1
|
Gonzalez RJ, Lin SA, Bednar B, Connolly B, LaFranco-Scheuch L, Mesfin GM, Philip T, Patel S, Johnson T, Sistare FD, Glaab WE. Vascular Imaging of Matrix Metalloproteinase Activity as an Informative Preclinical Biomarker of Drug-induced Vascular Injury. Toxicol Pathol 2018; 45:633-648. [PMID: 28830331 DOI: 10.1177/0192623317720731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lack of biomarkers specific to and either predictive or diagnostic of drug-induced vascular injury (DIVI) continues to be a major obstacle during drug development. Biomarkers derived from physiologic responses to vessel injury, such as inflammation and vascular remodeling, could make good candidates; however, they characteristically lack specificity for vasculature. We evaluated whether vascular remodeling-associated protease activity, as well as changes to vessel permeability resulting from DIVI, could be visualized ex vivo in affected vessels, thereby allowing for visual monitoring of the pathology to address specificity. We found that visualization of matrix metalloproteinase activation accompanied by increased vascular leakage in the mesentery of rats treated with agents known to induce vascular injury correlated well with incidence and severity of histopathological findings and associated inflammation as well as with circulating levels of tissue inhibitors of metalloproteinase 1 and neutrophil gelatinase-associated lipocalin. The weight of evidence approach reported here shows promise as a composite DIVI preclinical tool by means of complementing noninvasive monitoring of circulating biomarkers of inflammation with direct imaging of affected vasculature and thus lending specificity to its interpretation. These findings are supportive of a potential strategy that relies on translational imaging tools in conjunction with circulating biomarker data for high-specificity monitoring of VI both preclinically and clinically.
Collapse
Affiliation(s)
- Raymond J Gonzalez
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Shu-An Lin
- 2 MRL, West Point, Pennsylvania, USA.,3 Imaging, West Point, Pennsylvania, USA
| | - Bohumil Bednar
- 2 MRL, West Point, Pennsylvania, USA.,3 Imaging, West Point, Pennsylvania, USA
| | - Brett Connolly
- 2 MRL, West Point, Pennsylvania, USA.,3 Imaging, West Point, Pennsylvania, USA
| | - Lisa LaFranco-Scheuch
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Gebre M Mesfin
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Thomas Philip
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Shetal Patel
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Timothy Johnson
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Frank D Sistare
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Warren E Glaab
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| |
Collapse
|
2
|
Xue P, Yang X, Sun X, Ren G. Antifungal activity and mechanism of heat-transformed ginsenosides from notoginseng against Epidermophyton floccosum, Trichophyton rubrum, and Trichophyton mentagrophytes. RSC Adv 2017. [DOI: 10.1039/c6ra27542g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The improved antifungal activity of notoginseng can be attributed to the formation of less polar ginsenosides by heat transformation.
Collapse
Affiliation(s)
- Peng Xue
- Institute of Crop Sciences
- Chinese Academy of Agricultural Sciences
- Beijing
- People's Republic of China
- College of Food Science and Technology
| | - Xiushi Yang
- Institute of Crop Sciences
- Chinese Academy of Agricultural Sciences
- Beijing
- People's Republic of China
| | - Xiaoyan Sun
- Institute of Crop Sciences
- Chinese Academy of Agricultural Sciences
- Beijing
- People's Republic of China
- College of Food Science and Technology
| | - Guixing Ren
- Institute of Crop Sciences
- Chinese Academy of Agricultural Sciences
- Beijing
- People's Republic of China
- College of Food Science and Technology
| |
Collapse
|
3
|
Abstract
Substances historically thought to cause direct vascular injury in laboratory animals are a heterogeneous group of toxic agents with varied mechanisms of action. Morphologically, the reviewed agents can be broadly categorized into those targeting endothelial cell (ECs) and those targeting smooth muscle cells (SMCs). Anticancer drugs, immunosuppressants, and heavy metals are targeting primarily ECs while allylamine, β-aminopropionitrile, and mitogen-activated protein kinase kinase inhibitors affect mainly SMCs. It is now recognized that the pathogenicity of some of these agents is often mediated through intermediary events, particularly vasoconstriction. There are clear similarities in the clinical and microscopic findings associated with many of these agents in animals and man, allowing the use of animal models to investigate mechanisms and pathogenesis. The molecular pathogenic mechanisms and comparative morphology in animals and humans will be reviewed.
Collapse
|
4
|
Solé M, Hernandez-Guillamon M, Boada M, Unzeta M. p53 phosphorylation is involved in vascular cell death induced by the catalytic activity of membrane-bound SSAO/VAP-1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1085-94. [PMID: 18348872 DOI: 10.1016/j.bbamcr.2008.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/30/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Semicarbazide sensitive amine oxidase (SSAO) is a multifunctional enzyme present mainly in adipocytes, endothelial and smooth muscle cells. It metabolizes primary aliphatic and aromatic amines generating products able to contribute to cellular oxidative stress. SSAO is expressed in a membrane-bound form and is also present as a soluble enzyme in plasma. Both isoforms are increased in several pathologies, and the catalytic products generated by the soluble enzymatic activity can induce cytotoxicity of vascular cells in culture. We have analyzed whether the transmembrane form of the enzyme is able to produce a cytotoxic effect through methylamine oxidation. Since cells in culture lose the expression of this enzyme, we used an SSAO stably transfected smooth muscle cell line. Herein we report that cell treatment with the substrate methylamine induced a dose and time dependent cytotoxic effect. The tumor suppressor protein p53 played an important role in the molecular pathway involved in this cell death. Moreover, we also observed the induction of PUMA-alpha expression with mitochondrial Bcl-2 family proteins being affected, and final effector caspases being activated.
Collapse
Affiliation(s)
- Montse Solé
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, (08193) Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
5
|
Conklin DJ, Bhatnagar A, Cowley HR, Johnson GH, Wiechmann RJ, Sayre LM, Trent MB, Boor PJ. Acrolein generation stimulates hypercontraction in isolated human blood vessels. Toxicol Appl Pharmacol 2006; 217:277-88. [PMID: 17095030 PMCID: PMC3487162 DOI: 10.1016/j.taap.2006.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/16/2006] [Accepted: 09/22/2006] [Indexed: 10/24/2022]
Abstract
Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension-all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontraction in isolated rat coronary artery in a semicarbazide-sensitive amine oxidase activity (SSAO) dependent manner. Isolated human CABG blood vessels (internal mammary artery, radial artery, saphenous vein) were used to determine: (1) vessel responses and sensitivity to acrolein, allylamine, and H(2)O(2) exposure (1 microM-1 mM), (2) SSAO dependence of allylamine-induced effects using SSAO inhibitors (semicarbazide, 1 mM; MDL 72274-E, active isomer; MDL 72274-Z, inactive isomer; 100 microM), (3) the vasoactive effects of two other SSAO amine substrates, benzylamine and methylamine, and (4) the contribution of extracellular Ca(2+) to hypercontraction. Acrolein or allylamine but not H(2)O(2), benzylamine, or methylamine stimulated spontaneous and pharmacologically intractable hypercontraction in CABG blood vessels that was similar to clinical vasospasm. Allylamine-induced hypercontraction and blood vessel SSAO activity were abolished by pretreatment with semicarbazide or MDL 72274-E but not by MDL 72274-Z. Allylamine-induced hypercontraction also was significantly attenuated in Ca(2+)-free buffer. In isolated aorta of spontaneously hypertensive rat, allylamine-induced an SSAO-dependent contraction and enhanced norepinephrine sensitivity but not in Sprague-Dawley rat aorta. We conclude that acrolein generation in the blood vessel wall increases human susceptibility to vasospasm, an event that is enhanced in hypertension.
Collapse
Affiliation(s)
- D J Conklin
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The amine oxidases of mammalian tissues are a heterogeneous family of enzymes that metabolise various monoamines, diamines and polyamines produced endogenously, or being absorbed as dietary or xenobiotic substances. The heterogeneous class of amine oxidases can be divided on an arbitrary basis of the chemical nature of their cofactors into two types. Monoamine oxidase (MAO) and an intracellular form of polyamine oxidase (PAO) contain flavin adenine dinucleotide (FAD) as their cofactor, whereas a second group of amine oxidases without FAD contain a cofactor possessing one or more carbonyl groups, making them sensitive to inhibition by carbonyl reagents such as semicarbazide; this group includes semicarbazide-sensitive amine oxidase (SSAO) and the connective tissue enzyme, lysyl oxidase. This article focuses on the general aspects of MAO's contribution to the metabolism of foreign toxic substances including toxins and illegal drugs. Another main objective of this review is to discuss the properties of PAO and SSAO and their involvement in the metabolism of xenobiotics.
