1
|
Abdalsada HK, Abdulsaheb YS, Zolghadri S, Al-Hakeim HK, Stanek A. The Potential Diagnostic Utility of SMAD4 and ACCS in the Context of Inflammation in Type 2 Diabetes Mellitus Patients. Biomedicines 2024; 12:2015. [PMID: 39335530 PMCID: PMC11428511 DOI: 10.3390/biomedicines12092015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The search for new parameters for the prediction of type 2 diabetes mellitus (T2DM) or its harmful consequences remains an important field of study. Depending on the low-grade inflammatory nature of diabetes, we investigated three proteins in T2DM patients: 1-aminocyclopropane-1-carboxylate synthase (ACCS), granulocyte-colony-stimulating factor (G-CSF), and Sma Mothers Against Decapentaplegic homolog-4 (SMAD4). In brief, sixty T2DM and thirty healthy controls had their serum levels of ACCS, G-CSF, SMAD4, and insulin tested using the ELISA method. The insulin resistance (IR) parameter (HOMA2IR), beta-cell function percentage (HOMA2%B), and insulin sensitivity (HOMA2%S) were all determined by the Homeostasis Model Assessment-2 (HOMA2) calculator. The predictability of these protein levels was investigated by neural network (NN) analysis and was associated with measures of IR. Based on the results, ACCS, G-CSF, and SMAD4 increased significantly in the T2DM group compared with the controls. Their levels depend on IR status and inflammation. The multivariate GLM indicated the independence of the levels of these proteins on the covariates or drugs taken. The receiver operating characteristic area under the curve (AUC) for the prediction of T2DM using NN analysis is 0.902, with a sensitivity of 71.4% and a specificity of 93.8%. The network predicts T2DM well with predicted pseudoprobabilities over 0.5. The model's predictive capability (normalized importance) revealed that ACCS is the best model (100%) for the prediction of T2DM, followed by G-CSF (75.5%) and SMAD4 (69.6%). It can be concluded that ACCS, G-CSF, and SMAD4 are important proteins in T2DM prediction, and their increase is associated with the presence of inflammation.
Collapse
Affiliation(s)
- Habiba Khdair Abdalsada
- Department of Clinical Laboratory Sciences, College of Pharmacy, Al-Muthanna University, Al-Muthanna 66001, Iraq;
| | - Yusra Sebri Abdulsaheb
- Clinical Pharmacy Department, College of Pharmacy, Missan University, Missan 62001, Iraq;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | | | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
2
|
Significant electrochemical sensors for ethylene and propylene: the state-of-the-art. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
3
|
Paardekooper LM, van den Bogaart G, Kox M, Dingjan I, Neerincx AH, Bendix MB, Beest MT, Harren FJM, Risby T, Pickkers P, Marczin N, Cristescu SM. Ethylene, an early marker of systemic inflammation in humans. Sci Rep 2017; 7:6889. [PMID: 28761087 PMCID: PMC5537290 DOI: 10.1038/s41598-017-05930-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
Ethylene is a major plant hormone mediating developmental processes and stress responses to stimuli such as infection. We show here that ethylene is also produced during systemic inflammation in humans and is released in exhaled breath. Traces of ethylene were detected by laser spectroscopy both in vitro in isolated blood leukocytes exposed to bacterial lipopolysaccharide (LPS) as well as in vivo following LPS administration in healthy volunteers. Exposure to LPS triggers formation of ethylene as a product of lipid peroxidation induced by the respiratory burst. In humans, ethylene was detected prior to the increase of blood levels of inflammatory cytokines and stress-related hormones. Our results highlight that ethylene release is an early and integral component of in vivo lipid peroxidation with important clinical implications as a breath biomarker of bacterial infection.
