noida, 201310, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Bose P, Agrahari AK, Singh R, Singh M, Kumar S, Singh RK, Tiwari VK. Click inspired synthesis of piperazine-triazolyl sugar-conjugates as potent anti-Hela activity. Carbohydr Res 2023; 529:108846. [PMID: 37245419 DOI: 10.1016/j.carres.2023.108846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
To imbibe the aim of synthesizing water-soluble and biocompatible motif, a click-inspired piperazine glycoconjugate has been devised up. In this report, we present a focused approach to design and synthesis of versatile sugar-appended triazoles through 'Click Chemistry' along with their pharmacological studies on cyclin-dependent kinases (CDKs) and cell cytotoxicity on cancer cells using in silico and in vitro approaches, respectively. The study has inclusively recognized the galactose- and mannose-derived piperazine conjugates as the promising motifs. The findings suggested that the galactosyl bis-triazolyl piperazine analogue 10b is the most CDK interactive derivative and also possess significant anticancer activity.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India; Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Rajan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
3
|
Zhang X, Basuli F, Shi ZD, Shah S, Shi J, Mitchell A, Lai J, Wang Z, Hammoud DA, Swenson RE. Synthesis and Evaluation of Fluorine-18-Labeled L-Rhamnose Derivatives. Molecules 2023; 28:molecules28093773. [PMID: 37175182 PMCID: PMC10180268 DOI: 10.3390/molecules28093773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The use of radiolabeled glucose for PET imaging resulted in the most commonly used tracer in the clinic, 2-deoxy-2-[18F]fluoroglucose (FDG). More recently, other radiolabeled sugars have been reported for various applications, including imaging tumors and infections. Therefore, in this study, we developed a series of fluorine-18-labeled L-rhamnose derivatives as potential PET tracers of various fungal and bacterial strains. Acetyl-protected triflate precursors of rhamnose were prepared and radiolabeled with fluorine-18 followed by hydrolysis to produce L-deoxy [18F]fluororhamnose. The overall radiochemical yield was 7-27% in a 90 min synthesis time with a radiochemical purity of 95%. In vivo biodistribution of the ligands using PET imaging showed that 2-deoxy-2-[18F]fluoro-L-rhamnose is stable for at least up to 60 min in mice and eliminated via renal clearance. The tracer also exhibited minimal tissue or skeletal uptake in healthy mice resulting in a low background signal.
Collapse
Affiliation(s)
- Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Amelia Mitchell
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zeping Wang
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
4
|
Toorchi Roudsari S, Sadjadi S. Iodine‐Functionalized Magnetic Reduced Graphene Oxide as an Efficient Nanocatalyst for Acetylation of Phenol, Alcohol, and Sugar Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Saeedeh Toorchi Roudsari
- Radiation Application Research School Nuclear Science and Technology Research Institute End of North Karegar Ave. Po. Box: 14399–51113 14155-1339 Tehran Iran
| | - Sodeh Sadjadi
- Radiation Application Research School Nuclear Science and Technology Research Institute End of North Karegar Ave. Po. Box: 14399–51113 14155-1339 Tehran Iran
| |
Collapse
|
5
|
Metal-free selective acylation reaction of aliphatic alcohols in neutral condition. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Bozzola T, Nilsson UJ, Ellervik U. Direct sialic acid 4-OAc substitution by nitrogen, sulfur and carbon nucleophiles with retention of stereochemistry. RSC Adv 2022; 12:11992-11995. [PMID: 35481106 PMCID: PMC9016497 DOI: 10.1039/d2ra01576e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
A direct one-step nucleophilic substitution of the 4-OAc of acetyl protected Neu5Ac is presented. Previously published methods for direct substitution of the 4-OAc are limited to cyclic secondary amines. Here we present conditions that allow for a much wider range of nitrogen nucleophiles as well as thiols and cyanide, to be used. The present investigation significantly broadens the scope of 4-aminations and allows for the introduction of a wide variety of different nucleophiles.
Collapse
Affiliation(s)
- Tiago Bozzola
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University P.O. Box 124 SE-221 00 Lund Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University P.O. Box 124 SE-221 00 Lund Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University P.O. Box 124 SE-221 00 Lund Sweden
| |
Collapse
|
7
|
Dalton E, Morris Z, Ayres N. Synthesis and characterization of sulfated-lactose polyurethane hydrogels. Polym Chem 2022. [DOI: 10.1039/d2py00227b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyurethanes (PUs) are widely used due to their durability, flexibility, and biocompatibility. PU hydrogels have been used in biomedical applications tissue engineering, synthetic extracellular matrices, and drug delivery. In this...
