1
|
Perdicchia D. Borane-Trimethylamine Complex: A Versatile Reagent in Organic Synthesis. Molecules 2024; 29:2017. [PMID: 38731507 PMCID: PMC11085582 DOI: 10.3390/molecules29092017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Borane-trimethylamine complex (Me3N·BH3; BTM) is the most stable of the amine-borane complexes that are commercially available, and it is cost-effective. It is a valuable reagent in organic chemistry with applications in the reduction of carbonyl groups and carbon-nitrogen double bond reduction, with considerable examples in the reduction of oximes, hydrazones and azines. The transfer hydrogenation of aromatic N-heterocycles and the selective N-monomethylation of primary anilines are further examples of recent applications, whereas the reduction of nitrobenzenes to anilines and the reductive deprotection of N-tritylamines are useful tools in the organic synthesis. Moreover, BTM is the main reagent in the regioselective cleavage of cyclic acetals, a reaction of great importance for carbohydrate chemistry. Recent innovative applications of BTM, such as CO2 utilization as feedstock and radical chemistry by photocatalysis, have extended their usefulness in new reactions. The present review is focused on the applications of borane-trimethylamine complex as a reagent in organic synthesis and has not been covered in previous reviews regarding amine-borane complexes.
Collapse
Affiliation(s)
- Dario Perdicchia
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
2
|
Ota T, Saburi W, Komba S, Mori H. Chemical synthesis of oligosaccharide derivatives with partial structure of β1-3/1-6 glucan, using monomeric units for the formation of β1-3 and β1-6 glucosidic linkages. Biosci Biotechnol Biochem 2023; 87:1111-1121. [PMID: 37407435 DOI: 10.1093/bbb/zbad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
β1-3/1-6 Glucans, known for their diverse structures, comprise a β1-3-linked main chain and β1-6-linked short branches. Laminarin, a β1-3/1-6 glucan extracted from brown seaweed, for instance, includes β1-6 linkages even in the main chain. The diverse structures provide various beneficial functions for the glucan. To investigate the relationship between structure and functionality, and to enable the characterization of β1-3/1-6 glucan-metabolizing enzymes, oligosaccharides containing the exact structures of β1-3/1-6 glucans are required. We synthesized the monomeric units for the synthesis of β1-3/1-6 mixed-linked glucooligosaccharides. 2-(Trimethylsilyl)ethyl 2-O-benzoyl-4,6-O-benzylidene-β-d-glucopyranoside served as an acceptor in the formation of β1-3 linkages. Phenyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(tert-butyldiphenylsilyl)-1-thio-β-d-glucopyranoside and phenyl 2,3-di-O-benzoyl-4,6-di-O-levulinyl-1-thio-β-d-glucopyranoside acted as donors, synthesizing acceptors suitable for the formation of β1-3- and β1-6-linkages, respectively. These were used to synthesize a derivative of Glcβ1-6Glcβ1-3Glcβ1-3Glc, demonstrating that the proposed route can be applied to synthesize the main chain of β-glucan, with the inclusion of both β1-3 and β1-6 linkages.
Collapse
Affiliation(s)
- Tomoya Ota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shiro Komba
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Rasool JU, Kumar A, Ali A, Ahmed QN. Triethylamine-methanol mediated selective removal of oxophenylacetyl ester in saccharides. Org Biomol Chem 2021; 19:338-347. [PMID: 33300928 DOI: 10.1039/d0ob02192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly selective, mild, and efficient method for the cleavage of oxophenylacetyl ester protected saccharides was developed using triethylamine in methanol at room temperature. The reagent proved successful against different labile groups like acetal, ketal, and PMB and also generated good yields of the desired saccharides bearing lipid esters. Further, we also observed DBU in methanol as an alternative reagent for the deprotection of acetyl, benzoyl, and oxophenylacetyl ester groups.
