1
|
Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Jin L, Liu Y, Zhang Y, He N. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B 2023; 11:1609-1627. [PMID: 36744587 DOI: 10.1039/d2tb02579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aptamers, a class of oligonucleotides that can bind with molecular targets with high affinity and specificity, have been widely applied in research fields including biosensing, imaging, diagnosing, and therapy of diseases. However, compared with the rapid development in the research fields, the clinical application of aptamers is progressing at a much slower speed, especially in the therapy of cancer. Obstructions including nuclease degradation, renal clearance, a complex selection process, and potential side effects have inhibited the clinical transformation of aptamer-conjugated drugs. To overcome these problems, taking certain measures to improve the biocompatibility and stability of aptamer-conjugated drugs in vivo is necessary. In this review, the obstructions mentioned above are thoroughly discussed and the methods to overcome these problems are introduced in detail. Furthermore, landmark research works and the most recent studies on aptamer-conjugated drugs for cancer therapy are also listed as examples, and the future directions of research for aptamer clinical transformation are discussed.
Collapse
Affiliation(s)
- Baijiang Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhukang Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yuan Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanying Zhang
- Department of Molecular Biology, Jiangsu Cancer Hospital, Nanjing 210009, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China. .,Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
2
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
3
|
Abstract
Aptamers and second generation analogs, such as X-Aptamers (XAs), SOMAmers, locked nucleic acids (LNAs), and others are increasingly being used for molecular pathway targeting, biomarker discovery, or disease diagnosis by interacting with protein targets on the surface of cells or in solution. Such targeting is being used for imaging, diagnostic evaluation, interference of protein function, or delivery of therapeutic agents. Selection of aptamers using the original SELEX method is cumbersome and time-consuming, often requiring 10-15 rounds of selection, and provides aptamers with a limited number of functional groups, namely four bases of DNA or RNA, although newer SELEX methods have increased this diversity. In contrast, X-Aptamers provide an unlimited number of functional groups and thus are superior targeting agents. Here, we discuss the X-Aptamer selection process.
Collapse
|
4
|
Yang X, Dinuka Abeydeera N, Liu FW, Egli M. Origins of the enhanced affinity of RNA-protein interactions triggered by RNA phosphorodithioate backbone modification. Chem Commun (Camb) 2017; 53:10508-10511. [PMID: 28868553 PMCID: PMC5608642 DOI: 10.1039/c7cc05722a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The well-characterized interaction between the MS2 coat protein and its cognate RNA hairpin was used to evaluate changes in affinity as a result of phosphorodithioate (PS2) replacing phosphate by biolayer interferometry (BLI). A structure-based analysis of the data provides insights into the origins of the enhanced affinity of RNA-protein interactions triggered by the PS2 moiety.
Collapse
Affiliation(s)
- Xianbin Yang
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA.
| | | | | | | |
Collapse
|
5
|
Volk DE, Lokesh GLR. Development of Phosphorothioate DNA and DNA Thioaptamers. Biomedicines 2017; 5:E41. [PMID: 28703779 PMCID: PMC5618299 DOI: 10.3390/biomedicines5030041] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers are short RNA- or DNA-based affinity reagents typically selected from combinatorial libraries to bind to a specific target such as a protein, a small molecule, whole cells or even animals. Aptamers have utility in the development of diagnostic, imaging and therapeutic applications due to their size, physico-chemical nature and ease of synthesis and modification to suit the application. A variety of oligonucleotide modifications have been used to enhance the stability of aptamers from nuclease degradation in vivo. The non-bridging oxygen atoms of the phosphodiester backbones of RNA and DNA aptamers can be substituted with one or two sulfur atoms, resulting in thioaptamers with phosphorothioate or phosphorodithioate linkages, respectively. Such thioaptamers are known to have increased binding affinity towards their target, as well as enhanced resistance to nuclease degradation. In this review, we discuss the development of phosphorothioate chemistry and thioaptamers, with a brief review of selection methods.
