1
|
Roy N, Das R, Paira R, Paira P. Different routes for the construction of biologically active diversely functionalized bicyclo[3.3.1]nonanes: an exploration of new perspectives for anticancer chemotherapeutics. RSC Adv 2023; 13:22389-22480. [PMID: 37501776 PMCID: PMC10369265 DOI: 10.1039/d3ra02003g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 07/29/2023] Open
Abstract
Cancer is the second most high-morbidity disease throughout the world. From ancient days, natural products have been known to possess several biological activities, and research on natural products is one of the most enticing areas where scientists are engrossed in the extraction of valuable compounds from various plants to isolate many life-saving medicines, along with their other applications. It has been noticed that the bicyclo[3.3.1]nonane moiety is predominant in most biologically active natural products owing to its exceptional characteristics compared to others. Many derivatives of bicyclo[3.3.1]nonane are attractive to researchers for use in asymmetric catalysis or as potent anticancer entities along with their successful applications as ion receptors, metallocycles, and molecular tweezers. Therefore, this review article discusses several miscellaneous synthetic routes for the construction of bicyclo[3.3.1]nonanes and their heteroanalogues in association with the delineation of their anticancer activities with few selective compounds.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Rishav Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Rupankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
- Department of Chemistry, Maharaja Manindra Chandra College 20 Ramkanto Bose Street Kolkata 700 003 India
| |
Collapse
|
2
|
Cuesta-Rubio O, Monzote L, Fernández-Acosta R, Pardo-Andreu GL, Rastrelli L. A review of nemorosone: Chemistry and biological properties. PHYTOCHEMISTRY 2023; 210:113674. [PMID: 37044362 DOI: 10.1016/j.phytochem.2023.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Nemorosone is a bicyclic polyprenylated acylphloroglucinol derivative originally isolated from Clusia spp. and it can be obtained through chemical synthesis employing different synthetic strategies. Since its discovery, it has attracted great attention both from a biological and chemical viewpoint. In the present article, we attempted to review various chemical and biological topics around nemorosone, with an emphasis on its antiproliferative activities. For this purpose, relevant data was collected from different scientific databases including Google Scholar, PubMed, Scopus and ISI Web of Knowledge. This natural compound has shown activity against several types of malignancies such as leukemia, human colorectal, pancreatic, and breast cancer because it modulates multiple molecular pathways. Nemorosone has both cytostatic and cytotoxic activity and it also seems to induce apoptosis and ferroptosis. Additionally, it has antimicrobial capabilities against Gram-positive bacteria and parasites belonging to genus Leishmania. Its promising antiproliferative pre-clinical effects deserve further attention for anticancer and anti-parasitic drug development and translation to the clinic.
Collapse
Affiliation(s)
- Osmany Cuesta-Rubio
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de la Salud, Ave. Panamericana km 5½, 070101, Machala, Ecuador.
| | - Lianet Monzote
- Departamento de Parasitología, Instituto de Medicina Tropical Pedro Kourí, Autopista Novia del Mediodía Km 6 1/2, 11400, La Habana, Cuba.
| | - Roberto Fernández-Acosta
- Department of Pharmacy, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 St. # 2317, La Coronela, 13600, Havana, Cuba.
| | - Gilberto Lázaro Pardo-Andreu
- Center for Research and Biological Evaluation, Institute of Pharmaceutical and Food Sciences, University of Havana, 222 St. # 2317, 13600, Havana, Cuba.