Collapse
|
8
|
Dinuclear Copper(I) Thiodiacetate Complex-Mediated Expeditious Synthesis of the Chlorine-Containing Cyclen-Cored 36-Glucose-Coated Glycodendrimer. J CHEM-NY 2021. [DOI: 10.1155/2021/4209514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-sugar-tethered glycodendrimers are a remarkable tool in glycobiology for the investigation of carbohydrate-protein interaction using its multivalency property. An enthralling double-stage convergent synthetic approach was selected to build a novel class of chlorine-containing glucose-coated dendrimers using an efficient click catalyst ‘dinuclear copper(I) thiodiacetate complex.’ In this context, cyclen core was developed through a divergent approach, while the glucodendron was developed via a convergent approach independently. Both azide-alkyne partners were coupled through a modular copper azide-alkyne cycloaddition (CuAAC) strategy to afford a high yield of the desired 36-glucose-coated glycodendrimer. The synthesized glycodendrimer has been elucidated by NMR, gel permeation chromatography (GPC), and IR spectral analysis.
Collapse
|
9
|
Agrahari AK, Jaiswal MK, Yadav MS, Tiwari VK. CuAAC mediated synthesis of cyclen cored glycodendrimers of high sugar tethers at low generation. Carbohydr Res 2021; 508:108403. [PMID: 34329845 DOI: 10.1016/j.carres.2021.108403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Glycodendrimers are receiving considerable attention to mimic a number of imperative features of cell surface glycoconjugate and acquired excellent relevance to a wide domain of investigations including medicine, pharmaceutics, catalysis, nanotechnology, carbohydrate-protein interaction, and moreover in drug delivery systems. Toward this end, an expeditious, modular, and regioselective triazole-forming CuAAC click approach along with double stage convergent synthetic method was chosen to develop a variety of novel chlorine-containing cyclen cored glycodendrimers of high sugar tethers at low generation of promising therapeutic potential. We developed a novel chlorine-containing hypercore unit with 12 alkynyl functionality originated from cyclen scaffold which was confirmed by its single crystal X-ray data analysis. Further, the modular CuAAC technique was utilized to produce a variety of novel 12-sugar coated (G0) glycodendrimers 12-15 adorn with β-Glc-, β-Man-, β-Gal-, β-Lac, along with 36-galactose coated (G1) glycodendrimer 18 in good-to-high yield. The structures of the developed glycodendrimer architectures have been well elucidated by extensive spectral analysis including NMR (1H & 13CNMR), HRMS, MALDI-TOF MS, UV-Vis, IR, and SEC (Size Exclusion Chromatogram) data.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Steber HB, Singh Y, Demchenko AV. Bismuth(iii) triflate as a novel and efficient activator for glycosyl halides. Org Biomol Chem 2021; 19:3220-3233. [PMID: 33885577 PMCID: PMC8112625 DOI: 10.1039/d1ob00093d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Presented herein is the discovery that bismuth(iii) trifluoromethanesulfonate (Bi(OTf)3) is an effective catalyst for the activation of glycosyl bromides and glycosyl chlorides. The key objective for the development of this methodology is to employ only one promoter in the lowest possible amount and to avoid using any additive/co-catalyst/acid scavenger except molecular sieves. Bi(OTf)3 works well in promoting the glycosidation of differentially protected glucosyl, galactosyl, and mannosyl halides with many classes of glycosyl acceptors. Most reactions complete within 1 h in the presence of only 35% of green and light-stable Bi(OTf)3 catalyst.
Collapse
Affiliation(s)
- Hayley B Steber
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | | | | |
Collapse
|
11
|
Gurawa A, Kumar M, Kashyap S. Me 3SI-promoted chemoselective deacetylation: a general and mild protocol. RSC Adv 2021; 11:19310-19315. [PMID: 35478635 PMCID: PMC9033574 DOI: 10.1039/d1ra03209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/16/2021] [Indexed: 11/21/2022] Open
Abstract
A catalytic and practical approach for the selective removal of acetyl groups using various substrates bearing orthogonal moieties has been demonstrated under ambient conditions.
Collapse
Affiliation(s)
- Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL)
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur, (MNIT)
- Jaipur-302017
- India
| | - Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL)
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur, (MNIT)
- Jaipur-302017
- India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL)
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur, (MNIT)
- Jaipur-302017
- India
| |
Collapse
|
12
|
An efficient synthetic route to O-(2-O-benzyl-3,4-di-O-acetyl-α/β-l-fucopyranosyl)-trichloroacetimidate. Carbohydr Res 2020; 499:108221. [PMID: 33358524 DOI: 10.1016/j.carres.2020.108221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022]
Abstract
An efficient synthetic route to prepare O-(2-O-benzyl-3,4-di-O-acetyl-α/β-l-fucopyranosyl)-trichloroacetimidate from l-fucose was developed by introducing the thiophenyl group at the anomeric center and the benzylidene functional group to protect the 3 and 4 positions. Although three approaches were considered, the best result was obtained when, after the 2-hydroxyl benzylation, both protective groups were simultaneously removed by using acetic anhydride and perchloric acid supported on silica as catalyst. Selective deacetylation of the obtained tri-O-acetate followed by the reaction of the resultant hemiacetal with trichloroacetonitrile and DBU afforded the trichloroacetimidate with an overall yield of 56% from the l-fucose.