Collapse
Affiliation(s)
- David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl 2014; 6:563-73. [PMID: 23090891 DOI: 10.1002/prca.201200042] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 01/06/2023]
Abstract
Antibodies have been extensively used as capture and detection reagents in diagnostic applications of proteomics-based technologies. Proteomic assays need high sensitivity and specificity, a wide dynamic range for detection, and accurate, reproducible quantification with small confidence values. However, several inherent limitations of monoclonal antibodies in meeting the emerging challenges of proteomics led to the development of a new class of oligonucleotide-based reagents. Natural and derivatized nucleic acid aptamers are emerging as promising alternatives to monoclonal antibodies. Aptamers can be effectively used to simultaneously detect thousands of proteins in multiplex discovery platforms, where antibodies often fail due to cross-reactivity problems. Through chemical modification, vast range of additional functional groups can be added at any desired position in the oligonucleotide sequence, therefore the best features of small molecule drugs, proteins, and antibodies can be brought together into aptamers, making aptamers the most versatile reagent in proteomics. In this review, we discuss the recent developments in aptamer technology, including new selection methods and the aptamers' application in proteomics.
Collapse
Affiliation(s)
- Varatharasa Thiviyanathan
- Centers for Proteomics & Systems Biology, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | |
Collapse
|
7
|
Somasunderam A, Thiviyanathan V, Tanaka T, Li X, Neerathilingam M, Lokesh GLR, Mann A, Peng Y, Ferrari M, Klostergaard J, Gorenstein DG. Combinatorial selection of DNA thioaptamers targeted to the HA binding domain of human CD44. Biochemistry 2010; 49:9106-12. [PMID: 20843027 DOI: 10.1021/bi1009503] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD44, the primary receptor for hyaluronic acid, plays an important role in tumor growth and metastasis. CD44-hyaluronic acid interactions can be exploited for targeted delivery of anticancer agents specifically to cancer cells. Although various splicing variants of CD44 are expressed on the plasma membrane of cancer cells, the hyaluronic acid binding domain (HABD) is highly conserved among the CD44 splicing variants. Using a novel two-step process, we have identified monothiophosphate-modified aptamers (thioaptamers) that specifically bind to the CD44's HABD with high affinities. Binding affinities of the selected thioaptamers for the HABD were in the range of 180-295 nM, an affinity significantly higher than that of hyaluronic acid (K(d) above the micromolar range). The selected thioaptamers bound to CD44 positive human ovarian cancer cell lines (SKOV3, IGROV, and A2780) but failed to bind the CD44 negative NIH3T3 cell line. Our results indicated that thio substitution at specific positions of the DNA phosphate backbone results in specific and high-affinity binding of thioaptamers to CD44. The selected thioaptamers will be of great interest for further development as a targeting or imaging agent for the delivery of therapeutic payloads for cancer tissues.
Collapse
Affiliation(s)
- Anoma Somasunderam
- Institute of Molecular Medicine, University of Texas Health ScienceCenter, Houston, Texas 77030, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li P, Sergueeva ZA, Dobrikov M, Shaw BR. Nucleoside and Oligonucleoside Boranophosphates: Chemistry and Properties. Chem Rev 2007; 107:4746-96. [DOI: 10.1021/cr050009p] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ping Li
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Zinaida A. Sergueeva
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Mikhail Dobrikov
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Barbara Ramsay Shaw
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| |
Collapse
|
9
|
Thiviyanathan V, Somasunderam AD, Gorenstein DG. Combinatorial selection and delivery of thioaptamers. Biochem Soc Trans 2007; 35:50-2. [PMID: 17233599 DOI: 10.1042/bst0350050] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oligonucleotide-based agents are emerging as potential therapeutic agents that can be attractive alternatives for the small-molecule chemical drugs. Monothiophosphate-backbone-modified DNA aptamers (thioaptamers) that specifically and tightly bind to the RNase H domain of the HIV RT (reverse transcriptase) have been isolated from nucleic acid libraries using combinatorial selection methods. The selected thioaptamer inhibited RNase H activity of the HIV RT in in vitro studies. In cell cultures, the transfected thioaptamer markedly reduced HIV production in a dose-dependent manner. Gel electrophoretic mobility-shift assays and NMR spectroscopy showed that the selected thioaptamer binds to the isolated RNase H domain, but did not bind to a structurally similar RNase H from Escherichia coli. In cell cultures, the transfected thioaptamer showed a dose-dependent inhibition of HIV replication, with a maximal inhibition of 83%. Using various liposome-delivery agents, the DNA thioaptamer was transfected into HIV-infected astrocytoma adherent cells with greater than 70% efficiency.