| | - Luca Rastrelli
- Universitá degli Studi di Salerno, Dipartimento di Farmacia, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| |
Collapse
|
3
|
Ji Y, Hong B, Franzoni I, Wang M, Guan W, Jia H, Li H. Enantioselective Total Synthesis of Hyperforin and Pyrohyperforin. Angew Chem Int Ed Engl 2022; 61:e202116136. [DOI: 10.1002/anie.202116136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Ivan Franzoni
- NuChem Sciences Inc. 2350 rue Cohen Suite 201 Saint-Laurent Quebec H4R 2N6 Canada
| | - Mengyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Weiqiang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- State Key Laboratory of Medicinal Chemical Biology Nankai University 38 Tongyan Rd Tianjin 300350 China
| |
Collapse
|
4
|
Ji Y, Hong B, Franzoni I, Wang M, Guan W, Jia H, Li H. Enantioselective Total Synthesis of Hyperforin and Pyrohyperforin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Ivan Franzoni
- NuChem Sciences Inc. 2350 rue Cohen Suite 201 Saint-Laurent Quebec H4R 2N6 Canada
| | - Mengyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Weiqiang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- State Key Laboratory of Medicinal Chemical Biology Nankai University 38 Tongyan Rd Tianjin 300350 China
| |
Collapse
|
5
|
Wang X, Phang YL, Zheng C, Xu H. Studies toward the Total Synthesis of Xanthochymol. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Rizzo P, Altschmied L, Ravindran BM, Rutten T, D’Auria JC. The Biochemical and Genetic Basis for the Biosynthesis of Bioactive Compounds in Hypericum Perforatum L., One of the Largest Medicinal Crops in Europe. Genes (Basel) 2020; 11:E1210. [PMID: 33081197 PMCID: PMC7602838 DOI: 10.3390/genes11101210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
Hypericum perforatum L. commonly known as Saint John's Wort (SJW), is an important medicinal plant that has been used for more than 2000 years. Although H. perforatum produces several bioactive compounds, its importance is mainly linked to two molecules highly relevant for the pharmaceutical industry: the prenylated phloroglucinol hyperforin and the naphtodianthrone hypericin. The first functions as a natural antidepressant while the second is regarded as a powerful anticancer drug and as a useful compound for the treatment of Alzheimer's disease. While the antidepressant activity of SJW extracts motivate a multi-billion dollar industry around the world, the scientific interest centers around the biosynthetic pathways of hyperforin and hypericin and their medical applications. Here, we focus on what is known about these processes and evaluate the possibilities of combining state of the art omics, genome editing, and synthetic biology to unlock applications that would be of great value for the pharmaceutical and medical industries.
Collapse
Affiliation(s)
| | | | | | | | - John C. D’Auria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (P.R.); (L.A.); (B.M.R.); (T.R.)
| |
Collapse
|
7
|
Dyachenko VD, Sukach SM, Morkovnik AS. 2-Acylcycloalkanones in Organic Synthesis. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020060019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gao W, Hu JW, Hou WZ, Xu F, Zhao J, Xu F, Sun H, Xing JG, Peng Y, Wang XL, Ji TF, Li L, Gu ZY. Four new prenylated phloroglucinol derivatives from Hypericum scabrum. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Affiliation(s)
- Chi P. Ting
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Uetake Y, Uwamori M, Nakada M. Enantioselective Approach to Polycyclic Polyprenylated Acylphloroglucinols via Catalytic Asymmetric Intramolecular Cyclopropanation. J Org Chem 2015; 80:1735-45. [DOI: 10.1021/jo5026699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuta Uetake
- Department
of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahiro Uwamori
- Department
of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahisa Nakada
- Department
of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
11
|
Leonova MV, Baimuratov MR, Golovin EV, Klimochkin YN. Reaction of adamantane series olefins with N-bromosuccinimide. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1070428014020079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Richard JA. Chemistry and Biology of the Polycyclic Polyprenylated Acylphloroglucinol Hyperforin. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300815] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Vidali VP, Mitsopoulou KP, Dakanali M, Demadis KD, Odysseos AD, Christou YA, Couladouros EA. An Unusual Michael-Induced Skeletal Rearrangement of a Bicyclo[3.3.1]nonane Framework of Phloroglucinols to a Novel Bioactive Bicyclo[3.3.0]octane. Org Lett 2013; 15:5404-7. [DOI: 10.1021/ol4020909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Veroniki P. Vidali