Collapse
Affiliation(s)
- Bin Gong
- University of Texas Medical Branch at Galveston, Department of Pathology, 77555, USA
| | | |
Collapse
|
7
|
Neiger JD, Crow TY, Partridge CR, Williams ES, Chao JT, Ramos KS, Meininger GA, Wilson E. Modulation of alpha4 integrin mRNA levels is coupled to deficits in vasomotor function in rat arterioles by allylamine. Life Sci 2005; 76:1895-905. [PMID: 15698866 DOI: 10.1016/j.lfs.2004.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Accepted: 11/11/2004] [Indexed: 11/17/2022]
Abstract
Allylamine, a selective cardiovascular toxin that induces oxidative stress, is known to alter expression of extracellular matrix and cell adhesion proteins that are central to arterial remodeling. Our goals were to determine whether AAM treatment in rats modulates integrin/matrix-dependent arteriolar function, and to what extent integrin expression correlated to these alterations. Integrins are transmembrane proteins that facilitate mechanical and molecular signaling between the extracellular matrix and cytoskeleton, and so are suitable candidates for involvement in phenotypic and functional alterations of smooth muscle in response to oxidative stress. Arg-Gly-Asp (RGD) and Leu-Asp-Val (LDV), two integrin-binding motifs found in ECM proteins such as collagens and fibronectin, are known to interact with integrins alphavbeta3 and alpha4beta1, respectively. Previously, we found that RGD containing peptides induce vasodilation through alphavbeta3, while LDV containing peptides induce vasoconstriction through alpha4beta1 of normal rat cremasteric arterioles. In allylamine-treated rats (AAM), the vasomotor response to LDV, but not RGD, was attenuated in a dose-dependent manner. To determine whether changes in integrin subunit mRNA levels correlated with these functional changes, we performed reverse transcription and Real-time PCR for alpha4 and beta3 integrin subunits on RNA isolated from single, first-order cremasteric arterioles. AAM treatment caused a dose-dependent decrease in alpha4 mRNA expression, but not beta3 mRNA expression, suggesting that the changes in vasomotor activity to LDV peptides may be attributable in part to reduced alpha4 expression upon exposure to AAM. These data are supported by similar decreases in alpha4integrin cell surface protein expression in cultured vascular smooth muscle cells treated either in vivo and in vitro with AAM.
Collapse
Affiliation(s)
- Jessemy D Neiger
- Department of Medical Physiology and Cardiovascular Research Institute, The Texas A and M University System Health Science Center, 366 Reynolds Bldg., College Station, TX 77843-1114, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
O'Sullivan J, Unzeta M, Healy J, O'Sullivan MI, Davey G, Tipton KF. Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do. Neurotoxicology 2004; 25:303-15. [PMID: 14697905 DOI: 10.1016/s0161-813x(03)00117-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The semicarbazide-sensitive amine oxidases (SSAO) (EC 1.4.3.6) were believed to be detoxifying enzymes, primarily involved in the oxidative deamination of endogenous amines, such as methylamine and aminoacetone, together with some xenobiotic amines. However, it appears that the reaction products may have important signalling functions in the regulation of cell development and glucose homeostasis. Furthermore, enzyme, from some sources, behaves as a cellular adhesion protein under inflammatory and it may also be involved in lipid transport. This review considers what is known about the activities and potential functions of this hardworking protein.
Collapse
Affiliation(s)
- Jeff O'Sullivan
- Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
9
|
Chao JT, Meininger GA, Patterson JL, Jones SAL, Partridge CR, Neiger JD, Williams ES, Kaufman SJ, Ramos KS, Wilson E. Regulation of alpha7-integrin expression in vascular smooth muscle by injury-induced atherosclerosis. Am J Physiol Heart Circ Physiol 2004; 287:H381-9. [PMID: 14988073 DOI: 10.1152/ajpheart.00939.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Injury of vascular smooth muscle cells (VSMCs) by allylamine (AAM) leads to phenotypic changes associated with atherogenic progression including increased proliferation, migration, and alterations in cell adhesion. In the present study, the relationship between AAM-induced vascular injury and expression of the alpha(7)-integrin subunit was investigated. The alpha(7)-mRNA and protein expression were examined using real-time RT-PCR, fluorescence-activated cell sorting analysis (FACS), immunohistochemistry, and immunoblotting. In cultured VSMCs from aortas of AAM-treated rats (70 mg/kg for 20 days), alpha(7)-mRNA levels were increased more than twofold compared with control cells. No change was seen in beta(1)-integrin expression. FACS analysis revealed increased cell surface expression of alpha(7)-protein (25 +/- 9%; *P < 0.05). AAM treatment of naive VSMCs enhanced alpha(7)-mRNA expression (2.4 +/- 0.7-fold, mean +/- SE; *P < 0.05). The increased alpha(7)-mRNA expression was attenuated by the amine oxidase inhibitor semicarbazide and the antioxidant pyrrolidine dithiocarbamate, which confirms a role for oxidative stress in modulating alpha(7)-expression. In vivo alpha(7)-mRNA and protein expression were enhanced in the aortas of AAM-treated rats. In addition, increased alpha(7)-integrin expression facilitated AAM VSMC adhesion to laminin more efficiently compared with control (51 +/- 2%; *P < 0.05). Chemical injury induced by AAM significantly enhances alpha(7)-integrin expression in VSMCs. These findings implicate for the first time the expression of alpha(7)-integrin during the response of VSMCs to vascular injury.
Collapse
Affiliation(s)
- Jun-Tzu Chao
- Division of Vascular Biology, Cardiovascular Research Institute, Texas A&M Uniersity System Health Science Center, 336 Joe Reynolds Medical Bldg., College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ranganna K, Yousefipour Z, Nasif R, Yatsu FM, Milton SG, Hayes BE. Acrolein activates mitogen-activated protein kinase signal transduction pathways in rat vascular smooth muscle cells. Mol Cell Biochem 2002; 240:83-98. [PMID: 12487375 DOI: 10.1023/a:1020659808981] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acrolein, a major component of cigarette smoke, an environmental pollutant and an endogenous lipid peroxidation product, has been implicated in the development of atherosclerosis. Although a link between vascular injury and acrolein has been indicated, the exact molecular mechanism of acrolein-induced toxicity to vasculature is unknown. In an effort to elucidate the molecular basis of acrolein-induced vascular toxicity, the possibility of the intracellular signaling system as one of the targets of acrolein-induced toxicity is investigated in the present study. Exposure of cultured rat vascular smooth muscle cells (VSMCs) to different doses of acrolein not only causes cytotoxicity but also alters cellular morphology in a concentration and time-dependent manner. VSMCs exhibit cytotoxicity to a narrow concentration range of 5-10 microg/ml and display no toxicity to 2 microg/ml acrolein even after 24 h of exposure. Furthermore, exposure to acrolein results in activation of members of the mitogen-activated protein kinase (MAPK) family and protein tyrosine kinases. The extracellular signal-regulated kinases 1 and 2 (ERK1/2), stress-activated protein kinases/c-jun NH2-terminal kinases (SAPK/JNK) and p38MAPK are effectively and transiently activated by acrolein in a concentration and time-dependent fashion. While all three MAPKs exhibit significant activation within 5 min of exposure to acrolein, maximum activation (ERK1/2 and p38MAPK) or close to maximum activation (SAPK/JNK) occurs on exposure to 5 microg/ml acrolein for 2 h. Acrolein-induced activation of MAPKs is further substantiated by the activation of transcription factors, c-jun and activator transcription factor-2 (ATF-2), by acrolein-activated SAPK/JNK and p38MAPK, respectively. Additionally several cellular proteins exhibit spectacular protein tyrosine phosphorylation, particularly in response to 2 and 5 microg/ml of acrolein. Interestingly, the acrolein-induced activation of MAPKs precedes acrolein-stimulated protein tyrosine phosphorylation, which occurs after 2 h of exposure to acrolein. However, the time course of maximum protein tyrosine phosphorylation profile corresponds to the peak activation profile of MAPKs. The activation of MAPKs and protein tyrosine phosphorylation by acrolein appears to be independent of acrolein-induced toxicity. VSMCs exposed to 2 microg/ml acrolein exhibit no toxicity but stimulates significant activation of MAPKs and protein tyrosine phosphorylation. Although acrolein-induced VSMC toxicity is not blocked by MAPK inhibitors, PD98059, an inhibitor of MAPK kinase and SB203580, an inhibitor of p38MAPK, eitheralone or in combination, each MAPK responds differently to the inhibitors. Most prominently, although SB203580, an inhibitor of both SAPK/JNK and p38MAPK, significantly inhibited acrolein-induced activation of p38MAPK, it also stimulated SAPK/JNK activation by acrolein alone and in combination with PD98059. These results provide the first evidence that the activation of both growth-regulated (ERK1/2) and stress-regulated (SAPK/JNK and p38MAPK) MAPKs as well as tyrosine kinases are involved in the mediation of acrolein-induced effects on VSMC, which may play a crucial role in vascular pathogenesis due to environmentally and endogenously produced acrolein.