Collapse
|
13
|
Solvent-Free Approaches in Carbohydrate Synthetic Chemistry: Role of Catalysis in Reactivity and Selectivity. Catalysts 2020. [DOI: 10.3390/catal10101142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Owing to their abundance in biomass and availability at a low cost, carbohydrates are very useful precursors for products of interest in a broad range of scientific applications. For example, they can be either converted into basic chemicals or used as chiral precursors for the synthesis of potentially bioactive molecules, even including nonsaccharide targets; in addition, there is also a broad interest toward the potential of synthetic sugar-containing structures in the field of functional materials. Synthetic elaboration of carbohydrates, in both the selective modification of functional groups and the assembly of oligomeric structures, is not trivial and often entails experimentally demanding approaches practiced by specialized groups. Over the last years, a large number of solvent-free synthetic methods have appeared in the literature, often being endowed with several advantages such as greenness, experimental simplicity, and a larger scope than analogous reactions in solution. Most of these methods are catalytically promoted, and the catalyst often plays a key role in the selectivity associated with the process. This review aims to describe the significant recent contributions in the solvent-free synthetic chemistry of carbohydrates, devoting a special critical focus on both the mechanistic role of the catalysts employed and the differences evidenced so far with corresponding methods in solution.
Collapse
|
14
|
Seifried BM, Qi W, Yang YJ, Mai DJ, Puryear WB, Runstadler JA, Chen G, Olsen BD. Glycoprotein Mimics with Tunable Functionalization through Global Amino Acid Substitution and Copper Click Chemistry. Bioconjug Chem 2020; 31:554-566. [PMID: 32078297 DOI: 10.1021/acs.bioconjchem.9b00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycoproteins and their mimics are challenging to produce because of their large number of polysaccharide side chains that form a densely grafted protein-polysaccharide brush architecture. Herein a new approach to protein bioconjugate synthesis is demonstrated that can approach the functionalization densities of natural glycoproteins through oligosaccharide grafting. Global amino acid substitution is used to replace the methionine residues in a methionine-enriched elastin-like polypeptide with homopropargylglycine (HPG); the substitution was found to replace 93% of the 41 methionines in the protein sequence as well as broaden and increase the thermoresponsive transition. A series of saccharides were conjugated to the recombinant protein backbones through copper(I)-catalyzed alkyne-azide cycloaddition to determine reactivity trends, with 83-100% glycosylation of HPGs. Only an acetyl-protected sialyllactose moiety showed a lower level of 42% HPG glycosylation that is attributed to steric hindrance. The recombinant glycoproteins reproduced the key biofunctional properties of their natural counterparts such as viral inhibition and lectin binding.
Collapse
Affiliation(s)
- Brian M Seifried
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenjing Qi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| |
Collapse
|
15
|
Abronina PI, Malysheva NN, Zinin AI, Kolotyrkina NG, Stepanova EV, Kononov LO. Catalyst-free regioselective acetylation of primary hydroxy groups in partially protected and unprotected thioglycosides with acetic acid. RSC Adv 2020; 10:36836-36842. [PMID: 35517942 PMCID: PMC9057154 DOI: 10.1039/d0ra07360a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Highly regioselective acetylation of primary hydroxy groups in thioglycoside derivatives with gluco- and galacto-configurations was achieved by treatment with aqueous or anhydrous acetic acid (60–100% AcOH) at elevated temperatures (80–118 °C), avoiding complex, costly and time-consuming manipulations with protective groups. Acetylation of both 4,6-O-benzylidene acetals and the corresponding diols as well as the unprotected tetraol with AcOH was shown to lead selectively to formation of 6-O-acetyl derivatives. For example, the treatment of phenyl 1-thio-β-d-glucopyranoside with anhydrous AcOH at 80 °C for 24 h gave the corresponding 6-O-acetylated derivative in 47% yield (71% based on the reacted starting material) and unreacted starting tetraol in 34% yield, which can easily be recovered by silica gel chromatography and reused in further acetylation. Highly regioselective acetylation of primary hydroxy groups in thioglycoside derivatives was achieved by treatment with aqueous or anhydrous acetic acid (60–100%) at elevated temperatures (80–118 °C), avoiding manipulations with protective groups.![]()
Collapse
Affiliation(s)
- Polina I. Abronina
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Nelly N. Malysheva
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Alexander I. Zinin
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Natalya G. Kolotyrkina
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Elena V. Stepanova
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences
| | - Leonid O. Kononov
- N. K. Kochetkov Laboratory of Carbohydrate Chemistry
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| |
Collapse
|
16
|
Kundu M, Misra AK. Selective acetolysis of primary benzyl groups in carbohydrate derivatives under the mild reaction condition. Carbohydr Res 2019; 486:107830. [PMID: 31627048 DOI: 10.1016/j.carres.2019.107830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 11/27/2022]
Abstract
Selective acetolysis of the primary benzyloxy groups in a wide variety of carbohydrate derivatives was achieved in excellent yield using acetic anhydride and perchloric acid supported over silica (HClO4-SiO2) as a solid acid catalyst in a fast reaction condition without using any organic solvent. The reaction condition is significantly rapid and can be scaled up for its use in the multi-step oligosaccharide synthesis.