- Synthesis and Bioorganic Chemistry, NCSR “Demokritos”, 153 10 Ag. Paraskevi, Athens, Greece, Chemical Laboratories, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece, Crystal Engineering, Growth & Design Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece, EPOS-Iasis, R&D, 5 Karyatidon Street, 2028, Nicosia, Cyprus, and University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Kornilia P. Mitsopoulou
- Synthesis and Bioorganic Chemistry, NCSR “Demokritos”, 153 10 Ag. Paraskevi, Athens, Greece, Chemical Laboratories, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece, Crystal Engineering, Growth & Design Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece, EPOS-Iasis, R&D, 5 Karyatidon Street, 2028, Nicosia, Cyprus, and University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Marianna Dakanali
- Synthesis and Bioorganic Chemistry, NCSR “Demokritos”, 153 10 Ag. Paraskevi, Athens, Greece, Chemical Laboratories, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece, Crystal Engineering, Growth & Design Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece, EPOS-Iasis, R&D, 5 Karyatidon Street, 2028, Nicosia, Cyprus, and University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Konstantinos D. Demadis
- Synthesis and Bioorganic Chemistry, NCSR “Demokritos”, 153 10 Ag. Paraskevi, Athens, Greece, Chemical Laboratories, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece, Crystal Engineering, Growth & Design Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece, EPOS-Iasis, R&D, 5 Karyatidon Street, 2028, Nicosia, Cyprus, and University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Andreani D. Odysseos
- Synthesis and Bioorganic Chemistry, NCSR “Demokritos”, 153 10 Ag. Paraskevi, Athens, Greece, Chemical Laboratories, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece, Crystal Engineering, Growth & Design Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece, EPOS-Iasis, R&D, 5 Karyatidon Street, 2028, Nicosia, Cyprus, and University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Yiota A. Christou
- Synthesis and Bioorganic Chemistry, NCSR “Demokritos”, 153 10 Ag. Paraskevi, Athens, Greece, Chemical Laboratories, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece, Crystal Engineering, Growth & Design Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece, EPOS-Iasis, R&D, 5 Karyatidon Street, 2028, Nicosia, Cyprus, and University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Elias A. Couladouros
- Synthesis and Bioorganic Chemistry, NCSR “Demokritos”, 153 10 Ag. Paraskevi, Athens, Greece, Chemical Laboratories, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece, Crystal Engineering, Growth & Design Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece, EPOS-Iasis, R&D, 5 Karyatidon Street, 2028, Nicosia, Cyprus, and University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| |
Collapse
|
14
|
Uwamori M, Nakada M. Stereoselective total synthesis of (±)-hyperforin via intramolecular cyclopropanation. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Mehta G, Bera MK. An approach toward the synthesis of PPAP natural product garsubellin A: construction of the tricyclic core. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.12.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Sparling BA, Moebius DC, Shair MD. Enantioselective Total Synthesis of Hyperforin. J Am Chem Soc 2012; 135:644-7. [DOI: 10.1021/ja312150d] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Brian A. Sparling
- Department of Chemistry and Chemical
Biology, Harvard University, Cambridge,
Massachusetts 02138,
United States
| | - David C. Moebius
- Department of Chemistry and Chemical
Biology, Harvard University, Cambridge,
Massachusetts 02138,
United States
| | - Matthew D. Shair
- Department of Chemistry and Chemical
Biology, Harvard University, Cambridge,
Massachusetts 02138,
United States
| |
Collapse
|
17
|
Pepper HP, Lam HC, Bloch WM, George JH. Biomimetic Total Synthesis of (±)-Garcibracteatone. Org Lett 2012; 14:5162-4. [DOI: 10.1021/ol302524q] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Henry P. Pepper
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hiu C. Lam
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Witold M. Bloch
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jonathan H. George
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
18
|
Synthetic studies toward geranylated PPAP natural products oblongifolin A, oblongifolin D, and enervosanone. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Abstract
The highly stereoselective total synthesis of nemorosone via a new approach to the bicyclo[3.3.1]nonane-2,4,9-trione core which features intramolecular cyclopropanation of an α-diazo ketone, stereoselective alkylation at the C8 position, and regioselective ring-opening of cyclopropane is described. The total synthesis of nemorosone includes chemo- and stereoselective hydrogenation directed by the internal alkene.