Collapse
Affiliation(s)
- Kasturi Ranganna
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Components of fetal calf serum (FCS) are known to contribute to growth and maintenance of cultured cells. Fetal calf serum supplementation of media also may contribute to the cytotoxicity of other substances to cells grown in vitro. Semicarbazide-sensitive amine oxidase (SSAO) enzyme, present in FCS, metabolizes primary amines and contributes to amine cytotoxicity in vascular smooth muscle cells (VSMC). In cell culture experiments, the media used may greatly affect enzymic activities such as SSAO. In these studies, the SSAO activity in FCS, cultured rat aortic VSMC, and rat plasma was determined in the presence and absence of various culture media. Semicarbazide-sensitive amine oxidase activity in FCS (5-20 microl) was significantly enhanced (approximately 1.5- to 2-fold) in the presence of various culture media, with Dulbecco modified Eagle medium (DMEM), causing the greatest enhancement. Dulbecco modified Eagle medium enhanced the SSAO activity of cultured VSMC in two of the four passages but reduced activity in two passages. Activity in rat plasma was reduced by approximately 25% in the presence of DMEM. The concentrations of various media components, such as glucose, sodium pyruvate, pyridoxine.HCl, and L-glutamine, were not correlated with enhancement. This study identifies an important enhancement effect of culture media on the FCS enzyme, SSAO, although the media components responsible for the enhancement are yet to be identified.
Collapse
Affiliation(s)
- M B Trent
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | |
Collapse
|
12
|
Conklin DJ, Boyce CL, Trent MB, Boor PJ. Amine metabolism: a novel path to coronary artery vasospasm. Toxicol Appl Pharmacol 2001; 175:149-59. [PMID: 11543647 DOI: 10.1006/taap.2001.9238] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that allylamine (AA) induces subendocardial necrosis in mammals via coronary artery (CA) vasospasm. Additionally, AA toxicity is likely dependent on the enzyme semicarbazide-sensitive amine oxidase (SSAO), which is highly expressed in the aorta of rats and humans. We tested whether AA or acrolein (1, 10, 100, and 1000 microM), a highly reactive product of AA metabolism by SSAO, could contract CA or thoracic aorta (TA) in vitro and if the AA effects involved SSAO. AA or acrolein produced a similar pattern of responses in both CA and TA rings at 100 and 1000 microM, including (1) increased basal tension, (2) enhanced agonist-induced contraction (hypercontractility or vasospasm), (3) remarkable, agonist-induced slow wave vasomotion (vasospasm), and (4) irreversible reduction in vessel contractility after 1 mM exposure. Endothelium-dependent acetylcholine-induced relaxation was not altered during vasospasm in either vessel. Pretreatment with the SSAO inhibitor semicarbazide (1 mM; 10 min) prevented or significantly reduced the majority of AA's effects in both CA and TA rings and inhibited 100% of the SSAO activity present in rat TA and human CA and TA. We propose a two-step model for AA induction of CA vasospasm and resultant myocardial necrosis: (1) metabolism of AA to acrolein by coronary arterial SSAO activity and (2) acrolein induction of CA vasospasm independent of endothelial injury-a novel path.
Collapse
Affiliation(s)
- D J Conklin
- Biology Department, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702-4004, USA
| | | | | | | |
Collapse
|
13
|
Banchelli G, Ghelardini C, Raimondi L, Galeotti N, Pirisino R. Selective inhibition of amine oxidases differently potentiate the hypophagic effect of benzylamine in mice. Eur J Pharmacol 2001; 413:91-9. [PMID: 11173067 DOI: 10.1016/s0014-2999(01)00739-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In mice deprived of food for 12 h, the i.c.v. or i.p. administration of benzylamine, a substrate common to both monoamine oxidase B and semicarbazide-sensitive benzylamine oxidases, dose-dependently inhibited feeding. This effect was significantly potentiated by selective monoamine oxidase A and B inhibition, suggesting that central monoamines, known to be substrates of these enzymes may be released. The i.p. administration of semicarbazide-sensitive benzylamine oxidase inhibitors, B24 (3,5-ethoxy-4-aminomethylpyridine) and MDL 72274 ((E)-2-phenyl-3-chloroallylamine) strongly potentiated the effect of i.p. but not i.c.v.-administered benzylamine. The hypophagic effect of benzylamine was evaluated following i.c.v. administration, in comparison with the effect of the sympathomimetic compound amphetamine or the K(+) channel blocker tetraethylammonium, as reference compounds. Our results make it possible to define benzylamine as a centrally acting hypophagic compound devoid of amphetamine-like motor stimulatory effects and point to a role of B24 and MDL 72274 as specific peripheral enhancers of the pharmacological effects of benzylamine.
Collapse
Affiliation(s)
- G Banchelli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50134 Florence, Italy
| | | | | | | | | |
Collapse
|
14
|
Miller KP, Chen YH, Hastings VL, Bral CM, Ramos KS. Profiles of antioxidant/electrophile response element (ARE/EpRE) nuclear protein binding and c-Ha-ras transactivation in vascular smooth muscle cells treated with oxidative metabolites of benzo[a]pyrene. Biochem Pharmacol 2000; 60:1285-96. [PMID: 11008122 DOI: 10.1016/s0006-2952(00)00439-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of nuclear protein binding to the antioxidant/electrophile response element (ARE/EpRE) by benzo[a]pyrene (BaP) in vascular smooth muscle cells (vSMCs) is associated with transcriptional deregulation of c-Ha-ras. This response may be mediated by oxidative intermediates of BaP generated during the course of cellular metabolism. To test this hypothesis, the profile of ARE/EpRE protein binding and transactivation elicited by BaP was compared with that of 3-hydroxy BaP (3-OH BaP) (0.03 to 3.0 microM), BaP 7,8-dihydrodiol (BaP 7,8-diol) (0.03 to 3.0 microM), BaP 3,6-quinone (BaP 3,6-Q) (0.0003 to 3.0 microM), and H(2)O(2) (25 to 100 microM). Specific protein binding to the consensus c-Ha-ras ARE/EpRE was observed in vSMCs treated with all BaP metabolites at concentrations considerably lower than those required for the parent compound. H(2)O(2), a by-product of BaP 3,6-Q redox cycling, also increased binding to the ARE/EpRE. Treatment of vSMCs with oxidative BaP metabolites or H(2)O(2) transactivated the c-Ha-ras promoter in all instances, but the response was consistently half of the maximal induction elicited by BaP. Similar proteins cross-linked specifically to the consensus c-Ha-ras ARE/EpRE sequence in cells treated with BaP or its oxidative intermediates. The protein binding profile in the c-Ha-ras promoter was similar to that in the NADPH:quinone reductase gene (NQO(1)) and the glutathione S-transferase Ya gene (GSTYa) promoters, but the relative abundance of individual complexes was promoter-specific. We conclude that oxidative intermediates of BaP mediate activation of nuclear protein binding to ARE/EpRE and contribute to transcriptional de-regulation of c-Ha-ras in vSMCs.
Collapse
Affiliation(s)
- K P Miller
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | | | | | |
Collapse
|
15
|
Medina-Navarro R, Mercado-Pichardo E, Hernández-Pérez O, Hicks JJ. Identification of acrolein from the ozone oxidation of unsaturated fatty acids. Hum Exp Toxicol 1999; 18:677-82. [PMID: 10602392 DOI: 10.1191/096032799678839527] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
By-products of lipoperoxidation reactions may be associated with the genesis or the progression of several diseases as arteriosclerosis, diabetes and cancer, among many others. Acrolein, at first a widely distributed environmental pollutant, is currently known as a compound capable of being generated as a result of metabolic reactions within biological systems, highly toxic and the most electrophilic of the alpha, beta-unsaturated aldehydes formed during lipoperoxidation. In the present study: 1. The separation of acrolein and malondialdehyde was achieved at alkaline pH with the use of high voltage capillary electrophoresis in uncoated fused-silica capillaries. 2. It was demonstrated how the oxidation of fatty acids (arachidonic/linoleic) with ozone generates, in dose-dependent form, acrolein as one of the by-products of the lipoperoxidation process. The oxidation of open human erythrocyte membranes with ozone also generated acrolein. 3. After aldolic condensation, aldol-acrolein derivative has a positive reaction with 2-thiobarbituric acid (TBA) and shows a maximum absorption at 498 nm. This novel characteristic is used in its identification after the separation of the by-products. 4. It is possible to suggest that in the classic reaction of the denominated thiobarbituric acid reactive substances (TBARS), when used as an indicator of the degree of peroxidation in biological systems, a portion of acrolein could be present but dwarfed by the TBA-MDA adduct.