Collapse
Affiliation(s)
- Monalisa Kundu
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India
| | - Anup Kumar Misra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata, 700054, India.
| |
Collapse
|
17
|
Baumann K, Kordić L, Močibob M, Šinko G, Tomić S. Synthesis and In Vitro Screening of Novel Heterocyclic β-d-Gluco- and β-d-Galactoconjugates as Butyrylcholinesterase Inhibitors. Molecules 2019; 24:molecules24152833. [PMID: 31382668 PMCID: PMC6695897 DOI: 10.3390/molecules24152833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/04/2022] Open
Abstract
The development of selective butyrylcholinesterase (BChE) inhibitors may improve the treatment of Alzheimer’s disease by increasing lower synaptic levels of the neurotransmitter acetylcholine, which is hydrolysed by acetylcholinesterase, as well as by overexpressed BChE. An increase in the synaptic levels of acetylcholine leads to normal cholinergic neurotransmission and improved cognitive functions. A series of 14 novel heterocyclic β-d-gluco- and β-d-galactoconjugates were designed and screened for inhibitory activity against BChE. In the kinetic studies, 4 out of 14 compounds showed an inhibitory effect towards BChE, with benzimidazolium and 1-benzylbenzimidazolium substituted β-d-gluco- and β-d-galacto-derivatives in a 10–50 micromolar range. The analysis performed by molecular modelling indicated key residues of the BChE active site, which contributed to a higher affinity toward the selected compounds. Sugar moiety in the inhibitor should enable better blood–brain barrier permeability, and thus increase bioavailability in the central nervous system of these compounds.
Collapse
Affiliation(s)
- Krešimir Baumann
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb, Croatia
| | - Lorena Kordić
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb, Croatia
| | - Marko Močibob
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb, Croatia
| | - Goran Šinko
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, P.O. Box 291, HR-10001 Zagreb, Croatia.
| | - Srđanka Tomić
- Department of Chemistry, Faculty of Science, University of Zagreb, HR-10001 Zagreb, Croatia
| |
Collapse
|
18
|
Zi CT, Yang L, Zhang BL, Li Y, Ding ZT, Jiang ZH, Hu JM, Zhou J. Synthesis and Cytotoxicities of Novel Podophyllotoxin Xyloside Derivatives. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19860668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Novel podophyllotoxin xyloside derivatives 8 to 11 were synthesized and evaluated for their cytotoxicities against a panel of 5 human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, SW480) using [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. These derivatives showed good to moderate activities, with compound 9 having an IC50 value of 4.42 μM against the A-549 cell line. Overall, compound 9 might be a promising candidate for further development.
Collapse
Affiliation(s)
- Cheng-Ting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Bang-Lei Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Zhong-Tao Ding
- Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay, Canada
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Jun Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, China
| |
Collapse
|
19
|
Wang T, Demchenko AV. Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies. Org Biomol Chem 2019; 17:4934-4950. [PMID: 31044205 DOI: 10.1039/c9ob00573k] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discussed herein is the synthesis of partially protected carbohydrates by manipulating only one type of a protecting group for a given substrate. The first focus of this review is the uniform protection of an unprotected starting material in a way that only one (or two) hydroxyl group remains unprotected. The second focus involves regioselective partial deprotection of uniformly protected compounds in a way that only one (or two) hydroxyl group becomes liberated.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| |
Collapse
|
20
|
Agrahari AK, Singh AS, Singh AK, Mishra N, Singh M, Prakash P, Tiwari VK. Click inspired synthesis of hexa and octadecavalent peripheral galactosylated glycodendrimers and their possible therapeutic applications. NEW J CHEM 2019. [DOI: 10.1039/c9nj02564b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click inspired glycodendrimers comprising a rigid hexapropargyloxy benzene core with peripheral β-d-galactopyranosidic units were developed and evaluated for their therapeutic potential.
Collapse
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Anoop S. Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Ashish Kumar Singh
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Nidhi Mishra
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Mala Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Pradyot Prakash
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vinod K. Tiwari
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
21
|
Biswas A, Kim S, Ferro Furtado R, Roberto Alves C, Buttrum M, Boddu V, Cheng HN. Metal chloride-catalyzed acetylation of starch: Synthesis and characterization. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2018. [DOI: 10.1080/1023666x.2018.1512465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Atanu Biswas
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Sanghoon Kim
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | | | | | - Megan Buttrum
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Veera Boddu
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - H. N. Cheng
- USDA Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| |
Collapse
|
22
|
Camara T, Bil A, Chagnault V. Metal-free oxidative esterification of benzylated monosaccharides. Carbohydr Res 2018; 462:45-49. [DOI: 10.1016/j.carres.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 11/30/2022]
|
23
|
Hafnium inspired activation of highly hindered anhydrides in the acylation of alcohols and polyols. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Pohlit H, Worm M, Langhanki J, Berger-Nicoletti E, Opatz T, Frey H. Silver Oxide Mediated Monotosylation of Poly(ethylene glycol) (PEG): Heterobifunctional PEG via Polymer Desymmetrization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hannah Pohlit
- Department
of Dermatology, University Medical Center Mainz, Langenbeckstr.