Collapse
Affiliation(s)
- Masahiro Uwamori
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | |
Collapse
|
20
|
Richard JA, Pouwer RH, Chen DYK. The chemistry of the polycyclic polyprenylated acylphloroglucinols. Angew Chem Int Ed Engl 2012; 51:4536-61. [PMID: 22461155 DOI: 10.1002/anie.201103873] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Indexed: 12/19/2022]
Abstract
With their fascinating biological profiles and stunningly complex molecular architectures, the polycyclic polyprenylated acylphloroglucinols (PPAPs) have long provided a fertile playing field for synthetic organic chemists. In particular, the recent advent of innovative synthetic methods and strategies together with C-C bond-forming reactions and asymmetric catalysis have revitalized this field tremendously. Consequently, PPAP targets which once seemed beyond reach have now been synthesized. This Review aims to highlight the recent achievements in the total synthesis of PPAPs, as well as notable methods developed for the construction of the bicyclo[3.3.1] core of these chemically and biologically intriguing molecules.
Collapse
Affiliation(s)
- Jean-Alexandre Richard
- Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, no.03-08, Singapore 138667, Singapore
| | | | | |
Collapse
|
21
|
Njardarson JT. Synthetic Efforts Toward [3.3.1] Bridged Bicyclic Phloroglucinol Natural Products. Tetrahedron 2011; 67:7631-7666. [PMID: 23172980 PMCID: PMC3501273 DOI: 10.1016/j.tet.2011.06.079] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jon T Njardarson
- University of Arizona, Department of Chemistry and Biochemistry, 1306 E. University Blvd., Tucson, AZ 85716, USA
| |
Collapse
|
22
|
Abstract
We describe an alkylative dearomatization/acid-mediated adamantane annulation sequence that allows facile access to type A polyprenylated acylphloroglucinol natural products including plukenetione A. Introduction of the 2-methyl-1-propenyl moiety was achieved via stereodivergent S(N)2 and S(N)1 cyclizations of allylic alcohol substrates.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, Massachusetts 02215
| | - Branko Mitasev
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, Massachusetts 02215
| | - Ji Qi
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, Massachusetts 02215
| | - John A. Porco
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, Massachusetts 02215
| |
Collapse
|
23
|
Synthetic studies toward the PPAP natural products, prolifenones A and B and hyperforin: an Effenberger cyclization approach. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.07.171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Affiliation(s)
- Wenyi Zhao
- Shasun Pharma Solutions, Incorporated, 10 Knightsbridge Road, Pistcataway, New Jersey 08854, USA
| |
Collapse
|
25
|
Abe M, Saito A, Nakada M. Synthetic studies on nemorosone via enantioselective intramolecular cyclopropanation. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2009.12.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Tsukano C, R. Siegel D, J. Danishefsky S. Total Syntheses of Polycyclic Polyprenylated Acylphloroglucinols. J SYN ORG CHEM JPN 2010. [DOI: 10.5059/yukigoseikyokaishi.68.592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Beerhues L, Liu B. Biosynthesis of biphenyls and benzophenones--evolution of benzoic acid-specific type III polyketide synthases in plants. PHYTOCHEMISTRY 2009; 70:1719-27. [PMID: 19699497 DOI: 10.1016/j.phytochem.2009.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/19/2009] [Accepted: 06/20/2009] [Indexed: 05/06/2023]
Abstract