Collapse
Affiliation(s)
- R Medina-Navarro
- Specialties Hospital, Medical Research Unit in Biochemistry, Mexican Institute of Social Security, Mexico
| | | | | | | |
Collapse
|
16
|
He N, Singhal SS, Awasthi S, Zhao T, Boor PJ. Role of glutathione S-transferase 8-8 in allylamine resistance of vascular smooth muscle cells in vitro. Toxicol Appl Pharmacol 1999; 158:177-85. [PMID: 10406932 DOI: 10.1006/taap.1999.8700] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Allylamine (AA) is a cardiovascular toxin that causes lesions resembling atherosclerosis in several mammalian species. AA's toxic effects are thought to be exerted through its conversion to acrolein (AC), a potent electrophilic alkylating agent and atherogen. Semicarbazide sensitive amine oxidase (SSAO) catalyzes the oxidation of AA to AC. Glutathione S-transferases (GST) can catalyze the first step of detoxification of AC to mercapturic acid. Our previous studies suggest that the isozyme rGST8-8 is a principal defense against electrophilic stress exerted by alpha,beta-unsaturated carbonyls such as AC. In the present studies, we use cultured rat vascular smooth muscle cells (VSMC) to examine the relative roles of SSAO and rGST8-8 in the cytotoxic effects of the atherogens, AA and AC. Exposure derived AA-resistant cells (VSMC-AA) were 3.5-fold more resistant to AA when compared to VSMC and 1.8-fold more resistant to acrolein. SSAO activity was 2-fold higher in VSMC-AA than in VSMC. Consistent with the role of SSAO in biotransformation of AA, the SSAO inhibitor semicarbazide (SC; 100 microM) provided nearly complete protection from AA to both VSMC-AA and VSMC. As expected, SC did not affect the cytotoxicity of AC. Pretreatment with 100 microM sulfasalazine (SS), a GST inhibitor, potentiated AA and AC toxicity in both VSMC-AA and VSMC, indicating a protective role of GST. Catalytic efficiency (K(cat)/K(m)) of GSTs was higher toward 4-hydroxynonenal (4-HNE) (0.65 mM(-1) s(-1)) than toward 1-chloro-2, 4-dinitrobenzene (CDNB) (0.14 mM(-1) s(-1)) for VSMC. In VSMC-AA, K(cat)/K(m) was increased 4.1-fold toward CDNB (0.58 mM(-1) s(-1)) and 6-fold toward 4HNE (3.9 mM(-1) s(-1)) when compared to VSMC, indicating a preferential increase in VSMC-AA of GST isozymes which utilize alpha,beta-unsaturated carbonyls. Western blots confirmed induction of rGST8-8 in VSMC-AA. Expression of recombinant mGSTA4 (the mouse homolog of rGST8-8) in VSMC caused a 1.6-fold increase in resistance to AA and AC. This resistance was fully reversed by 50 microM SS. Our results demonstrate that GSTs are an important defense against electrophilic atherogens and that isozymes with high activity toward alpha,beta-unsaturated carbonyls are particularly important in the vascular wall.
Collapse
Affiliation(s)
- N He
- Departments of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-0609, USA
| | | | | | | | | |
Collapse
|
17
|
Sasaki H, Nakamura J, Koh N, Hamada Y, Hara T, Chaya S, Nakashima E, Naruse K, Kato K, Kasuya Y, Sakakibara F, Hotta N. Effect of vitamin E and allylamine on the proliferation of cultured aortic smooth muscle cells from streptozotocin-induced diabetic rats. Life Sci 1999; 64:2317-25. [PMID: 10374895 DOI: 10.1016/s0024-3205(99)00185-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To investigate the effect of vitamin E on the proliferation activity of vascular smooth muscle cells (SMCs) in diabetes mellitus, [3H]-thymidine incorporation was measured in cultured SMCs isolated from normal and streptozotocin-induced diabetic rats treated with or without vitamin E and/or allylamine. Untreated diabetic rats demonstrated significantly elevated concentrations of serum total cholesterol, triglycerides and malondialdehyde (MDA). Allylamine caused a further increase in serum MDA. Treatment with vitamin E decreased the serum concentrations of triglycerides and MDA in both allylamine-treated and -untreated diabetic rats. [3H]-Thymidine incorporation in cultured SMCs from diabetic rats was significantly increased compared with that from normal rats. SMCs from allylamine-treated diabetic rats showed an enhanced increase in thymidine incorporation compared with that from untreated diabetic rats. The increase in thymidine incorporation in SMCs from untreated and allylamine-treated diabetic rats was significantly reduced by the treatment with vitamin E. These observations suggest that vitamin E has a preventive effect on the proliferation of vascular SMCs in diabetes, and that this effect may be mediated through an enhancement of free radical scavenging.
Collapse
MESH Headings
- Allylamine/administration & dosage
- Allylamine/pharmacology
- Animals
- Antioxidants/administration & dosage
- Antioxidants/pharmacology
- Cell Division/drug effects
- Cells, Cultured
- DNA/biosynthesis
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Free Radical Scavengers/administration & dosage
- Free Radical Scavengers/pharmacology
- Male
- Malondialdehyde/blood
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Rats, Wistar
- Thymidine/metabolism
- Vitamin E/administration & dosage
- Vitamin E/blood
- Vitamin E/pharmacology
Collapse
Affiliation(s)
- H Sasaki
- The Third Department of Internal Medicine, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
He NG, Awasthi S, Singhal SS, Trent MB, Boor PJ. The role of glutathione S-transferases as a defense against reactive electrophiles in the blood vessel wall. Toxicol Appl Pharmacol 1998; 152:83-9. [PMID: 9772203 DOI: 10.1006/taap.1998.8511] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glutathione transferases (GSTs) are a family of ubiquitous enzymes that catalyze the conjugation of reduced glutathione (GSH) with reactive electrophiles. Rat vascular tissue contains GST isoforms that represent a major cellular defense mechanism against atherogenic alpha,beta-unsaturated aldehydes (Misra et al., Toxicol. Appl. Pharmacol. 133, 27-33, 1995). In this study we examined the role of GSTs in providing protection to cultured neonatal vascular smooth muscle cells (VSMCs) from the alpha,beta-unsaturated carbonyl cardiovascular toxins, allylamine and its metabolite, acrolein. Confluent cultured cells were exposed to 2 to 10 microM allylamine (a cardiovascular toxin that is metabolized in vivo and in vitro by VSMCs to the reactive aldehyde, acrolein) or to acrolein (2-10 microM) for 48 h; dose-cytotoxicity curves were generated utilizing a tetrazolium-dependent cytotoxicity assay. Concommittant treatment with sulfasalazine, an established inhibitor of GST, was found to markedly increase allylamine- or acrolein-induced cytotoxicity, decreasing the LC50 by two- to threefold at 50 to 100 microM sulfasalazine. A clonogenic survival assay in VSMCs exposed to these compounds for 4 h confirmed lethal toxicity and enhanced toxicity following cotreatment with sulfasalazine. Isobologram analysis (which statistically defines the limits of additivity of two independent treatments) showed that the sulfasalazine effect on both allylamine and acrolein cytotoxicity was supraadditive, or synergistic. Sulfasalazine was not cytotoxic to VSMCs in the range of concentrations that augmented acrolein or allylamine cytoxicity; total GST activity was inhibited, however, in a dose-dependent manner in that range. GST purified by GSH-affinity chromatography from pelleted untreated cells gave specific activities and kinetic constants consistent with those previously reported for rat aorta total GSTs. The catalytic efficiency (Kcat/Vm) was found to be much greater for 4-hydroxy-2-nonenal than for 1-chloro-2,4-dinitrobenzene (0.058 vs 0.4 s-1 mM-1). Western blot of purified total GSTs using antibodies against rec-mGSTA4-4 revealed a single band at 25 kDa, confirming the presence of a GST isozyme immunologically similar to rat GST8-8, which is known to utilize alpha,beta-unsaturated carbonyls as preferred substrates. Our data indicate that GSTs are an important defense in the vascular media, protecting blood vessels against alpha,beta-unsaturated carbonyl cardiovascular toxins that are involved in initiating atherosclerotic lesions.