Collapse
Affiliation(s)
- V Thiviyanathan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1157, USA.
| | | | | |
Collapse
|
10
|
Ferguson MR, Rojo DR, Somasunderam A, Thiviyanathan V, Ridley BD, Yang X, Gorenstein DG. Delivery of double-stranded DNA thioaptamers into HIV-1 infected cells for antiviral activity. Biochem Biophys Res Commun 2006; 344:792-7. [PMID: 16631118 DOI: 10.1016/j.bbrc.2006.03.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 03/28/2006] [Indexed: 11/24/2022]
Abstract
Oligonucleotide agents (ODN) are emerging as attractive alternatives to chemical drugs. However, the clinical use of ODNs as therapeutics has been hindered by their susceptibility to degradation by cellular enzymes and their limited ability to penetrate intact cells. We have used various liposome-mediated transfection agents, for the in vitro delivery of DNA thioaptamers into U373-MAGI-CCR5 cells. Our lead thioaptamer, R12-2, targets the RNase H domain of the HIV-1 reverse transcriptase (RT) and inhibits viral infection in U373-MAGI-CCR5 cells. R12-2, a 62-base-pair, double-stranded DNA molecule with a monothio-phosphate modified backbone, was selected through a novel combinatorial selection method. We studied the use of oligofectamine (OF), TFX-20, Transmessenger (TM), and Gene Jammer (GJ) for transfection of the thio-modified DNA aptamers. OF-transfected U373-MAGI-CCR5 cells resulted in 68% inhibition of HIV infection in the treated cells compared to the untreated control. Inhibition was observed in a dose-dependent manner with maximal inhibition of 83%. In this report, we demonstrate that monothioate-modified DNA duplex oligonucleotides can be efficiently delivered into cells by liposome-based transfection agents to inhibit HIV replication.
Collapse
Affiliation(s)
- Monique R Ferguson
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Li P, Xu Z, Liu H, Wennefors CK, Dobrikov MI, Ludwig J, Shaw BR. Synthesis of alpha-P-modified nucleoside diphosphates with ethylenediamine. J Am Chem Soc 2006; 127:16782-3. [PMID: 16316213 DOI: 10.1021/ja055179y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This report describes a one-pot synthesis of alpha-P-borano-, alpha-P-thio-, and alpha-P-seleno-modified nucleoside diphosphate analogues that are otherwise difficult to obtain. The key step involves the intramolecular nucleophilic attack by an amino group in 5 to remove the gamma-phosphate. The absolute configurations of P-diastereomers were confirmed by analysis of their 1H NMR. Affinity studies revealed that the nucleoside boranodiphosphates are potentially useful in antiviral research.
Collapse
Affiliation(s)
- Ping Li
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Kang J, Lee MS, Watowich SJ, Gorenstein DG. Chemiluminescence-based electrophoretic mobility shift assay of RNA-protein interactions: application to binding of viral capsid proteins to RNA. J Virol Methods 2005; 131:155-9. [PMID: 16182384 DOI: 10.1016/j.jviromet.2005.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
A chemiluminescence electrophoretic mobility shift assay was introduced for the study of RNA-protein interactions that include association of genomic RNA and viral capsid proteins. Binding of the capsid protein of Venezuelan equine encephalitis virus (VEEV) to several types of RNA was used as a model system to test the application of the method. The effects of RNA secondary structures and the significance of electrostatic interaction on binding were identified. This method may have wide application to the study of RNA-protein interactions.