Type III polyketide synthases (PKSs) generate a diverse array of secondary metabolites by varying the starter substrate, the number of condensation reactions, and the mechanism of ring closure. Among the starter substrates used, benzoyl-CoA is a rare starter molecule. Biphenyl synthase (BIS) and benzophenone synthase (BPS) catalyze the formation of identical linear tetraketide intermediates from benzoyl-CoA and three molecules of malonyl-CoA but use alternative intramolecular cyclization reactions to form 3,5-dihydroxybiphenyl and 2,4,6-trihydroxybenzophenone, respectively. In a phylogenetic tree, BIS and BPS group together closely, indicating that they arise from a relatively recent functional diversification of a common ancestral gene. The functionally diverse PKSs, which include BIS and BPS, and the ubiquitously distributed chalcone synthases (CHSs) form separate clusters, which originate from a gene duplication event prior to the speciation of the angiosperms. BIS is the key enzyme of biphenyl metabolism. Biphenyls and the related dibenzofurans are the phytoalexins of the Maloideae. This subfamily of the Rosaceae includes a number of economically important fruit trees, such as apple and pear. When incubated with ortho-hydroxybenzoyl (salicoyl)-CoA, BIS catalyzes a single decarboxylative condensation with malonyl-CoA to form 4-hydroxycoumarin. A well-known anticoagulant derivative of this enzymatic product is dicoumarol. Elicitor-treated cell cultures of Sorbus aucuparia also formed 4-hydroxycoumarin when fed with the N-acetylcysteamine thioester of salicylic acid (salicoyl-NAC). BPS is the key enzyme of benzophenone metabolism. Polyprenylated benzophenone derivatives with bridged polycyclic skeletons are widely distributed in the Clusiaceae (Guttiferae). Xanthones are regioselectively cyclized benzophenone derivatives. BPS was converted into a functional phenylpyrone synthase (PPS) by a single amino acid substitution in the initiation/elongation cavity. The functional behavior of this Thr135Leu mutant was rationalized by homology modeling. The intermediate triketide may be redirected into a smaller pocket in the active site cavity, resulting in phenylpyrone formation by lactonization.
Collapse
Affiliation(s)
- Ludger Beerhues
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Braunschweig, Germany.
| | | |
Collapse
|
28
|
Takagi R, Inoue Y, Ohkata K. Construction of the Adamantane Core of Plukenetione-Type Polycyclic Polyprenylated Acylphloroglucinols. J Org Chem 2008; 73:9320-5. [DOI: 10.1021/jo801595y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Yuta Inoue
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Katsuo Ohkata
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
29
|
A concise approach towards the bicyclo[3.3.1]nonan-9-one core present in the phloroglucin natural product hyperforin. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2007.12.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Mehta G, Bera MK, Chatterjee S. A stereodefined approach towards the bicyclo[3.3.1]nonan-9-one core of the phloroglucin natural products guttiferone A and hypersampsone F. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2007.12.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Ghosh SK, Buchanan GS, Long QA, Wei Y, Al-Rashid ZF, Sklenicka HM, Hsung RP. Aza- and Carbo-[3 + 3] Annulations of Exo-Cyclic Vinylogous Amides and Urethanes. Synthesis of Tetrahydroindolizidines and An Unexpected Formation of Hexahydroquinolines. Tetrahedron 2008; 64:883-893. [PMID: 19180170 PMCID: PMC2330326 DOI: 10.1016/j.tet.2007.09.089] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[3 + 3] Annulations of exo-cyclic vinylogous amides and urethanes with vinyl iminium salts are described here. We observed an intriguing dichotomy in their reaction pathways. For pyrrolidine- and azepane-based vinylogous amides or urethanes, aza-[3 + 3] annulation would dominate to give tetrahydroindolizidines, whereas, unexpectedly, for piperidine-based vinylogous amides or urethanes, carbo-[3 + 3] annulation was the pathway, leading to hexahydroquinolines. The origin for such a contrast is likely associated with a switch in the initial reaction pathway between C-1,2-addition and C-1,4-addition.