Collapse
Affiliation(s)
- Javeed Ur Rasool
- Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001 India and Academy of scientific and innovative research, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, India.
| | - Atul Kumar
- Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001 India and Academy of scientific and innovative research, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, India. and Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District Samba, Jammu-180001, India
| | - Asif Ali
- CSIR-Traditional Knowledge Digital Library (TKDL), 14-Satsang Vihar, Vigyan Suchna Bhawan, New Delhi-110067, India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001 India and Academy of scientific and innovative research, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, India.
| |
Collapse
|
5
|
Kumar A, Gannedi V, Rather SA, Vishwakarma RA, Ahmed QN. Introducing Oxo-Phenylacetyl (OPAc) as a Protecting Group for Carbohydrates. J Org Chem 2019; 84:4131-4148. [PMID: 30888192 DOI: 10.1021/acs.joc.9b00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of oxo-phenylacetyl (OPAc)-protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac) were synthesized, and KHSO5/AcCl in methanol was identified as an easy, mild, selective, and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of AcCl reagent was supportive in both sequential and simultaneous deprotecting of OPAc, Bz, and Ac. The salient feature of our method is the orthogonal stability against different groups, its ease to generate different valuable acceptors using designed monosaccharides, and use of OPAc as a glycosyl donar.
Collapse
Affiliation(s)
- Atul Kumar
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Veeranjaneyulu Gannedi
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Suhail A Rather
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| |
Collapse
|
6
|
|
7
|
|
8
|
Yashunsky DV, Tsvetkov YE, Grachev AA, Chizhov AO, Nifantiev NE. Synthesis of 3-aminopropyl glycosides of linear β-(1 → 3)-D-glucooligosaccharides. Carbohydr Res 2015; 419:8-17. [PMID: 26595660 DOI: 10.1016/j.carres.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022]
Abstract
3-Aminopropyl glycosides of a series of linear β-(1 → 3)-linked D-glucooligosaccharides containing from 3 to 13 monosaccharide units were efficiently prepared. The synthetic scheme featured highly regioselective glycosylation of 4,6-O-benzylidene-protected 2,3-diol glycosyl acceptors with a disaccharide thioglycoside donor bearing chloroacetyl groups at O-2' and -3' as a temporary protection of the diol system. Iteration of the deprotection and glycosylation steps afforded the series of the title oligoglucosides differing in length by two monosaccharide units. A novel procedure for selective removal of acetyl groups in the presence of benzoyl ones consisting in a brief treatment with a large excess of hydrazine hydrate has been proposed.
Collapse
Affiliation(s)
- Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Alexey A Grachev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Alexander O Chizhov
- Division of Structural Studies, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
9
|
Novel agaro-oligosaccharide production through enzymatic hydrolysis: Physicochemical properties and antioxidant activities. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.04.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Dvorakova M, Pribylova M, Pohl R, Migaud ME, Vanek T. Alkyloxycarbonyl group migration in furanosides. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Tanaka H, Kawai T, Adachi Y, Hanashima S, Yamaguchi Y, Ohno N, Takahashi T. Synthesis of β(1,3) oligoglucans exhibiting a Dectin-1 binding affinity and their biological evaluation. Bioorg Med Chem 2012; 20:3898-914. [PMID: 22578491 DOI: 10.1016/j.bmc.2012.04.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/06/2012] [Accepted: 04/07/2012] [Indexed: 02/07/2023]
Abstract