1, 55131 Mainz, Germany
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School
Materials Science in Mainz, Staudinger
Weg 9, 55128 Mainz, Germany
| | - Matthias Worm
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jens Langhanki
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Elena Berger-Nicoletti
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Till Opatz
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
25
|
Tyrtysh TV, Korchagina EY, Ryzhov IM, Bovin NV. Gram scale synthesis of A (type 2) and B (type 2) blood group tetrasaccharides through 1,6-anhydro-N-acetyl-β-D-glucosamine. Carbohydr Res 2017; 449:65-84. [DOI: 10.1016/j.carres.2017.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 11/26/2022]
|
26
|
Yan YL, Guo JR, Liang CF. Sequential Dy(OTf) 3 -Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates. Chem Asian J 2017; 12:2471-2479. [PMID: 28688169 DOI: 10.1002/asia.201700867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/04/2017] [Indexed: 11/06/2022]
Abstract
Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf)3 -catalyzed glycosylation.
Collapse
Affiliation(s)
- Yi-Ling Yan
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan
| | - Jiun-Rung Guo
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402, Taiwan
| |
Collapse
|
27
|
Staroń J, Dąbrowski JM, Cichoń E, Guzik M. Lactose esters: synthesis and biotechnological applications. Crit Rev Biotechnol 2017; 38:245-258. [PMID: 28585445 DOI: 10.1080/07388551.2017.1332571] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biodegradable nonionic sugar esters-based surfactants have been gaining more and more attention in recent years due to their chemical plasticity that enables the various applications of these molecules. In this review, various synthesis methods and biotechnological implications of lactose esters (LEs) uses are considered. Several chemical and enzymatic approaches are described for the synthesis of LEs, together with their applications, i.e. function in detergents formulation and as additives that not only stabilize food products but also protect food from undesired microbial contamination. Further, this article discusses medical applications of LEs in cancer treatment, especially their uses as biosensors, halogenated anticancer drugs, and photosensitizing agents for photodynamic therapy of cancer and photodynamic inactivation of microorganisms.
Collapse
Affiliation(s)
- Jakub Staroń
- a Institute of Pharmacology of the Polish Academy of Sciences , Kraków , Poland
| | | | - Ewelina Cichoń
- c Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , Kraków , Poland
| | - Maciej Guzik
- c Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , Kraków , Poland
| |
Collapse
|
28
|
Rapid synthesis of cellulose triacetate from cotton cellulose and its effect on specific surface area and particle size distribution. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0516-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
|
30
|
Sharma A, Giri SK, Kartha KPR, Sangwan RS. Value-additive utilization of agro-biomass: preparation of cellulose triacetate directly from rice straw as well as other cellulosic materials. RSC Adv 2017. [DOI: 10.1039/c7ra00078b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient environmentally benign single-step procedure for the preparation of cellulose triacetate from cellulosics, including rice straw agro-biomass, is described.
Collapse
Affiliation(s)
- Amita Sharma
- Center of Innovative and Applied Bioprocessing (CIAB)
- Mohali-160071
- India
| | - Santosh Kumar Giri
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | | | | |
Collapse
|
31
|
Giri SK, Gour R, Kartha KPR. Diazepinium perchlorate: a neutral catalyst for mild, solvent-free acetylation of carbohydrates and other substances. RSC Adv 2017. [DOI: 10.1039/c6ra28882k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diazepinium perchlorate-promoted acetylation of free as well as partially protected sugars, phenols, thiophenols, thiols, other alcohols and amines is described.
Collapse
Affiliation(s)
- Santosh Kumar Giri
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- SAS Nagar
- India
| | - Rajesh Gour
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- SAS Nagar
- India
| | | |
Collapse
|
32
|
Ondera TJ, Hamme AT. Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens. Analyst 2016; 140:7902-11. [PMID: 26469636 DOI: 10.1039/c5an00497g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A rapid, sensitive and quantitative immunoassay for the targeted detection and decontamination of E. coli based on Fe3O4 magnetic nanoparticles (MNPs) and plasmonic popcorn-shaped gold nanostructure attached single-walled carbon nanotubes (AuNP@SWCNT) is presented. The MNPs were synthesized as the support for a monoclonal antibody (mAb@MNP). E. coli (49979) was captured and rapidly preconcentrated from the sample with the mAb@MNP, followed by binding with Raman-tagged concanavalin A-AuNP@SWCNTs (Con A-AuNP@SWCNTs) as detector nanoprobes. A Raman tag 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) generated a Raman signal upon 670 nm laser excitation enabling the detection and quantification of E. coli concentration with a limit of detection of 10(2) CFU mL(-1) and a linear logarithmic response range of 1.0 × 10(2) to 1.0 × 10(7) CFU mL(-1). The mAb@MNP could remove more than 98% of E. coli (initial concentration of 1.3 × 10(4) CFU mL(-1)) from water. The potential of the immunoassay to detect E. coli bacteria in real water samples was investigated and the results were compared with the experimental results from the classical count method. There was no statistically significant difference between the two methods (p > 0.05). Furthermore, the MNP/AuNP@SWCNT hybrid system exhibits an enhanced photothermal killing effect. The sandwich-like immunoassay possesses potential for rapid bioanalysis and the simultaneous biosensing of multiple pathogenic agents.