Collapse
Affiliation(s)
- Sunil K Ghosh
- Division of Pharmaceutical Sciences and Department of Chemistry, 777 Highland Avenue, Rennebohm Hall, University of Wisconsin Madison, WI 53705 USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Kraus GA, Jeon I. Progress towards the synthesis of Papuaforin A: Selective formation of α-bromoenones from silyl enol ethers. Tetrahedron Lett 2008; 49:286-288. [PMID: 23885131 PMCID: PMC3717555 DOI: 10.1016/j.tetlet.2007.11.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective one-pot conversion of enol silyl ethers into α-bromoenones allows a direct preparation of a tricyclic intermediate to papuaforin A.
Collapse
Affiliation(s)
- George A. Kraus
- Department of Chemistry, Iowa State University, Ames, IA 50011
| | - Insik Jeon
- Department of Chemistry, Iowa State University, Ames, IA 50011
| |
Collapse
|
33
|
Abe M, Nakada M. Synthetic studies on phloroglucins: a new approach to the bicyclo[3.3.1]nonane system via the regioselective ring-opening of the methoxycyclopropane. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.05.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
A new approach for the construction of a highly congested bicyclic system in polycyclic polyprenylated acylphloroglucinols (PPAPs). Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.04.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Takagi R, Miwa Y, Nerio T, Inoue Y, Matsumura S, Ohkata K. Stereochemical investigation on the construction of poly-functionalized bicyclo[3.3.1]nonenones by successive Michael reactions of 2-cyclohexenones. Org Biomol Chem 2007; 5:286-300. [PMID: 17205172 DOI: 10.1039/b615702e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the practical construction of poly-functionalized bicyclo[3.3.1]nonenones by successive Michael reactions of cyclohexenones with acrylates using K2CO3 and TBAB (n-Bu4N+ Br-) was developed. The construction could be carried out in both stepwise and one-pot reactions with similar tendencies in regioselectivity. The alpha-regioselectivity in the intramolecular Michael reaction agreed with that stereoelectronically expected in intermolecular reactions based upon consideration of the HOMO orbital profile of the enolate I, the precursor to ring-closure, although the reaction site was trisubstituted and prone to steric hindrance in most of the examples presented. For the acetoxymethylacrylates substituted at either the alpha or gamma position, steric hindrance of the substituents (R2 and R3) served as a controlling factor to induce high regiocontrol. Facial selection in the protonation of enolate II, formed upon ring-closure, was also affected by these substituents. In both the intramolecular Michael reaction and the protonation of enolate II, the ammonium counter cation played an important role.
Collapse
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Hyperforin is a polyprenylated acylphloroglucinol derivative from Hypericum perforatum (St. John's wort). It exhibits antidepressant activity by a novel mechanism of action, antibiotic activity against gram-positive bacteria, and antitumoral activity in vivo. However, it also produces drug-drug interactions by activation of the pregnan X receptor. No total synthesis has been described. Some natural and semisynthetic analogues are available to study structure-activity relationships. Enzymatically, the skeleton of hyperforin is formed by isobutyrophenone synthase from isobutyryl-CoA and three molecules of malonyl-CoA. The first prenylation step is catalyzed by a soluble and ion-dependent dimethylallyltransferase. Hyperforin mainly accumulates in pistils and fruits where it probably serves as defensive compound.