In this report, we describe the synthesis and biological evaluation of β(1,3) oligosaccharides that contain an aminoalkyl group and their biological evaluation. A 2,3 diol glycoside with a 4,6 benzylidene protecting group was used as an effective glycosyl acceptor for the synthesis of some β(1,3) linked glycosides. The use of a combination of a linear tetrasaccharide and a branched pentasaccharide as glycosyl donors led to the preparation of β(1,3) linear octa- to hexadecasaccharides and branched nona- to heptadecasaccharides in good total yields. Measurements of the competitive effects of the oligosaccharides on the binding of a soluble form of Dectin-1 to a solid-supported Schizophyllan (SPG) revealed that the branched heptadecasaccharide and the linear hexadecasaccharides also have binding activity for Dectin-1. In addition, the two oligosaccharides, both of which contain a β(1,3) hexadecasaccharide backbone, exhibited agonist activity in a luciferase-assisted NF-κB assay. STD-NMR analyses of complexes of Dectin-1 and the linear hexadecasaccharides clearly indicate Dectin-1 specifically recognizes the sugar part of the oligosaccharides and not the aminoalkyl chain.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-35 Ookayama, Meguro, Tokyo 152-8552, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Fuse S, Masui H, Tannna A, Shimizu F, Takahashi T. Combinatorial synthesis and evaluation of α-iminocarboxamide-nickel(II) catalysts for the copolymerization of ethylene and a polar monomer. ACS COMBINATORIAL SCIENCE 2012; 14:17-24. [PMID: 22017578 DOI: 10.1021/co200081j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Late-transition metal catalysts used for olefin polymerization, the so-called postmetallocenes, which includes α-iminocarboxamide-nickel(II) catalysts have attracted a great deal of attention because of many valuable features such as the copolymerization of α-olefins with polar monomers. In this paper, the combinatorial synthesis and evaluation of α-iminocarboxamide-nickel(II) catalysts are discussed for their roles in the discovery of a highly active catalyst and elucidation of its structure-activity relationship. The combinatorial optimization of each reaction condition was performed, then a combinatorial library of α-iminocarboxamides with systematically modified substituents was constructed by amidation of α-keto acid chlorides and subsequent imination of α-keto carboxamides in parallel fashion. As a result, 87 analytically pure α-iminocarboxamide ligands were successfully synthesized. α-Iminocarboxamide-nickel(II) catalysts were prepared from the synthesized α-iminocarboxamide ligands. The catalysts' activities for polymerization of ethylene and copolymerization of ethylene and 5-norbornen-2-ol were evaluated. Results of the present study revealed 9 novel active catalysts for ethylene polymerization and 7 novel active catalysts for copolymerization of ethylene and 5-norbornen-2-ol. It should be noted that the best catalysts for ethylene polymerization and for copolymerization in the present study showed higher activities compared to the known active catalyst. Polymerization activities of the catalysts varied dramatically according to the combination of substituents on the α-iminocarboxamides.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro,
Tokyo 152-8552, Japan
| | - Hisashi Masui
- Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro,
Tokyo 152-8552, Japan
| | - Akio Tannna
- Mitsubishi Chemical Group, Science and Technology Research Center, Inc.,
1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Fumihiko Shimizu
- Mitsubishi Chemical Group, Science and Technology Research Center, Inc.,
1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Takashi Takahashi
- Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro,
Tokyo 152-8552, Japan
| |
Collapse
|
13
|
Takahashi T. Efficient Syntheses of Natural Products and Their Analogues Using Laboratory Automation Technology. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Daragics K, Fügedi P. (2-Nitrophenyl)acetyl: a new, selectively removable hydroxyl protecting group. Org Lett 2010; 12:2076-9. [PMID: 20361745 DOI: 10.1021/ol100562f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The utility of the (2-nitrophenyl)acetyl (NPAc) group for the protection of hydroxyl functions is reported. (2-Nitrophenyl)acetates are readily prepared starting from the commercially available, inexpensive (2-nitrophenyl)acetic acid, and these esters are stable under a series of common carbohydrate transformations. The NPAc group can be removed selectively using Zn and NH(4)Cl without affecting a series of common protecting groups. This new protecting group is orthogonal with the commonly used tert-butyldimethylsilyl, levulinoyl, 9-fluorenylmethoxycarbonyl, naphthylmethyl, and p-methoxybenzyl groups.
