1
|
Tsukano C, Uchino A, Irie K. Synthesis and applications of symmetric amino acid derivatives. Org Biomol Chem 2024; 22:411-428. [PMID: 37877370 DOI: 10.1039/d3ob01379k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Symmetric α-amino acid derivatives can be used for the synthesis of intermolecularly linked peptides such as dimer-type peptides, and modified peptides in which two amino acids are intramolecularly linked. They are also synthetic intermediates for the total synthesis of natural products and functional molecules. These symmetric amino acid derivatives must be prepared based on organic synthesis. It is necessary to develop an optimal synthetic strategy for constructing the target symmetric amino acid derivative. In this review, we will introduce strategies for synthesizing symmetric amino acid derivatives. Additionally, selected applications of these amino acids in the life sciences will be described.
Collapse
Affiliation(s)
- Chihiro Tsukano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ayumi Uchino
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
2
|
Schoenmakers SMC, van den Bersselaar BWL, Dhiman S, Su L, Palmans ARA. Facilitating functionalization of benzene-1,3,5-tricarboxamides by switching amide connectivity. Org Biomol Chem 2021; 19:8281-8294. [PMID: 34518862 PMCID: PMC8494077 DOI: 10.1039/d1ob01587g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022]
Abstract
Synthetic water-compatible supramolecular polymers based on benzene-1,3,5-tricarboxamides (BTAs) have attracted a lot of interest in recent years, as they are uniquely suited to generate functional multicomponent biomaterials. Their morphologies and intrinsic dynamic behaviour mimic fibrous structures found in nature. Moreover, their modularity allows control of the density of functionalities presented on the surface of the fibres when using functionalized BTA monomers. However, such moieties generally comprise a functionality on only one of three side chains, resulting in lengthy synthetic protocols and limited yields. In this work, we avert the need for desymmetrization of the core by starting from commercially available 5-aminoisophthalic acid. This approach eliminates the statistical reactions and reduces the number of synthetic steps. It also leads to the inversion of the connectivity of one of the amides to the benzene core. By combining spectroscopy, light scattering and cryogenic transmission electron microscopy, we confirm that the inversed amide BTAs (iBTAs) form intermolecular hydrogen bonds and assemble into supramolecular polymers, like previously used symmetrical BTAs, albeit with a slight decrease in water solubility. Solubility problems were overcome by incorporating iBTAs into conventional BTA-based supramolecular polymers. These two-component mixtures formed supramolecular fibres with a morphology and dynamic behaviour similar to BTA-homopolymers. Finally, iBTAs were decorated with a fluorescent dye to demonstrate the synthesis of functional monomers, and to visualize their co-assembly with BTAs. Our results show that functionality can be introduced into supramolecular polymers with monomers that slightly differ in their core structure while maintaining the structure and dynamics of the fibres.
Collapse
Affiliation(s)
- Sandra M C Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Bart W L van den Bersselaar
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Shikha Dhiman
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Lu Su
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
3
|
Zhang J, Yuan Y, Li Y, Yang H, Zhang H, Chen S, Zhou X, Yang Z, Jiang ZX. Synthesis of Branched Monodisperse Oligoethylene Glycols and 19F MRI-Traceable Biomaterials through Reductive Dimerization of Azides. J Org Chem 2020; 85:6778-6787. [DOI: 10.1021/acs.joc.0c00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jing Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuan Yuan
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hao Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Huaibin Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Regiospecific synthesis by copper- and ruthenium-catalyzed azide–alkyne 1,3-dipolar cycloaddition, anticancer and anti-inflammatory activities of oleanolic acid triazole derivatives. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
5
|
Ursuegui S, Schneider JP, Imbs C, Lauvoisard F, Dudek M, Mosser M, Wagner A. Expedient synthesis of trifunctional oligoethyleneglycol-amine linkers and their use in the preparation of PEG-based branched platforms. Org Biomol Chem 2018; 16:8579-8584. [PMID: 30375605 DOI: 10.1039/c8ob02097c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We designed a convergent synthesis pathway that provides access to trifunctional oligoethyleneglycol-amine (OEG-amine) linkers. By applying the reductive coupling of a primary azide to bifunctional OEG-azide precursors, the corresponding symmetrical dialkylamine bearing two homo-functional end chain groups and a central nitrogen was obtained. These building blocks bear minimal structural perturbation compared to the native OEG backbone which makes them attractive for biomedical applications. The NMR investigations of the mechanism process reveal the formation of nitrile and imine intermediates which can react with the reduced free amine form. Additionally, these trifunctional OEG-amine linkers were employed in a coupling reaction to afford branched multifunctional PEG dendrons which are molecularly defined. These discrete PEG-based dendrons (n = 16, 18 and 36) could be useful for numerous applications where multivalency is required.