Collapse
Affiliation(s)
- Ludger Beerhues
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Mendelssohnstr. 1, D-38106 Braunschweig, Germany.
| |
Collapse
|
37
|
Abe M, Nakada M. New construction of the bicyclo[3.3.1]nonane system via Lewis acid promoted regioselective ring-opening reaction of the tricyclo[4.4.0.05,7]dec-2-ene derivative. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Chung SI, Seo J, Cho CG. Tandem Diels−Alder Cycloadditions of 2-Pyrone-5-acrylates for the Efficient Synthesis of Novel Tetracyclolactones. J Org Chem 2006; 71:6701-4. [PMID: 16901177 DOI: 10.1021/jo061119e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Readily prepared from the regioselective Pd-catalyzed coupling reactions of 3,5-dibromo-2-pyrone, 3-bromo-2-pyrone-5-carboxylates undergo tandem uninterrupted sequential Diels-Alder cycloaddition reactions with allyl vinyl ethers in a highly regio- and stereoselective fashion to provide a series of novel tetracyclolactones in good yields.
Collapse
Affiliation(s)
- Soo-Im Chung
- Department of Chemistry, Hanyang University, Seoul 131-791, Korea
| | | | | |
Collapse
|
39
|
Mehta G, Bera MK. A rapid acquisition of the bicyclo[3.3.1]nonan-9-one core present in garsubellin A and related phloroglucins. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2005.11.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Nicolaou KC, Carenzi GEA, Jeso V. Construction of Highly Functionalized Medium-Sized Rings: Synthesis of Hyperforin and Perforatumone Model Systems. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200500776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Nicolaou KC, Carenzi GEA, Jeso V. Construction of Highly Functionalized Medium-Sized Rings: Synthesis of Hyperforin and Perforatumone Model Systems. Angew Chem Int Ed Engl 2005; 44:3895-9. [PMID: 15892032 DOI: 10.1002/anie.200500776] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
42
|
Kraus GA, Jeon I. Preparation of complex bridged bicyclic ring systems from 3,3-diacetoxy-2-phenylsulfonylpropene and β-keto esters. Tetrahedron 2005. [DOI: 10.1016/j.tet.2004.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Takagi R, Nerio T, Miwa Y, Matsumura S, Ohkata K. Construction of the bicyclo[3.3.1]nonenone core by successive Michael reactions of 2-cyclohexenone derivatives. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.08.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Towards an enantiospecific total synthesis of garsubellin A and related phloroglucin natural products: the α-pinene approach. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2003.12.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Pang SJ, Min SH, Lee H, Cho CG. Tandem or Sequential Coupling−IMDA Cycloaddition Approach to Highly Fused Polycarbocycles. J Org Chem 2003; 68:10191-4. [PMID: 14682725 DOI: 10.1021/jo035354y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Diels-Alder cycloadduct made from 3,5-dibromo-2-pyrone and 2-bromo-styrene was successfully transformed stereoselectively into a series of novel benzotetracycles via a tandem or sequential Pd-catalyzed coupling-intramolecular Diels-Alder (IMDA) cycloaddition. The resulting polycarbocycles can be readily converted into a bicyclo[3.3.1]nonane system upon ozonolysis of the internal double bond.
Collapse
Affiliation(s)
- Soo-Jin Pang
- Department of Chemistry, Hanyang University, Seoul 131-791, Korea
| | | | | | | |
Collapse
|
46
|
Synthesis of a model system for the preparation of phloroglucinol containing natural products. Tetrahedron 2003. [DOI: 10.1016/j.tet.2003.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Ciochina R, Grossman RB. A New Synthetic Approach to the Polycyclic Polyprenylated Acylphloroglucinols. Org Lett 2003; 5:4619-21. [PMID: 14627398 DOI: 10.1021/ol0357907] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] The three-carbon alpha,alpha'-annulation of a sterically hindered cyclic beta-keto ester can be achieved by alkynylation with 3,3-diethoxypropyne, syn reduction of the alkyne with Co(2)(CO)(8) and Et(3)SiH, and an intramolecular aldol reaction. The method is potentially useful for the synthesis of nemorosone, hyperforin, and other polycyclic polyprenylated acylphloroglucinols.
Collapse
Affiliation(s)
- Roxana Ciochina
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | |
Collapse
|