Collapse
Affiliation(s)
- Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Kox
- Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne H Neerincx
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Maura B Bendix
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans J M Harren
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Terence Risby
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter Pickkers
- Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nandor Marczin
- Department of Anaesthesia, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK
- Section of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Human biomarkers in breath by photoacoustic spectroscopy. Clin Chim Acta 2012; 413:1171-8. [DOI: 10.1016/j.cca.2012.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/04/2012] [Accepted: 04/06/2012] [Indexed: 11/22/2022]
|
5
|
Metsälä M, Schmidt FM, Skyttä M, Vaittinen O, Halonen L. Acetylene in breath: background levels and real-time elimination kinetics after smoking. J Breath Res 2010; 4:046003. [DOI: 10.1088/1752-7155/4/4/046003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Angelmahr M, Miklós A, Hess P. Wavelength- and amplitude-modulated photoacoustics: comparison of simulated and measured spectra of higher harmonics. APPLIED OPTICS 2008; 47:2806-2812. [PMID: 18493286 DOI: 10.1364/ao.47.002806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photoacoustic (PA) spectra generated by current modulation of a distributed feedback diode laser (DFB-DL) were measured for the ammonia absorption line at 1.53 microm and calculated using absorption spectra taken from a database. The algorithm is based on a combined amplitude- and wavelength-modulation (AM-WM) scheme. The spectral characteristics of the DFB-DL were determined by comparing simulated spectra with Fourier transform infrared measurements. PA spectra were measured and simulated from the first to fourth harmonic and a variation of the modulation depth with modulation frequency was observed. It was found that combined AM-WM modulation may produce larger PA signals than separate AM or WM detection for the first harmonic.
Collapse
Affiliation(s)
- M Angelmahr
- Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
7
|
Abstract
This review summarizes the most recent developments in and applications of physiologically based pharmacokinetic (PBPK) modeling methodology originating from both the pharmaceutical and environmental toxicology areas. It focuses on works published in the last 5 years, although older seminal papers have also been referenced. After a brief introduction to the field and several essential definitions, the main body of the text is structured to follow the major steps of a typical PBPK modeling exercise. Various applications of the methodology are briefly described. The major future trends and perspectives are outlined. The main conclusion from the review of the available literature is that PBPK modeling, despite its obvious potential and recent incremental developments, has not taken the place it deserves, especially in pharmaceutical and drug development sciences.
Collapse
Affiliation(s)
- Ivan Nestorov
- Zymogenetics Inc., 1201 Eastlake Avenue East, Seattle, Washington 98102, USA.
| |
Collapse
|
8
|
Feng S, Plunkett SE, Lam K, Kapur S, Muhammad R, Jin Y, Zimmermann M, Mendes P, Kinser R, Roethig HJ. A new method for estimating the retention of selected smoke constituents in the respiratory tract of smokers during cigarette smoking. Inhal Toxicol 2007; 19:169-79. [PMID: 17169864 DOI: 10.1080/08958370601052022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This report describes a new method for estimating the retention of selected mainstream smoke constituents in the respiratory tract of adult smokers during cigarette smoking. Both particulate-phase (PP) constituents including nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and N'-nitrosonornicotine (NNN), two tobacco-specific nitrosamines (TSNA), and gas-vapor-phase (GVP) constituents including carbon monoxide (CO), isoprene (IP), acetaldehyde (AA), and ethylene, were studied. To estimate the amounts of smoke constituents delivered during smoking, we used predetermined linear relationships between the measured cigarette filter solanesol content and machine-generated mainstream deliveries of these selected compounds. To determine the amounts of smoke constituents exhaled, the expired breath was directed through a Cambridge filter pad (CFP) attached to an infrared spectrometer. PP compounds were trapped on the CFP for later analysis and GVP compounds were analyzed in near real time. The smokers' respiratory parameters during smoking, such as inhalation/exhalation volume and time, were monitored using LifeShirt(R), a respiratory inductive plethysmography (RIP) device. The retention of each smoke constituent, expressed as a percentage, was then calculated as the difference between the amount delivered (estimated) and the amount exhaled relative to the amount delivered. We studied 16 adult male smokers who smoked cigarettes according to 3 predefined smoking patterns: no inhalation (pattern A), normal inhalation (pattern B), and deep inhalation (pattern C). For the three PP constituents, the mean retentions for pattern A ranged between 10 and 20%; and while the mean retentions of the two TSNAs were significantly higher for pattern C (84% for NNK and 97% for NNN) than those for pattern B (63% for NNK and 84% for NNN), the mean retentions of nicotine were basically the same between patterns B and C, which were both greater than 98%. For the GVP constituents, the retentions were similar between pattern B and pattern C, although different constituents were retained to different degrees (average values of 33%, 52%, 79%, and 99% for ethylene, IP, CO, and AA, respectively). The differences in the retention between different constituents could be interpreted in terms of each constituent's physical properties such as volatility and solubility. In conclusion, the method described is suitable for studying the retention of selected mainstream smoke constituents in the respiratory tract of smokers.