Collapse
Affiliation(s)
- Katalin Daragics
- Department of Carbohydrate Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1025 Budapest, Hungary
| | | |
Collapse
|
15
|
Tanaka H, Yamaguchi S, Yoshizawa A, Takagi M, Shin-ya K, Takahashi T. Combinatorial Synthesis of Deoxyhexasaccharides Related to the Landomycin A Sugar Moiety, Based on an Orthogonal Deprotection Strategy. Chem Asian J 2010; 5:1407-24. [DOI: 10.1002/asia.200900640] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
A selective and operationally simple approach for removal of methoxy-, allyloxy-, and benzyloxycarbonyl groups from carbinols. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.09.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Chao CS, Li CW, Chen MC, Chang SS, Mong KKT. Low-Concentration 1,2-transβ-Selective Glycosylation Strategy and Its Applications in Oligosaccharide Synthesis. Chemistry 2009; 15:10972-82. [DOI: 10.1002/chem.200901119] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Takahashi D, Tanaka H, Nakane E, Takahashi T. The Synthesis of Carbohydrate Microarrays by S-Alkylation of the Glass-supported 2-Bromoacetamides. CHEM LETT 2008. [DOI: 10.1246/cl.2008.1252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Affiliation(s)
- Youlin Zeng
- a Research Center for Eco‐Environmental Sciences , Academia Sinica , P.O. Box 2871, Beijing, 100085, China
| | - Fanzuo Kong
- a Research Center for Eco‐Environmental Sciences , Academia Sinica , P.O. Box 2871, Beijing, 100085, China
| |
Collapse
|
20
|
Tanaka S, Saburi H, Murase T, Ishibashi Y, Kitamura M. Highly reactive and chemoselective cleavage of allyl esters using an air- and moisture-stable [CpRu(IV)(π-C3H5)(2-quinolinecarboxylato)]PF6 catalyst. J Organomet Chem 2007. [DOI: 10.1016/j.jorganchem.2006.03.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Tanaka H, Yamada H, Takahashi T. Rapid Synthesis of Oligosaccharides Based on One-Pot Glycosylation. TRENDS GLYCOSCI GLYC 2007. [DOI: 10.4052/tigg.19.183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Ako T, Daikoku S, Ohtsuka I, Kato R, Kanie O. A Method of Orthogonal Oligosaccharide Synthesis Leading to a Combinatorial Library Based on Stationary Solid-Phase Reaction. Chem Asian J 2006; 1:798-813. [PMID: 17441123 DOI: 10.1002/asia.200600210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new, efficient synthesis of oligosaccharides, which involves solid-phase reactions without mixing in combination with an orthogonal-glycosylation strategy, is described. Despite a great deal of biological interest, the combinatorial chemistry of oligosaccharides is an extremely difficult subject. The problems include 1) lengthy synthetic protocols required for the synthesis and 2) the variety of glycosylation conditions necessary for individual reactions. These issues were addressed and solved by using the orthogonal-coupling protocol and the application of a temperature gradient to provide appropriate conditions for individual reactions. Furthermore, we succeeded in carrying out solid-phase reactions with neither mechanical mixing nor flow. In this report, the synthesis of a series of trisaccharides, namely, alpha/beta-L-Fuc-(1-->6)-alpha/beta-D-Gal-(1-->2/3/4/6)-alpha/beta-D-Glc-octyl, is reported to demonstrate the eligibility of the synthetic method in combinatorial chemistry.
Collapse
Affiliation(s)
- Takuro Ako
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan
| | | | | | | | | |
Collapse
|
23
|
Abstract
[reactions: see text] N-Iodosuccinimide provides a mild, convenient, and tuneable reagent for the selective mono- or didebenzylation in representative, multifunctionalized carbohydrate and amino acid derived N-dibenzylamines with neighboring O-functionality.
Collapse
Affiliation(s)
- Elizabeth J Grayson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, South Parks Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
24
|
Procopio A, Dalpozzo R, De Nino A, Maiuolo L, Nardi M, Romeo G. Mild and efficient method for the cleavage of benzylidene acetals by using erbium (iii) triflate. Org Biomol Chem 2005; 3:4129-33. [PMID: 16267593 DOI: 10.1039/b511314h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Er(OTf)3 is proposed as new efficient Lewis acid catalyst in a mild deprotection protocol of benzylidene derivatives. In a modified procedure, where acetic anhydride is used as the reaction solvent, the simultaneous cleavage of the benzylidene acetal and the peracetylation of the substrates is obtained in quantitative yields and very short reaction times.