Collapse
Affiliation(s)
- Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Kushwaha D, Xu P, Kováč P. Carbohydrates as potentially versatile core subcarriers for multivalent immunogens. RSC Adv 2017; 7:7591-7603. [PMID: 28944050 PMCID: PMC5607872 DOI: 10.1039/c6ra27181b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthetic multivalent glycoclusters that carry carbohydrate antigen epitopes have been recognized as promising candidates for the development of carbohydrate based vaccines. Here we describe a convergent strategy for the synthesis of conjugation-ready multivalent glycoclusters using sugars as versatile core subcarriers. d-Glucose and gentiobiose were converted into poly-alkyne functionalized cores which were then decorated with an azide bearing model ligand d-glucose using click chemistry, to form structurally well-defined tetra- and heptavalent glycoclusters. Each cluster was conjugated to a model protein bovine serum albumin (BSA) by squaric acid chemistry. Carbohydrate clusters can be prepared in a variety of sizes and spatial arrangements by altering the structure and configuration of the core, depending on the mono-, or oligosaccharides used for their assembly. It is suggested that the use of carbohydrate as core subcarriers provides an opportunity to tailor the size and topology of antigens and modify multivalent presentation of immunogens in a way to optimize cluster effect for stronger immunoreactivity.
Collapse
Affiliation(s)
- Divya Kushwaha
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815 (U.S.A.)
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815 (U.S.A.)
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815 (U.S.A.)
| |
Collapse
|
7
|
Chouaïb K, Delemasure S, Dutartre P, Jannet HB. Microwave-assisted synthesis, anti-inflammatory and anti-proliferative activities of new maslinic acid derivatives bearing 1,5- and 1,4-disubstituted triazoles. J Enzyme Inhib Med Chem 2016; 31:130-147. [DOI: 10.1080/14756366.2016.1193733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Karim Chouaïb
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité. Equipe: Chimie Médicinale et Produits Naturels, Département de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’Environnement, Monastir, Tunisie and
| | | | - Patrick Dutartre
- COHIRO Biotechnology, Facultés de Médecine et Pharmacie, Dijon, France
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité. Equipe: Chimie Médicinale et Produits Naturels, Département de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’Environnement, Monastir, Tunisie and
| |
Collapse
|
8
|
Rygielska-Tokarska D, Andrei G, Schols D, Snoeck R, Głowacka IE. Synthesis, antiviral, cytotoxic and cytostatic evaluation of N 1-(phosphonoalkyl)uracil derivatives. MONATSHEFTE FUR CHEMIE 2016; 147:1081-1090. [PMID: 32214481 PMCID: PMC7087680 DOI: 10.1007/s00706-016-1701-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/09/2016] [Indexed: 11/20/2022]
Abstract
Abstract A series of N1-(phosphonoalkyl)uracils was prepared in a two-step reaction sequence from ω-aminoalkylphosphonates and (E)-3-ethoxyacryloyl isocyanate followed by the uracil ring closure. Under standard conditions (NCS; NBS; I2/CAN) all N1-(phosphonoalkyl)uracils were transformed into the respective 5-halogeno derivatives to be later benzoylated at N3. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses. One compound was slightly active against human cytomegalovirus in HEL cell cultures (EC50 = 45 μM) while another showed weak activity against varicella-zoster virus (TK+ VZV strain OKA and TK− VZV strain 07-1) with EC50 = 43 and 53 µM, respectively. In addition, several compounds exhibited noticeable inhibitory effects on the proliferation of human cervical carcinoma cells (HeLa) at a concentration lower than 200 μM. Graphical abstract ![]()
Collapse
Affiliation(s)
- Dorota Rygielska-Tokarska
- 1Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Graciela Andrei
- 2Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Louvain, Belgium
| | - Dominique Schols
- 2Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Louvain, Belgium
| | - Robert Snoeck
- 2Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Louvain, Belgium
| | - Iwona E Głowacka
- 1Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
9
|
Zhu H, Coleman DM, Dehen CJ, Geisler IM, Zemlyanov D, Chmielewski J, Simpson GJ, Wei A. Assembly of dithiocarbamate-anchored monolayers on gold surfaces in aqueous solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8660-8666. [PMID: 18616309 PMCID: PMC2585038 DOI: 10.1021/la801254b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dithiocarbamates (DTCs) can be formed by the in situ condensation of polar alkylamines with CS 2, and assembled into dithiocarbamate-anchored monolayers (DAMs) on Au substrates in aqueous solutions. Primary and secondary amines can both be used to prepare DTCs, but have significant differences in their reactivities and product stabilities. Ultraviolet absorption spectroscopy provides a convenient method for monitoring in situ DTC formation as well as the formation of potential byproducts. The kinetics of DAM assembly on Au substrates as measured by second harmonic generation (SHG) indicated first-order rate processes and saturation coverages similar to those of alkanethiols on Au. However, the rate of adsorption did not change with DTC concentration in a manner expected of Langmuir kinetics, and is attributed to the competitive adsorption of alkylammonium counterions to the freshly oxidized Au substrate. These analyses establish a practical range of conditions for preparing DAMs from polar amines using in situ DTC formation.
Collapse
|
10
|
|
11
|
Amantini D, Fringuelli F, Pizza F, Vaccaro L. SELECTED METHODS FOR THE REDUCTION OF THE AZIDO GROUP. ORG PREP PROCED INT 2002. [DOI: 10.1080/00304940209355751] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|