Collapse
Affiliation(s)
- Thomas J Ondera
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA.
| | - Ashton T Hamme
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA.
| |
Collapse
|
33
|
Huang Y, Chai Q, Warmin MR, Ayres N. Lactose‐containing hydrogels for enzyme stabilization. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yongshun Huang
- Department of Chemistrythe University of CincinnatiP.O. Box 210172Cincinnati Ohio45221
| | - Qinyuan Chai
- Department of Chemistrythe University of CincinnatiP.O. Box 210172Cincinnati Ohio45221
| | - Mary R. Warmin
- Department of Chemistrythe University of CincinnatiP.O. Box 210172Cincinnati Ohio45221
| | - Neil Ayres
- Department of Chemistrythe University of CincinnatiP.O. Box 210172Cincinnati Ohio45221
| |
Collapse
|
34
|
Highly Efficient Cationic Palladium Catalyzed Acetylation of Alcohols and Carbohydrate-Derived Polyols. Catalysts 2016. [DOI: 10.3390/catal6020027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Han J, Gao X, Liu R, Yang J, Zhang M, Mi Y, Shi Y, Gao Q. Design, Synthesis of Novel Platinum(II) Glycoconjugates, and Evaluation of Their Antitumor Effects. Chem Biol Drug Des 2016; 87:867-77. [DOI: 10.1111/cbdd.12718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/13/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Jianbin Han
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology; Tianjin University; 92 Weijin Road Tianjin Nankai District 300072 China
| | - Xiangqian Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology; Tianjin University; 92 Weijin Road Tianjin Nankai District 300072 China
| | - Ran Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology; Tianjin University; 92 Weijin Road Tianjin Nankai District 300072 China
| | - Jinna Yang
- Department of Biochemistry; Gudui BioPharma Technology Inc.; 5 Lanyuan Road Huayuan Industrial Park Tianjin 300384 China
| | - Menghua Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology; Tianjin University; 92 Weijin Road Tianjin Nankai District 300072 China
| | - Yi Mi
- Central Institute of Pharmaceutical Research; CSPC Pharmaceutical Group; 226 Huanghe Road Shijiazhuang Hebei 050035 China
| | - Ying Shi
- Central Institute of Pharmaceutical Research; CSPC Pharmaceutical Group; 226 Huanghe Road Shijiazhuang Hebei 050035 China
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology; Tianjin University; 92 Weijin Road Tianjin Nankai District 300072 China
| |
Collapse
|
36
|
Mukherjee MM, Basu N, Chaudhury A, Ghosh R. Efficient one-pot per-O-acetylation–thioglycosidation of native sugars, 4,6-O-arylidenation and one-pot 4,6-O-benzylidenation–acetylation of S-/O-glycosides catalyzed by Mg(OTf)2. RSC Adv 2016. [DOI: 10.1039/c6ra23198e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sequential one-pot per-O-acetylation–S-/O-glycosidation under neat condition, regioselective 4,6-O-arylidenation and sequential one-pot benzylidenation–acetylation of Mg(OTf)2as non-hygroscopic, recyclable catalyst are reported.
Collapse
Affiliation(s)
| | - Nabamita Basu
- Department of Chemistry
- Jadavpur University
- Kolkata
- India
| | | | - Rina Ghosh
- Department of Chemistry
- Jadavpur University
- Kolkata
- India
| |
Collapse
|
37
|
Lin TW, Adak AK, Lin HJ, Das A, Hsiao WC, Kuan TC, Lin CC. Tetranuclear zinc cluster: a dual purpose catalyst for per-O-acetylation and de-O-acetylation of carbohydrates. RSC Adv 2016. [DOI: 10.1039/c6ra12050d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A tetranuclear Zn cluster-catalyzed per-O-acetylation and de-O-acetylation of carbohydrates has been reported.
Collapse
Affiliation(s)
- Ting-Wei Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-300
- Taiwan
| | - Avijit K. Adak
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-300
- Taiwan
| | - Hong-Jyune Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-300
- Taiwan
| | - Anindya Das
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-300
- Taiwan
| | - Wei-Chen Hsiao
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-300
- Taiwan
| | - Ting-Chun Kuan
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-300
- Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-300
- Taiwan
| |
Collapse
|
38
|
Synthesis and antitumor activity of novel per-butyrylated glycosides of podophyllotoxin and its derivatives. Bioorg Med Chem 2015; 23:1437-46. [PMID: 25744190 DOI: 10.1016/j.bmc.2015.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/31/2015] [Accepted: 02/11/2015] [Indexed: 11/22/2022]
Abstract
A series of perbutyrylated glycosides of podophyllotoxin and its derivatives were synthesized and evaluated for their antitumor activity in vitro. Most of them exhibit cytotoxic activity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, SW480) using MTT assays. Among the synthesized compounds, epipodophyllotoxin α-d-galactopyranoside 8b, epipodophyllotoxin α-d-arabinopyranoside 8e, and podophyllotoxin β-d-glucopyranoside 11a show the highest potency of anticancer activity with their IC50 values ranging from 0.14 to 1.69μM. Structure activity relationship analysis indicates that the type of glycosidic linkage, the configuration at C-4 of the podophyllotoxin scaffold, and the substitution at 4'-position (OH vs OCH3) can all have significant effect on the potency of their anticancer activity. Several compounds are more active than the control drugs Etoposide and Cisplatin, suggesting their potential as anticancer agents for further development.