Collapse
Affiliation(s)
- Antonio Procopio
- Dipartimento di Scienze Farmaco-Biologiche, Università della Magna Graecia, Complesso Ninì Barbieri, 88021 Roccelletta di Borgia (Cz), Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Jamois F, Ferrières V, Guégan JP, Yvin JC, Plusquellec D, Vetvicka V. Glucan-like synthetic oligosaccharides: iterative synthesis of linear oligo-beta-(1,3)-glucans and immunostimulatory effects. Glycobiology 2004; 15:393-407. [PMID: 15590774 DOI: 10.1093/glycob/cwi020] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Small reducing and linear oligo-beta-(1,3)-glucans, which are able to act as phytoallexin elicitors or as immunostimulating agents in anticancer therapy, were synthesized according to an iterative strategy that involved a unique key monosaccharidic donor. To avoid anomeric mixtures, the reducing entity of the target oligomers was first locked with benzyl alcohol and further selective deprotection of the 3-OH with DDQ afforded the desired building block as an acceptor. The latter was then used in a second cycle of glycosylation/deprotection to afford the desired disaccharide, and successive reiterations of this process provided the desired oligomers. Unusual conformational behaviors were observed by standard NMR sequences and supported by NOESY studies. Finally, removal of protecting groups afforded free tri-, tetra-, and pentaglucosides in good overall yields. Two oligosaccharides representing linear laminaritetraose and laminaripentaose were compared to the recently described beta-(1,3)-glucan phycarine. Following an intraperitoneal injection, the influx of monocytes and granulocytes into the blood and macrophages into the peritoneal cavity was comparable to that caused by phycarine. Similarly, both oligosaccharides stimulated phagocytic activity of granulocytes and macrophages. Using ELISA, we also demonstrated a significant stimulation of secretion of IL-1beta. Together these results suggest that the synthetic oligosaccharides have similar stimulatory effects as natural beta-(1,3)-glucans.
Collapse
Affiliation(s)
- Frank Jamois
- Laboratoire Goëmar, ZAC La Madeleine, Avenue du Général Patton, 35400 Saint Malo, France
| | | | | | | | | | | |
Collapse
|
26
|
Katajisto J, Heinonen P, Lönnberg H. Solid-phase synthesis of oligonucleotide glycoconjugates bearing three different glycosyl groups: orthogonally protected bis(hydroxymethyl)-N,N'-bis(3-hydroxypropyl)malondiamide phosphoramidite as key building block. J Org Chem 2004; 69:7609-15. [PMID: 15497988 DOI: 10.1021/jo048984o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diethyl O,O'-(methoxymethylene)bis(hydroxymethyl)malonate (3) was observed to undergo a stepwise aminolysis when treated with 3-aminopropanol. This allowed convenient preparation of bis(hydroxymethyl)-N,N'-bis(3-hydroxypropyl)malondiamide bearing orthogonal levulinyl (Lev) and tert-butyldiphenylsilyl (TBDPS) protections at the two N-hydroxypropyl groups (8). One of the hydroxylmethyl functions was then protected with a 4,4'-dimethoxytrityl (DMTr) group, and the other one was phosphitylated to obtain a methyl N,N-diisopropylphosphoramidite (1). This building block was used for the synthesis of oligonucleotide glycoconjugates (25 and 26) carrying three different sugar units. After conventional phosphoramidite chain assembly of the sequence containing 1, the 5'-terminal DMTr group was removed and an appropriate glycosyl 6-O-phosphoramidite was coupled. The remaining protections of the branching unit were removed in the order of Lev and TBDPS, and the exposed hydroxyl functions were reacted one after another with the desired glycosyl 6-O-phosphoramidites. Global deprotection and cleavage of the conjugate from the support were achieved by conventional ammonolysis.
Collapse
Affiliation(s)
- Johanna Katajisto
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| | | | | |
Collapse
|