Collapse
MESH Headings
- Acrolein/toxicity
- Aldehydes/pharmacology
- Allylamine/toxicity
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Survival/drug effects
- Cells, Cultured
- Dinitrochlorobenzene/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Glutathione Transferase/antagonists & inhibitors
- Glutathione Transferase/metabolism
- Inhibitory Concentration 50
- Isoenzymes/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Rats
- Rats, Sprague-Dawley
- Sulfasalazine/pharmacology
Collapse
Affiliation(s)
- N G He
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | |
Collapse
|
19
|
Lyles GA, Pino R. Properties and functions of tissue-bound semicarbazide-sensitive amine oxidases in isolated cell preparations and cell cultures. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 52:239-50. [PMID: 9564623 DOI: 10.1007/978-3-7091-6499-0_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The demonstration of semicarbazide-sensitive amine oxidase (SSAO) activity in some freshly-dispersed cell preparations and in particular types of cells grown in culture, provides increasing opportunities for investigating the importance of SSAO in various aspects of cellular function. Assays of benzylamine and methylamine metabolism in homogenates of cultured cells have established clearly that SSAO is expressed in rat and pig vascular (aortic) smooth muscle cells, as well as in rat non-vascular (anococcygeus, trachea) smooth muscle, brown and white adipocytes. However, to date little or no SSAO activity has been detected in cultures of human vascular smooth muscle cells grown from blood vessels (e.g. umbilical artery) known to contain the enzyme, and the reason for this is not yet apparent. However, those cell cultures expressing SSAO are offering useful experimental models for studying biochemical and toxicological consequences upon cellular function which may result from the metabolism of various aromatic and aliphatic amines suggested to be possible physiological and xenobiotic substrates of the enzyme.
Collapse
Affiliation(s)
- G A Lyles
- Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital and Medical School, Scotland, United Kingdom
| | | |
Collapse
|
20
|
Kumar D, Trent MB, Boor PJ. Allylamine and beta-aminopropionitrile induced aortic medial necrosis: mechanisms of synergism. Toxicology 1998; 125:107-15. [PMID: 9570326 DOI: 10.1016/s0300-483x(97)00168-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a model of aortic smooth muscle necrosis in adult Sprague Dawley rats by feeding them two vascular toxins (allylamine HCl, or AA, and beta-aminopropionitrile, or betaAPN) in concert for 10 days. Either toxin given alone does not cause aortic lesions. In order to shed light on the mechanism of the synergistic action of these two toxins we fed known modulators of AA or betaAPN toxicity to rats concurrently with the two toxins. As modulators we used (a) semicarbazide (98 mg/kg/day, given 4 h prior to toxins), a known inhibitor of the vascular enzyme SSAO which metabolizes AA; (b) L-cysteine (1.5% in rat chow, beginning 3 days prior to toxins), which has been shown to reduce the toxic effects of betaAPN; and (c) phenelzine sulphate (3 mg/kg/day, given 4 h prior to toxins), an inhibitor of SSAO and potentiator of betaAPN toxicity. Rats were fed various combinations of the toxins and modulators by gavage: water (n = 8); (AA, 100 mg/kg/day) AA + phenelzine (n = 8); AA + semicarbazide (n = 8); AA + L-cysteine (n = 11); (betaAPN, 1 g/kg/day) betaAPN + phenelzine (n = 8); betaAPN + semicarbazide (n = 8); betaAPN + L-cysteine (n = 8); (AA, 100 mg + betaAPN, 1 g/kg/day) AA + betaAPN + phenelzine (n = 9), AA + betaAPN + semicarbazide (n = 8); AA + betaAPN + L-cysteine (n = 12); phenelzine (3 mg/kg/day) (n = 4); semicarbazide (98 mg/kg/day) (n = 4) and L-cysteine (1.5% in rat chow) (n = 4). We found that phenelzine sulphate (a drug previously used in the treatment of hypertension) when given with AA reproduced the AA + betaAPN induced aortic lesions. Phenelzine + betaAPN caused no lesions, but when combined with AA + betaAPN, aortic lesions were intensified and included marked secondary degeneration of the vascular wall. Semicarbazide was found to completely obviate the vascular toxicity of AA + betaAPN. L-Cysteine feeding markedly decreased the incidence and severity of vascular lesions in AA + betaAPN treated rats, but did not change the incidence or severity of heart lesions caused by AA alone. These data indicate that the synergistic necrotizing toxicity of AA + betaAPN is primarily an AA effect. We postulate that some modulating influence of betaAPN (or phenelzine) on tissue distribution, metabolism, or detoxification pathways of AA increases AA's acute vascular toxicity, whereas semicarbazide offers protection by inhibiting the initial deamination of AA to a highly reactive aldehyde.
Collapse
Affiliation(s)
- D Kumar
- Department of Pathology, The University of Texas Medical Branch, Galveston 77555-0609, USA
| | | | | |
Collapse
|
21
|
Conklin DJ, Boor PJ. Allylamine cardiovascular toxicity: evidence for aberrant vasoreactivity in rats. Toxicol Appl Pharmacol 1998; 148:245-51. [PMID: 9473532 DOI: 10.1006/taap.1997.8331] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allylamine (AA, 3-aminopropene) is a specific cardiovascular toxin used experimentally to model myocardial necrosis and atherosclerosis. In these physiologic experiments, 10-day AA exposure (100 mg . kg-1 . day-1 by gavage) produced severe myocardial necrosis and increased heart rate but did not affect systolic blood pressure in rats. Mid-thoracic aortic ring segments were removed, and reactivity to contractile and relaxant agonists was tested. Aortic rings (approximately 3 mm) from AA-treated rats were contracted significantly more by high potassium (100 mM) and slightly more by norepinephrine (NE, 10 microM) than anatomically matched control aortic rings. No difference in aortic ring NE sensitivity or percentage relaxation in response to acetylcholine (1 microM) or sodium nitroprusside (100 microM) was detected between control and AA-treated rat aortic rings. Allylamine (1 microM-1 mM) induced modest, concentration-dependent contractions and tension oscillations in aortic rings from both control and AA-treated rats. Aortic rings from AA-treated rats, however, were more sensitive to AA. Vascular smooth muscle cells derived from control and AA-treated rat aortas had similar toxic sensitivity to AA in vitro using the MTT viability assay. The mechanisms by which AA exposure increased heart rate in vivo and contractility of aortic rings are unknown. These experiments support the previously proposed concept that AA-induced acute myocardial necrosis is due to coronary vasospasm and myocardial ischemia and cell injury.
Collapse
Affiliation(s)
- D J Conklin
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA
| | | |
Collapse
|
22
|
Parrish AR, Ramos KS. Differential processing of osteopontin characterizes the proliferative vascular smooth muscle cell phenotype induced by allylamine. J Cell Biochem 1997; 65:267-75. [PMID: 9136084 DOI: 10.1002/(sici)1097-4644(199705)65:2<267::aid-jcb12>3.0.co;2-f] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Repeated cycles of vascular injury by allylamine induce vascular lesions similar to those seen in atherosclerotic vessels, or following balloon catheterization. Vascular (aortic) smooth muscle cells harvested from allylamine-treated animals (i.e., allylamine cells) acquire a proliferative advantage relative to control counterparts that is associated with differential secretion and extracellular matrix sequestration of several proteins. In the present study, we have characterized two of these proteins (M(r) 52 and 36 kDa; pl 5.6 and 5.2, respectively) and their putative role in the expression of a proliferative phenotype. Because the physical properties of these proteins were comparable to those of osteopontin (OPN) and its thrombin-generated fragment(s), initial experiments were conducted to examine the expression and processing of OPN in this cell system. OPN mRNA expression was enhanced during early G1 cell cycle progression in allylamine cells relative to control counterparts. However, comparable amounts of OPN (M(r) 56, 52, and 50 kDa) were detected by Western analysis in media conditioned by both cell types using the OP-199 or B77-Rat1 antibodies to OPN. Allylamine cells, however, produced increased amounts of a 36 kDa protein recognized by the OP-199 antibody. Incubation of conditioned media from [35S]methionine-labeled allylamine cells with thrombin decreased the intensity of the 52 kDa protein, while increasing the intensity of a 36 kDa protein. RT-PCR analysis demonstrated expression of a 1.2 kb OPN band in both cell types consistent with the predicted size of OPN mRNA, suggesting that the 36 kDa fragment recognized by OP-199 in allylamine cells was likely not due to altered splicing of the OPN transcript. To determine if OPN and/or the 36 kDa fragment played a central role in the proliferative capacity of allylamine cells, the effect of an antibody to an alpha v integin subunit was examined. An antibody to the alpha v subunit, but not alpha 4, nullified the proliferative advantage of allylamine cells relative to control counterparts, suggesting that integrin-mediated signaling is a key feature of the proliferative phenotype of allylamine cells. We conclude that enhanced proteolytic cleavage of OPN may characterize the modulation of vascular SMCs to a more proliferative phenotype following chemical injury by allylamine.
