Le Paih J, Dérien S, Demerseman B, Bruneau C, Dixneuf PH, Toupet L, Dazinger G, Kirchner K. Ruthenium-Catalyzed Synthesis of Alkylidenecyclobutenes via Head-to-Head Dimerization of Propargylic Alcohols and Cyclobutadiene-Ruthenium Intermediates.
Chemistry 2005;
11:1312-24. [PMID:
15643662 DOI:
10.1002/chem.200400899]
[Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The reaction of propargylic alcohols with carboxylic acid, or phenol derivatives, in the presence of the precatalyst [RuCl(cod)(C5Me5)] leads selectively to a variety of alkylidenecyclobutenes through head-to-head dimerization of propargylic alcohol. The first step is the formation of a cyclobutadiene-ruthenium intermediate resulting from the head-to-head coupling of two molecules of propargylic alcohol. On protonation with strong acids (HPF6, HBF4) dehydration of the cyclobutadiene complex leads to formation of an alkylidenecyclobutenyl-ruthenium complex. The X-ray structure of one such complex, [RuCl(C5Me5)(eta4-R'CCH--CH--C=CR2)] (R'=cyclohexen-1-yl, CR2 = cyclohexylidene) has been determined. Carboxylate is added at the less substituted carbon of the cyclic allylic ligand. DFT/B3 LYP calculations confirm that the intermediate arising from head-to-head coupling of alkyne to the RuClCp* species yields the cyclobutadiene-ruthenium complex more easily with propargylic alcohol than with acetylene.
Collapse