Collapse
Affiliation(s)
- Jonghoon Kang
- Sealy Center for Structural Biology and Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
13
|
Da Costa CP, Okruszek A, Sigel H. Complex formation of divalent metal ions with uridine 5'-O-thiomonophosphate or methyl thiophosphate: comparison of complex stabilities with those of the parent phosphate ligands. Chembiochem 2003; 4:593-602. [PMID: 12851928 DOI: 10.1002/cbic.200200551] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The stability constants of the 1:1 complexes formed in aqueous solution between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Zn2+, or Cd2+ (M2+) and methyl thiophosphate (MeOPS(2-)) or uridine 5'-O-thiomonophosphate (UMPS(2-)) (PS(2-)=MeOPS(2-) or UMPS(2-)) have been determined (potentiometric pH titrations; 25 degrees C; I = 0.1 M, NaNO(3)). Comparison of these results for M(PS) complexes with those known for the parent M(PO) phosphate species, where PO(2-)=CH(3)OPO(2-)(3) or UMP(2-) (uridine 5'-monophosphate), shows that the alkaline earth metal ions, as well as Mn2+, Co2+, and Ni2+ have a higher affinity for phosphate groups than for their thio analogues. However, based on the linear log K(M)(M(R-PO3)) versus pK(H)(H(R-PO3)) relationships (R-PO(2-)(3) simple phosphate monoester or phosphonate ligands with a non-interacting residue R) it becomes clear that the indicated observation is only the result of the lower basicity of the thiophosphate residue. In contrast, the thio complexes of Zn2+ and Cd2+ are more stable than their parent phosphate ones, and this despite the lower basicity of the PS(2-) ligands. This stability increase is identical for M(MeOPS) and M(UMPS) species and amounts to about 0.6 and 2.4 log units for Zn(PS) and Cd(PS), respectively. Since no other binding site is available in MeOPS(2-), this enhanced stability has to be attributed to the S atom. Indeed, from the mentioned stability differences it follows that Cd2+ in Cd(PS) is coordinated by more than 99% to the thiophosphate S atom; the same value holds for Pb(PS), which was studied earlier. The formation degree of the Sbonded isomer amounts to 76+/-6 % for Zn(PS) and is close to zero for the corresponding Mg2+, Ca2+, and Mn2+ species. It is further shown that Zn(MeOPS)(aq)(2+) releases a proton from a coordinated water molecule with pK(a) approximately 6.9; i.e., this deprotonation occurs at a lower pH value than that for the same reaction in Zn(aq)(2+). Since Mg2+, Ca2+, Mn2+, and Cd2+ have a relatively low tendency for hydroxo complex formation, it was possible, for these M2+, to also quantify the stability of the binuclear complexes, M(2)(UMPS-H)+, where one M2+ is thiophosphate-coordinated and the other is coordinated at (N3)(-) of the uracil residue. The impact of the results presented herein regarding M2+/nucleic acid interactions, including those of ribozymes (rescue experiments), is briefly discussed.
Collapse
Affiliation(s)
- Carla P Da Costa
- Departement Chemie Anorganische Chemie, Universität Basel Spitalstrasse 51, 4056 Basel, Switzerland
| | | | | |
Collapse
|
14
|
Volk DE, Yang X, Fennewald SM, King DJ, Bassett SE, Venkitachalam S, Herzog N, Luxon BA, Gorenstein DG. Solution structure and design of dithiophosphate backbone aptamers targeting transcription factor NF-kappaB. Bioorg Chem 2002; 30:396-419. [PMID: 12642125 DOI: 10.1016/s0045-2068(02)00510-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A variety of monothio- and dithiosubstituted duplex aptamers targeting NF-kappaB have been synthesized and designed. The specificity and affinity of the dithioate aptamers of p50 and RelA(p65) NF-kappaB homodimers was determined by gel shift experiments. The NMR solution structures for several unmodified and dithioate backbone modified 14-base paired duplex aptamers have been determined by a hybrid, complete matrix (MORASS)/restrained molecular dynamics method. Structural perturbations of the dithioate substitutions support our hypothesis that the dithioate binds cations less tightly than phosphoryl groups. This increases the electrostatic repulsion across the B-form narrow minor groove and enlarges the minor groove, similar to that found in A-form duplexes. Structural analysis of modeled aptamer complexes with NF-kappaB homo- and heterodimers suggests that the dithioate backbone substitution can increase the aptamer's relative affinity to basic groups in proteins such as NF-kappaB by helping to "strip" the cations from the aptamer backbone.
Collapse
Affiliation(s)
- David E Volk
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|