Collapse
MESH Headings
- Allylamine/pharmacology
- Animals
- Cell Cycle
- Cell Division
- Chemical Phenomena
- Chemistry, Physical
- Culture Media, Conditioned
- Gene Expression
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Osteopontin
- Phenotype
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Sialoglycoproteins/genetics
- Sialoglycoproteins/metabolism
Collapse
Affiliation(s)
- A R Parrish
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station 77843-4466, USA
| | | |
Collapse
|
23
|
Lyles GA. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol 1996; 28:259-74. [PMID: 8920635 DOI: 10.1016/1357-2725(95)00130-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian plasma and tissues contain various soluble and membrane-bound enzymes which metabolize the synthetic amine benzylamine particularly well. The sensitivity of these enzymes to inhibition by semicarbazide and related compounds suggests that they contain a cofactor with a reactive carbonyl group, which has been proposed to be either pyridoxal phosphate, pyrroloquinoline quinone or (more recently) 6-hydroxydopa. It is not yet clear if all of these semicarbazide-sensitive amine oxidases (SSAOs) are copper-dependent enzymes. A variety of compounds have now been identified as relatively selective inhibitors to distinguish the SSAOs from other amine oxidases, in order to investigate the properties of SSAOs and their potential role in biogenic and xenobiotic amine metabolism in vivo. While plasma SSAO is soluble, most tissue SSAOs appear to be membrane-bound, probably plasmalemmal enzymes, which may be capable of metabolizing extracellular amines. Vascular (and non-vascular) smooth muscle cells have particularly high SSAO activity, although recently the enzyme has been found in other cell types (e.g. adipocytes, chondrocytes, odontoblasts) implying a functional importance not restricted solely to smooth muscle. The substrate specificity of plasma and tissue SSAOs shows considerable species-related variations. For example, while some endogenously-occurring aromatic amines such as tyramine and tryptamine are metabolized well by SSAO in homogenates of rat blood vessels, and also in vitro inhibition of SSAO can potentiate vasoconstrictor actions of these amines in rat vascular preparations, these amines are poor substrates for human SSAO, thus complicating attempts to generalize possible physiological roles for these enzymes. Vascular SSAO can metabolize the xenobiotic aliphatic amine, allylamine, to the cytotoxic aldehyde acrolein and this has been linked to the ability of allylamine administration to produce cardiovascular lesions in experimental animals, sometimes mimicking features of atherosclerotic disease. Recent studies showing that the endogenously-occurring aliphatic amines methylamine and aminoacetone are metabolized in vitro to formaldehyde and methylglyoxal, respectively, by SSAO in some animal (including human) tissues, suggest the possibility that toxicological consequences upon cellular function could result if such conversions occur in vivo.
Collapse
Affiliation(s)
- G A Lyles
- Department of Pharmacology and Clinical Pharmacology, University of Dundee, UK
| |
Collapse
|
24
|
Ramos KS, Parrish AR. Growth-related signaling as a target of toxic insult in vascular smooth muscle cells: implications in atherogenesis. Life Sci 1995; 57:627-35. [PMID: 7637534 DOI: 10.1016/0024-3205(95)00314-v] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aberrant smooth muscle cell proliferation is a focal point in the genesis and progression of atherosclerosis. To date, limited information is available on the molecular and cellular basis of the atherogenic response and the potential contribution of environmental chemicals to the overall process. This review highlights major findings in this laboratory on the mechanism(s) responsible for the acquisition of a proliferative phenotype in vascular smooth muscle cells following repeated cycles of treatment with allylamine and benzo(a)pyrene, known atherogenic chemicals. These agents share the ability to induce and promote aberrant proliferative behavior in smooth muscle cells, but appear to interfere with distinct molecular targets.
Collapse
Affiliation(s)
- K S Ramos
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station 77843-4466, USA
| | | |
Collapse
|
25
|
Lyles GA, Chalmers J. Aminoacetone metabolism by semicarbazide-sensitive amine oxidase in rat aorta. Biochem Pharmacol 1995; 49:416-9. [PMID: 7857329 DOI: 10.1016/0006-2952(94)00421-h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
High speed (105,000 g/60 min) membrane fractions from rat aorta homogenates metabolized the aliphatic amine aminoacetone (AA) to methylglyoxal (MG) with a Km of 19 +/- 3 microM, and Vmax of 510 +/- 169 nmol MG/hr/mg protein. This deaminating activity appears to be due to a semicarbazide-sensitive amine oxidase (SSAO), which is associated with smooth muscle cells in blood vessels of the rat and other species. AA was a competitive inhibitor (Ki of 28 +/- 6 microM) of the metabolism of benzylamine, a synthetic amine often used as an assay substrate for SSAO. AA is produced endogenously from mitochondrial metabolism of threonine and glycine, and thus could be a physiological substrate for SSAO, whereas the production of MG by SSAO could have cytotoxic implications for cellular function.
Collapse
Affiliation(s)
- G A Lyles
- Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital and Medical School, U.K
| | | |
Collapse
|
26
|
Lyles GA. Substrate-specificity of mammalian tissue-bound semicarbazide-sensitive amine oxidase. PROGRESS IN BRAIN RESEARCH 1995; 106:293-303. [PMID: 8584666 DOI: 10.1016/s0079-6123(08)61226-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the existence of a membrane-bound (probably plasmalemmal) semicarbazide-sensitive amine oxidase (SSAO) is well established in various mammalian tissues, and especially within vascular smooth muscle, its importance and the possible consequences of its metabolism of certain physiological and xenobiotic amines in vivo are under continuing investigation. In this respect, there are major species-related differences in substrate specificity determined in vitro, not only towards the synthetic amine benzylamine, but also towards some other aromatic amines (e.g. tyramine, tryptamine, 2-phenylethylamine, dopamine, histamine) which are possible endogenous substrates. Inhibition of SSAO can potentiate the pharmacological activity of some amines in isolated tissue (e.g. blood vessel) preparations from some species. Recent evidence has accumulated that SSAO may also be involved in metabolizing endogenous aliphatic amines such as methylamine and aminoacetone, focussing attention on the fact that the aldehyde products (formaldehyde and methylglyoxal, respectively) are potentially cytotoxic agents. Indeed, SSAO has been implicated in experimental models of cardiovascular toxicity involving conversion of the industrial aliphatic amine allylamine to acrolein. In summary, metabolism by SSAO may reduce the physiological/pharmacological effects of some amines, but the resulting metabolites (aldehydes, H2O2) may also have important actions.
Collapse
Affiliation(s)
- G A Lyles
- Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital and Medical School, UK
| |
Collapse
|
27
|
Callingham BA, Crosbie AE, Rous BA. Some aspects of the pathophysiology of semicarbazide-sensitive amine oxidase enzymes. PROGRESS IN BRAIN RESEARCH 1995; 106:305-21. [PMID: 8584667 DOI: 10.1016/s0079-6123(08)61227-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The widespread distribution of enzymes classed as semicarbazide-sensitive amine oxidases (SSAO enzymes) throughout a very wide range of eukaryotic as well as prokaryotic organisms encourages the aspirations of those who wish to demonstrate physiological, pathological or pharmacological importance. Such enzymes are found in several tissues of mammals, both freely soluble, as in blood plasma, and membrane-bound, for example, in smooth muscle and adipose tissue. While they are capable of deaminating many amines with the production of an aldehyde and hydrogen peroxide, doubt still surrounds the identity of the most important endogenous substrates for these enzymes. At present, methylamine and aminoacetone appear to head the list of candidates. The possibility that SSAO enzymes can convert amine substrates to highly toxic metabolites is illustrated by the production of acrolein from the xenobiotic amine, allylamine and formaldehyde and methylglyoxal from methylamine and aminoacetone, respectively. Activities of SSAO enzymes may be influenced by physiological changes, such as pregnancy or pathologically by disease states, including diabetes, tumours and burns. Increased deamination of aminoacetone by tissue and plasma SSAO enzymes as a result of its increased production from L-threonine in conditions such as exhaustion, starvation and diabetes mellitus may be harmful. Such dangers could be mitigated either physiologically by a compensatory reduction in SSAO activity or pharmacologically by treatment with inhibitors of SSAO.