Collapse
|
39
|
Xiong X, Yi C, Han Q, Shi L, Li S. I2/ionic liquid as a highly efficient catalyst for per-O-acetylation of sugar under microwave irradiation. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(14)60219-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Morotti AL, Lang KL, Carvalho I, Schenkel EP, Bernardes LS. Semi-Synthesis of new glycosidic triazole derivatives of dihydrocucurbitacin B. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Jardim GAM, Reis WJ, Ribeiro MF, Ottoni FM, Alves RJ, Silva TL, Goulart MOF, Braga AL, Menna-Barreto RFS, Salomão K, de Castro SL, da Silva Júnior EN. On the investigation of hybrid quinones: synthesis, electrochemical studies and evaluation of trypanocidal activity. RSC Adv 2015. [DOI: 10.1039/c5ra16213k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thirty-eight compounds were evaluated against T. cruzi and six were found to be more potent against trypomastigotes than benznidazole.
Collapse
Affiliation(s)
| | - Wallace J. Reis
- Institute of Exact Sciences
- Department of Chemistry
- UFMG
- Belo Horizonte
- Brazil
| | - Matheus F. Ribeiro
- Institute of Exact Sciences
- Department of Chemistry
- UFMG
- Belo Horizonte
- Brazil
| | | | | | | | | | | | | | - Kelly Salomão
- Laboratory of Cellular Biology
- IOC
- FIOCRUZ
- Rio de Janeiro
- Brazil
| | | | | |
Collapse
|
42
|
Giri SK, Kartha KPR. Acyl transfer reactions of carbohydrates, alcohols, phenols, thiols and thiophenols under green reaction conditions. RSC Adv 2015. [DOI: 10.1039/c4ra16916f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acyl transfer reactions of various carbohydrates, alcohols, phenols, thiols and thiophenols were achieved at room temperature in high yields and catalytic efficiency in the presence of methane sulfonic acid, a green organic acid, under solvent-free conditions over short time periods.
Collapse
Affiliation(s)
- Santosh Kumar Giri
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | | |
Collapse
|
43
|
Chatterjee D, Paul A, Rajkamal R, Yadav S. Cu(ClO4)2·6H2O catalyzed solvent free per-O-acetylation and sequential one-pot conversions of sugars to thioglycosides. RSC Adv 2015. [DOI: 10.1039/c5ra03461b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The solvent free per-O-acetylation of various reducing and non-reducing sugars has been carried out using stoichiometric amounts of acetic anhydride and copper(ii) perchlorate hexahydrate as the catalyst.
Collapse
Affiliation(s)
- Debnath Chatterjee
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Abhijit Paul
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Rajkamal Rajkamal
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| | - Somnath Yadav
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad-826004
- India
| |
Collapse
|
44
|
Huang Y, Shaw MA, Mullins ES, Kirley TL, Ayres N. Synthesis and anticoagulant activity of polyureas containing sulfated carbohydrates. Biomacromolecules 2014; 15:4455-66. [PMID: 25329742 PMCID: PMC4261991 DOI: 10.1021/bm501245v] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Polyurea-based synthetic glycopolymers
containing sulfated glucose,
mannose, glucosamine, or lactose as pendant groups have been synthesized
by step-growth polymerization of hexamethylene diisocyanate and corresponding
secondary diamines. The obtained polymers were characterized by gel
permeation chromatography, nuclear magnetic resonance spectroscopy,
and Fourier transform infrared spectroscopy. The nonsulfated polymers
showed similar results to the commercially available biomaterial polyurethane
TECOFLEX in a platelet adhesion assay. The average degree of sulfation
after reaction with SO3 was calculated from elemental analysis
and found to be between three and four −OSO3 groups
per saccharide. The blood-compatibility of the synthetic polymers
was measured using activated partial thromboplastin time, prothrombin
time, thrombin time, anti-IIa, and anti-Xa assays. Activated partial
thromboplastin time, prothrombin time, and thrombin time results indicated
that the mannose and lactose based polymers had the highest anticoagulant
activities among all the sulfated polymers. The mechanism of action
of the polymers appears to be mediated via an anti-IIa pathway rather
than an anti-Xa pathway.