Collapse
Affiliation(s)
- Shixia Feng
- Philip Morris USA, Research Center, Richmond, Virginia 23234, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Steeghs MML, Cristescu SM, Harren FJM. The suitability of Tedlar bags for breath sampling in medical diagnostic research. Physiol Meas 2006; 28:73-84. [PMID: 17151421 DOI: 10.1088/0967-3334/28/1/007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tedlar bags are tested for their suitability for breath sampling for medical diagnostic purposes. Proton-transfer reaction-mass spectrometry was used to monitor the changes in composition of various mixtures contained in custom-made black-layered Tedlar bags. Characteristic ions at m/z 88 and 95 amu reflect considerable pollution from the bag material. The pollutant found on m/z 88 amu is most probably N,N-dimethylacetamide, a latent solvent used in the production of Tedlar film. Gas composition losses during filling were found to range from 5 to 47%, depending on the compound. Once stored, the half-lives of methanol, acetaldehyde, acetone, isoprene, benzene, toluene and styrene were estimated between 5 and 13 days. Losses from breath samples (52 h after filling) were found to be less than 10%. No observable decrease was found for ethylene over 3 days, using laser-based photoacoustic detection. For the use of Tedlar bags, a standardized protocol is advised, where the time point of analysis is fixed for all samples and should be kept as close as possible to the time of sampling.
Collapse
Affiliation(s)
- Marco M L Steeghs
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
10
|
Abstract
A brief review of the use of acoustic detection methods in GC is presented. While a number of methods (some quite similar) have been developed for use as gas-phase sensors in various applications, this article focuses specifically on those techniques that have been used to detect analytes following their separation by GC. Overall, a number of "active" acoustic methods (which measure analytes through their interaction with a controlled external acoustic wave source) were reportedly used as GC detectors. These include ultrasonic, thickness shear mode, surface acoustic wave (SAW), and flexural plate wave methods. Conversely, "passive" acoustic methods (those that produce an acoustic signal through some chemical reaction with the analyte) have also been used as GC detectors. These include photoacoustic and acoustic flame methods of detection. Of the two major classifications, reports of active methods are far more prevalent. In particular, the usage of SAW techniques with GC is an area of research that has seen accelerated growth in recent years.
Collapse
Affiliation(s)
- Christine Mah
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
11
|
Filser JG, Kessler W, Csanády GA. The "Tuebingen desiccator" system, a tool to study oxidative stress in vivo and inhalation toxicokinetics. Drug Metab Rev 2004; 36:787-803. [PMID: 15554247 DOI: 10.1081/dmr-200033492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The "Tuebingen desiccator," a gas-tight all-glass closed chamber system (CCS), has been established in Herbert Remmer's Institute of Toxicology, University of Tuebingen, to investigate the mechanisms underlying the exhalation of endogenous volatile hydrocarbons in rats under oxidative stress. Remmer and associates confirmed the former view that ethane and n-pentane were derived from polyunsaturated fatty acids, and they demonstrated that propane, n-butane and isobutane were released from amino acids. Hydrocarbons exhaled following acute ethanol treatment of rats resulted predominantly from ethanol-dependent inhibition of their metabolism and partly from oxidation of proteins. Exhalation of alkanes in carbon tetrachloride exposed rats did not reflect liver damage, which was, however, directly linked to the amount of carbon tetrachloride metabolized. As has first been shown in Herbert Remmer's institute by investigating the fate of inhaled vinyl chloride in rats, the CSS proved to be also an excellent tool for studying toxicokinetics of inhaled gaseous xenobiotics by means of gas uptake experiments. Based on results gained by such studies, it was recently demonstrated that knowledge of compound-specific physicochemical and species-specific physiological parameters are often sufficient to predict important toxicokinetic properties of inhaled chemicals such as tissue burdens at steady state. By means of the CCS, not only kinetics of a parent gaseous substance but also of gaseous metabolites can be investigated in vivo, as exemplified for ethylene oxide and 1, 2-epoxy-3-butene, metabolites of ethylene and 1,3-butadiene, respectively. Gas uptake studies in closed chamber systems are now worldwide used for determining toxicokinetic parameters relevant for physiological toxicokinetic modeling.
Collapse
Affiliation(s)
- Johannes G Filser
- Institute of Toxicology, GSF National Research Center for Environment and Health, Neuherberg, Germany
| | | | | |
Collapse
|