Collapse
|
28
|
Ramos KS, Bowes RC, Ou X, Weber TJ. Responses of vascular smooth muscle cells to toxic insult: cellular and molecular perspectives for environmental toxicants. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1994; 43:419-40. [PMID: 7990168 DOI: 10.1080/15287399409531932] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the past several decades emphasis has been given to the elucidation of mechanisms involved in the onset and progression of cardiovascular disorders. Stroke, hypertension, and atherosclerosis continue to rank as primary causes of death in the western world. In the case of atherosclerosis, the preferential localization of atheroma to large- and medium-sized blood vessels and the sequence of events leading to plaque development have been well defined. Damage to luminal endothelial and/or medial smooth muscle cells, migration of inflammatory cells, diffusion or local delivery of mediators within the vessel wall, proliferation of vascular smooth muscle cells, and cellular accumulation of lipids are now recognized as hallmarks of the pathologic process. Although these events have been established with a fair degree of certainty, the mechanisms responsible for initiation of the atherosclerotic process are not yet completely understood. Environmental chemicals have come under increasing scrutiny as evidence continues to accumulate suggesting that toxic insult plays an important role in the initiation and/or progression of atherosclerotic disorders. This review focuses on various aspects of xenobiotic-induced vascular injury with emphasis on the toxic effects of allylamine and benzo[a]pyrene in smooth muscle cells, the primary cellular component of atherosclerotic lesions. Both of these chemicals modulate growth and differentiation programs in aortic smooth muscle cells and have been implicated in the development of atherosclerotic-like lesions in laboratory animals. The major findings from recent studies examining the cellular and molecular basis of toxicant-induced phenotypic modulation of vascular smooth muscle cells to a proliferative state and the role of oxidative metabolism, phospholipid turnover, protein kinase C, ras-related signal transduction, and matrix interactions in the vasculotoxic response to allylamine and benzo[a]pyrene are discussed.
Collapse
Affiliation(s)
- K S Ramos
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station 77843-4466
| | | | | | | |
Collapse
|
29
|
Abstract
Allylamine (AA) and beta-aminopropionitrile (beta APN) are well known vascular toxins with a demonstrated synergistic toxic effect, i.e. given together they cause extensive smooth muscle cell necrosis of the aortic media. In this study, we investigated the possibility that the enzymes involved in the separate toxicity of AA (semicarbazide-sensitive amine oxidase, or SSAO) and beta APN (lysyl oxidase, or LyO), could be the target(s) of their synergistic toxicity. Adult male Sprague-Dawley rats were given AA alone (AA), 100 mg/kg/day, beta APN alone (beta APN), 1 g/kg/day, or both chemicals (AA + beta APN) by gavage for 1, 2, 5 or 10 days. SSAO ahd LYO were assayed in aorta, lung, and bone. SSAO activity in aortas of rats treated with AA + beta APN showed a maximal decrease (40%) at 10 days; more moderate depression of SSAO was seen in lung and bone. LyO changes were most marked in aorta, where activities were consistently and markedly depressed in all rats receiving beta APN (either alone or in combined treatment). Similarly, the lung and bone LyO activity was depressed at all time points in rats receiving beta APN, but to an apparently lesser degree than in aorta. The most striking changes in in vivo enzyme activities were seen in the aorta, the major target organ in this model. No synergistic effect of the two toxins was seen in the depression of LyO enzyme activity, since there was no difference in the degree of enzyme inhibition present between rats given beta APN alone or AA + beta APN, indicating that inhibition of this enzyme is mainly due to the effect of beta APN. We suggest that AA is the primary toxin in this synergistic vasculotoxic effect. It is likely that some effect of beta APN on AA metabolism or detoxification mechanisms results in synergism.
Collapse
Affiliation(s)
- M B Trent
- Department of Pathology, University of Texas Medical Branch, Galveston 77555-0605
| | | |
Collapse
|
30
|
Affiliation(s)
- M S Benedetti
- Farmitalia Carlo Erba, R&D-Erbamont Group, Milan, Italy
| | | |
Collapse
|
31
|
Lyles GA. Properties of mammalian tissue-bound semicarbazide-sensitive amine oxidase: possible clues to its physiological function? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 41:387-96. [PMID: 7931255 DOI: 10.1007/978-3-7091-9324-2_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO), occurs not only in vascular smooth muscle but also in other cell types (e.g. adipocytes, chondrocytes, odontoblasts), probably in the plasma membrane. Although certain aromatic biogenic amines (e.g. tryptamine, tyramine, beta-phenyl-ethylamine) may be endogenous substrates for SSAO in species such as the rat, the weak activity of SSAO in human tissues towards these amines makes this less likely in man. However SSAO in human and rat vascular homogenates readily converts the aliphatic biogenic amines methylamine and aminoacetone to formaldehyde and methylglyoxal, respectively. Also the xenobiotic aliphatic amine allylamine produces cardiovascular damage in experimental animals by a mechanism which involves its deamination by SSAO to acrolein. Further metabolism of these toxic aliphatic aldehydes may involve glutathione-dependent pathways. Thus, SSAO may be involved not only in the removal of physiologically-active endogenous/xenobiotic amines, but resulting metabolite (aldehyde/H2O2?) formation could also influence cellular function.
Collapse
Affiliation(s)
- G A Lyles
- Department of Pharmacology and Clinical Pharmacology, Ninewells Hospital and Medical School, University of Dundee, United Kingdom
| |
Collapse
|
32
|
Ramos KS, Thurlow CH. Comparative cytotoxic responses of cultured avian and rodent aortic smooth muscle cells to allylamine. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1993; 40:61-76. [PMID: 8360943 DOI: 10.1080/15287399309531776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present studies were designed to compare the acute cytotoxic responses of cultured avian and rodent aortic smooth muscle cells (SMCs) to allylamine (AAM), a selective vascular toxin. SMCs were isolated from male Japanese quail or Sprague-Dawley rats and established in culture by standard procedures. Cellular glutathione (GSH) content and lactate dehydrogenase (LDH) leakage were used as indices of cytotoxicity. Exposure of avian and rodent SMCs in primary culture to AAM (0.2-200 microM) for 4 h was associated with a significant reduction in cellular GSH and enzyme leakage in cultures of both cell types. Increased exposure time to 24 h further depleted cellular GSH levels and enhanced the leakage of LDH in primary cultures of avian SMCs. In contrast, enhanced LDH leakage occurred without further GSH depletion in primary cultures of rodent SMCs upon exposure to AAM for 24 h. Removal of serum did not modulate the cytotoxic response profile of primary cultures of avian SMCs treated with 200 microM AAM, but was associated with marked elevation in cellular GSH levels and significant LDH leakage in rodent SMC cultures. The cytotoxic responses to 0.2-200 microM AAM in secondary cultures of avian SMCs were comparable to those observed in primary culture. In contrast, AAM-induced enzyme leakage did not consistently correlate with changes in GSH content in subcultured rodent SMCs. Challenge with 200 microM acrolein (ACR) for 4 h reduced the GSH content in avian, but not rodent, subcultures of SMCs. However, significant LDH leakage occurred in subcultures of both cell types upon exposure to ACR. Although hydrogen peroxide (H2O2) did not modulate GSH levels in avian or rodent cultures, leakage of LDH was observed in rat SMCs challenged with 200 microM H2O2. Removal of serum did not alter the cytotoxic responses of avian subcultures to 200 microM AAM for 24 h, but fully prevented cytotoxicity in rodent subcultures. These data suggest that potentially significant variations in the sequence of events leading to injury may exist between quail and rat aortic SMCs. These differences may contribute to the enhanced avian susceptibility to AAM-induced aortic injury in vivo.