Collapse
Affiliation(s)
- Yongshun Huang
- Department of Chemistry and ‡Materials Science and Engineering Program, The University of Cincinnati , Cincinnati, Ohio 45221, United States
| | | | | | | | | |
Collapse
|
45
|
Chmielewski MJ, Buhler E, Candau J, Lehn JM. Multivalency by Self-Assembly: Binding of Concanavalin A to Metallosupramolecular Architectures Decorated with Multiple Carbohydrate Groups. Chemistry 2014; 20:6960-77. [DOI: 10.1002/chem.201304511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 12/17/2022]
|
46
|
Prajapti SK, Nagarsenkar A, Babu BN. Tris(pentafluorophenyl)borane catalyzed acylation of alcohols, phenols, amines, and thiophenols under solvent-free condition. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Li BL, Zhang B, Zhang QH, Rong YW, Wan ZX, Wang W. Sulfonated carbon nanocage as a catalyst for the per-O-acetylation of carbohydrates. KINETICS AND CATALYSIS 2014. [DOI: 10.1134/s0023158414020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Percec V, Leowanawat P, Sun HJ, Kulikov O, Nusbaum CD, Tran TM, Bertin A, Wilson DA, Peterca M, Zhang S, Kamat NP, Vargo K, Moock D, Johnston ED, Hammer DA, Pochan DJ, Chen Y, Chabre YM, Shiao TC, Bergeron-Brlek M, André S, Roy R, Gabius HJ, Heiney PA. Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J Am Chem Soc 2013; 135:9055-77. [PMID: 23692629 DOI: 10.1021/ja403323y] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modular synthesis of 7 libraries containing 51 self-assembling amphiphilic Janus dendrimers with the monosaccharides D-mannose and D-galactose and the disaccharide D-lactose in their hydrophilic part is reported. These unprecedented sugar-containing dendrimers are named amphiphilic Janus glycodendrimers. Their self-assembly by simple injection of THF or ethanol solution into water or buffer and by hydration was analyzed by a combination of methods including dynamic light scattering, confocal microscopy, cryogenic transmission electron microscopy, Fourier transform analysis, and micropipet-aspiration experiments to assess mechanical properties. These libraries revealed a diversity of hard and soft assemblies, including unilamellar spherical, polygonal, and tubular vesicles denoted glycodendrimersomes, aggregates of Janus glycodendrimers and rodlike micelles named glycodendrimer aggregates and glycodendrimermicelles, cubosomes denoted glycodendrimercubosomes, and solid lamellae. These assemblies are stable over time in water and in buffer, exhibit narrow molecular-weight distribution, and display dimensions that are programmable by the concentration of the solution from which they are injected. This study elaborated the molecular principles leading to single-type soft glycodendrimersomes assembled from amphiphilic Janus glycodendrimers. The multivalency of glycodendrimersomes with different sizes and their ligand bioactivity were demonstrated by selective agglutination with a diversity of sugar-binding protein receptors such as the plant lectins concanavalin A and the highly toxic mistletoe Viscum album L. agglutinin, the bacterial lectin PA-IL from Pseudomonas aeruginosa, and, of special biomedical relevance, human adhesion/growth-regulatory galectin-3 and galectin-4. These results demonstrated the candidacy of glycodendrimersomes as new mimics of biological membranes with programmable glycan ligand presentations, as supramolecular lectin blockers, vaccines, and targeted delivery devices.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Giordano M, Iadonisi A, Pastore A. Regioselective Acetolysis of HighlyO-Benzylated Carbohydrates Promoted by Iodine or an Iodine/Silane Combined Reagent: Use of Isopropenyl Acetate as an Alternative to Acetic Anhydride. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Pinsetta FR, Kawano DF, de Carvalho MR, de Oliveira JAA, Corrado AP, Hyppolito MÂ, Carvalho I. Synthesis of neamine-based pseudodisaccharides as potential vestibulotoxic agents to treat vertigo in Ménière's disease. Carbohydr Res 2013; 373:97-102. [PMID: 23603190 DOI: 10.1016/j.carres.2013.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/29/2022]
Abstract
Ménière's disease (MD) is a progressive disease of the inner ear characterized by recurring attacks of disabling vertigo, hearing loss and tinnitus. Patients who do not respond to vestibular sedatives or steroids may require an intratympanic application of aminoglycoside antibiotics, which destroys the vestibular function of the affected ear in order to avoid the debilitating vertigo attacks. Although effective, this procedure causes hearing loss in almost one third of the patients due to the aminoglycosides cochlear toxicity. Here we describe the synthesis of two pseudodisaccharides structurally related to neamime aiming to mimic the aminoglycosides pharmacophore core by replacing their toxic amine by azide and hydroxyl groups. Products 1 and 2 selectively promoted 'in vivo' damage to vestibular tissues without causing hearing loss or cochlear toxicity. Therefore, these pseudodisaccharides stand as promising lead compounds for the development of a safer and more effective therapeutic procedure to manage the symptoms of MD severe dizziness.
Collapse
Affiliation(s)
- Flávio Roberto Pinsetta
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | | | | | | | | | | | | |
Collapse
|