Collapse
MESH Headings
- Allylamine/administration & dosage
- Allylamine/toxicity
- Animals
- Aorta
- Cells, Cultured
- Coturnix
- Glutathione/metabolism
- L-Lactate Dehydrogenase/metabolism
- Male
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- K S Ramos
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station 77843-4466
| | | |
Collapse
|
33
|
Awasthi S, Boor PJ. Semicarbazide protection from in vivo oxidant injury of vascular tissue by allylamine. Toxicol Lett 1993; 66:157-63. [PMID: 8430435 DOI: 10.1016/0378-4274(93)90090-k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Allylamine is a specific cardiovascular toxin that causes vascular and myocardial lesions. Previous studies showed that allylamine-induced chronic lesions are markedly reduced by semicarbazide, an inhibitor of semicarbazide-sensitive amine oxidase (SSAO), and that allylamine is metabolized to the aldehyde, acrolein, by SSAO. We hypothesized that inhibitors of SSAO might reduce the acute cardiovascular toxicity of allylamine. To test our hypothesis, we fed 150 mg/kg allylamine to semicarbazide-pretreated (3 h; 98 mg/kg) rats. Animals were sacrificed 1 h after allylamine treatment. Aorta, epicardium, and endocardium were assayed for SSAO, glutathione peroxidase, catalase, thiol status and lipid peroxidation. SSAO activity was decreased significantly in aorta, epicardium and endocardium. Activity was 30-times higher in aorta than in epicardium and endocardium. A striking decrease in malonaldehyde level (lipid peroxidation) was found in aorta of pretreated rats as compared to allylamine-only treated rats. The reduction of free-SH content in aortic mitochondria was also attenuated in pretreated rats. Changes were not so marked in epicardium and endocardium. These results suggest that in vivo pretreatment with semicarbazide at least partially protects aortic mitochondria from allylamine toxicity. The mechanism can be explained on the basis of the fact that semicarbazide inhibits acrolein formation in allylamine-treated rats.
Collapse
Affiliation(s)
- S Awasthi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0605
| | | |
Collapse
|
34
|
Earl L, Kesingland K, Davis K, Brocklehurst S, Jones H. Allylamine toxicity in embryonic myocardial myocyte reaggregate cultures: The role of extracellular metabolism by benzylamine oxidase. Toxicol In Vitro 1992; 6:405-16. [DOI: 10.1016/0887-2333(92)90047-u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1991] [Revised: 03/11/1992] [Indexed: 11/26/2022]
|
35
|
Boor PJ, Khan MF, Kaphalia BS, Jerrells TR, Ansari GA. Synergistic vascular toxicity and fatty acid anilides in the toxic oil syndrome. J Am Coll Cardiol 1991; 18:1824-8. [PMID: 1960335 DOI: 10.1016/0735-1097(91)90526-f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The underlying etiology of the toxic oil syndrome may be related to any of several toxic contaminants. The hypothesis is made that two or more toxic compounds may act synergistically to cause vascular damage in the toxic oil syndrome. To support this hypothesis, previous studies are reviewed concerning the remarkable synergistic toxic action of allylamine and beta-aminopropionitrile on the media of blood vessels. Although these toxins are not directly related to the toxic oil syndrome, this previous experimental work emphasizes the possibility that unexplored synergistic actions may be important. Furthermore, the hypothesis that contaminating fatty acid anilides in toxic oil undergo alterations during cooking is supported by high pressure liquid chromatographic analysis. The theoretic metabolism of fatty acid anilides is discussed. Recent data concerning the toxic actions of the anilides of oleic and linoleic acid are given. These data suggest that these anilides induce immunologic alterations that may be similar to those seen in the toxic oil syndrome. In addition, the heated anilides appear to have increased toxicity, supporting the concept that the use of toxic oil in cooking may increase its toxicity.
Collapse
Affiliation(s)
- P J Boor
- Department of Pathology, University of Texas Medical Branch, Galveston 77550
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Sklar JL, Anderson PG, Boor PJ. Allylamine and acrolein toxicity in perfused rat hearts. Toxicol Appl Pharmacol 1991; 107:535-44. [PMID: 2000639 DOI: 10.1016/0041-008x(91)90316-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We assessed the in vitro toxicity of the cardiovascular toxicant allylamine, and its presumed in vivo metabolite, acrolein. In dose-response experiments, rat hearts perfused with allylamine (10-30 mM) or acrolein (0.01-3.0 mM) for 2 hr were assessed by standard histopathology and assay of creatine kinase (CK) in effluent. Allylamine-perfused hearts showed no grossly apparent functional abnormality except at 30 mM, but acrolein-perfused hearts beat irregularly and stopped rapidly (within 15 min at 0.01-0.3 mM, and by 5 min at 3.0 mM). Extensive contraction band necrosis and an apparently dose-dependent loss of CK were evident in allylamine-perfused hearts, whereas acrolein perfusion resulted in no morphologic lesions or CK loss. Additional experiments, however, suggest that acrolein perfusion results in denaturation of CK, making it undetectable in effluent. In hemodynamic preparations of rat hearts perfused with 10 mM allylamine, contraction band necrosis and extensive mitochondrial changes were seen by electron microscopy. Allylamine caused a marked rise in left ventricular pressure at 5 and 10 min, followed by a slow decline to a markedly depressed level at the end of 2 hr. End diastolic pressure rose steadily throughout the 2-hr perfusion. Coronary flow was similar in control and allylamine-perfused hearts for 1 hr, but then declined slowly. These experiments suggest that vascular spasm or alterations in coronary flow are not the cause of allylamine-induced myocardial damage. Allylamine's toxic effect on myocardium in this model may be mediated through its metabolism and subsequent injurious intracellular events.
Collapse
Affiliation(s)
- J L Sklar
- Department of Pathology, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
38
|
Allylamine toxicity in embryonic myocardial myocyte reaggregate cultures. Toxicol In Vitro 1991; 5:145-56. [DOI: 10.1016/0887-2333(91)90035-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/1990] [Revised: 10/24/1990] [Indexed: 11/22/2022]
|
39
|
Ramos K. Comparative angiotoxic responses of avian and rodent species in vivo: implications in atherogenesis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1990; 29:357-76. [PMID: 2325152 DOI: 10.1080/15287399009531398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As the intrinsic susceptibility to atherosclerosis differs among several taxonomic groups, the present studies were conducted to compare the angiotoxic responses of atherosclerosis-susceptible (quail) and -resistant (rat) animals to allylamine, a selective cardiovascular toxin. Japanese quail (125-150 g) and Sprague-Dawley rats (175-200 g) were gavaged daily for 1, 7, or 20 d with allylamine HCl (0.7, 7, and 70 mg/kg) or tap water. At the ultrastructural level, subchronic exposure of quail and rats to allylamine was associated with dose- and time-dependent disruption of the structural integrity of aortas. These alterations correlated with fluctuations in the nonprotein thiol content of avian and rodent vessels. Angiotoxicity was not associated with alterations in serum cholesterol content. At all times and doses tested, quail were more susceptible than rats to the angiotoxic effects of allylamine. Although the avian sensitivity to toxic insult was greater than that of rodents, quail aortic homogenates bioactivated allylamine to a lesser extent than rat homogenates. Collectively, these results suggest that the aortic sensitivity to toxic insult in avian and rodent species correlates with their intrinsic susceptibility to vascular injury.
Collapse
Affiliation(s)
- K Ramos
- Department of Pharmacology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock
| |
Collapse
|
40
|
Blicharski JR, Lyles GA. Semicarbazide-sensitive amine oxidase activity in rat aortic cultured smooth muscle cells. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1990; 32:337-9. [PMID: 2128506 DOI: 10.1007/978-3-7091-9113-2_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolism of 5 microM benzylamine (BZ) by rat aortic cultured smooth muscle cells (SMC) is inhibited almost completely by 10(-3) M semicarbazide and 10(-6) M propargylamine, but is little affected by 10(-4) M and 10(-3) M pargyline and clorgyline, indicating BZ metabolism predominantly by the semicarbazide-sensitive amine oxidase (SSAO) previously characterized in rat aortic homogenates. Km values of 7-9 microM for BZ metabolism by SSAO in SMC cultures, indicate similar, if not identical properties, to the enzyme in the parent blood vessel.
Collapse
Affiliation(s)
- J R Blicharski
- Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital and Medical School, United Kingdom
| | | |
Collapse
|
41
|
Abstract
Although it has long been thought that environmental toxins may play an underlying role in vascular diseases such as atherosclerosis, this concept is not supported by any clear-cut experimental evidence of toxic metabolism by cardiovascular enzymes. In this study, we demonstrate that allylamine, a selective cardiovascular toxin in vivo, is actively metabolized in vitro by a purified vascular enzyme (semicarbazide-sensitive amine oxidase), which has been localized recently to vascular smooth muscle cells. Oxidative deamination of allylamine to a highly toxic aldehyde, acrolein, was blocked through enzyme inhibition by semicarbazide-sensitive amine oxidase suggests that this vascular enzyme's physiological role may include metabolism of exogenous amines.
Collapse
Affiliation(s)
- P J Boor
- Department of Pathology, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|