1
|
Lai C, Dai X, Tian D, Lv S, Tang J. Chemistry and bioactivity of marine algal toxins and their geographic distribution in China. Fitoterapia 2024; 178:106193. [PMID: 39187028 DOI: 10.1016/j.fitote.2024.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Marine algal toxins are usually produced by some toxic algae during toxic algal blooms which can be accumulated in marine organisms through food chains, leading to contamination of aquatic products. Consumption of the contaminated seafood often results in poisoning in human being. Although algal toxins are harmful for human health, their unique structures and broad spectrum of biological activities have attracted widespread attention of chemists and pharmacologists. Marine algal toxins are not only a reservoir of biological active compound discovery, but also powerful tools for exploring life science. This review first provides a comprehensive overview of the chemistry and biological activities of marine algal toxins, with the aim of providing references for biological active compound discovery. Additionally, typical shellfish poisoning incidents occurred in China in the past 15 years and the geographical distribution of the marine algal toxins in China Sea are discussed, for the purpose of enhancing public awareness of the possible dangers of algal toxins.
Collapse
Affiliation(s)
- Changrong Lai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Xiaojun Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Songhui Lv
- Research Center of Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou 510362, China.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Xiao JX, Li FX, Ren SJ, Qu J. Studies on the Biomimetic Synthesis of Marine Ladder Polyethers via Endo-Selective Epoxide-to-Epoxonium Ring-Opening Cascades. Angew Chem Int Ed Engl 2024; 63:e202403597. [PMID: 38752455 DOI: 10.1002/anie.202403597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/16/2024]
Abstract
Marine ladder polyethers have attracted the attention of chemists and biologists because of their potent biological activities. Synthetic chemists have attempted to construct their polyether frameworks by epoxide ring-opening cascades, as Nakanishi hypothesis describes. However, Baldwin's rules of ring closure state that exo-selective intramolecular cyclization of epoxy alcohols is preferred over endo-selective cyclization. Herein, we investigated epoxide ring-opening cascades of polyepoxy alcohols in [EMIM]BF4/PFTB (1-ethyl-3-methylimidazolium tetrafluoroborate /perfluoro-tert-butyl alcohol) and found that all-endo products were formed via epoxide-to-epoxonium ring-opening cyclizations (not restricted by Baldwin's rules, which only apply to intramolecular hydroxyl-to-epoxide cyclizations). We determined that the key factor enabling polyepoxy alcohols to undergo a high proportion of all-endo-selective cyclization was inhibition of exo-selective hydroxyl-to-epoxide cyclization starting from the terminal hydroxyl group of a polyepoxy alcohol. By introducing a slow-release protecting group to the terminal hydroxyl group, we could markedly increase the cyclization yields of polyether fragments with hydrogen atoms at the ring junctions. For the first time, we constructed consecutively fused six-membered-ring and fused seven-, eight-, and nine-membered-ring polyether fragments by epoxide-to-epoxonium ring-opening cyclizations through the addition of a suitable Lewis acid. We also suggest that the biosynthesis of marine ladder polyethers may proceed via epoxide-to-epoxonium ring-opening cyclization of polyepoxide.
Collapse
Affiliation(s)
- Jia-Xi Xiao
- College of Chemistry, Nankai University, The State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Feng-Xing Li
- College of Chemistry, Nankai University, The State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Shu-Jian Ren
- College of Chemistry, Nankai University, The State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Jin Qu
- College of Chemistry, Nankai University, The State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| |
Collapse
|
3
|
Estevez P, Oses-Prieto J, Castro D, Penin A, Burlingame A, Gago-Martinez A. First Detection of Algal Caribbean Ciguatoxin in Amberjack Causing Ciguatera Poisoning in the Canary Islands (Spain). Toxins (Basel) 2024; 16:189. [PMID: 38668614 PMCID: PMC11054928 DOI: 10.3390/toxins16040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Ciguatera Poisoning (CP) is an illness associated with the consumption of fish contaminated with potent natural toxins found in the marine environment, commonly known as ciguatoxins (CTXs). The risk characterization of CP has become a worldwide concern due to the widespread expansion of these natural toxins. The identification of CTXs is hindered by the lack of commercially available reference materials. This limitation impedes progress in developing analytical tools and conducting toxicological studies essential for establishing regulatory levels for control. This study focuses on characterizing the CTX profile of an amberjack responsible for a recent CP case in the Canary Islands (Spain), located on the east Atlantic coast. The exceptional sensitivity offered by Capillary Liquid Chromatography coupled with High-Resolution Mass Spectrometry (cLC-HRMS) enabled the detection, for the first time in fish contaminated in the Canary Islands, of traces of an algal ciguatoxin recently identified in G. silvae and G. caribeaus from the Caribbean Sea. This algal toxin was structurally characterized by cLC-HRMS being initially identified as C-CTX5. The total toxin concentration of CTXs was eight times higher than the guidance level proposed by the Food and Drug Administration (0.1 ng C-CTX1/g fish tissue), with C-CTX1 and 17-hydroxy-C-CTX1 as major CTXs.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (P.E.); (J.O.-P.); (A.B.)
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (P.E.); (J.O.-P.); (A.B.)
| | - David Castro
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| | - Alejandro Penin
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (P.E.); (J.O.-P.); (A.B.)
| | - Ana Gago-Martinez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| |
Collapse
|
4
|
Kaneko M, Yamashita A, Yasuno Y, Yamauchi K, Sakai K, Oishi T. Synthesis of the MN Ring of Caribbean Ciguatoxin C-CTX-1 via Desymmetrization by Acetal Formation. Org Lett 2024; 26:855-859. [PMID: 38241474 DOI: 10.1021/acs.orglett.3c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The MN ring of Caribbean ciguatoxin C-CTX-1 was synthesized from a meso-syn-2,7-dimethyloxepane derivative corresponding to the M ring via desymmetrization by acetal formation with a camphor derivative, followed by construction of the N ring via the Horner-Wadsworth-Emmons reaction and acetal formation. The meso-syn-2,7-dimethyloxepane derivative was synthesized via photoinduced electrocyclization of a conjugated exo-diene under flow conditions, giving a cyclobutene derivative, followed by ring expansion via oxidative cleavage and diastereoselective reduction of a β-hydroxy ketone.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsuhiro Yamashita
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoko Yasuno
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosei Yamauchi
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tohru Oishi
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Clausing RJ, Ben Gharbia H, Sdiri K, Sibat M, Rañada-Mestizo ML, Lavenu L, Hess P, Chinain M, Bottein MYD. Tissue Distribution and Metabolization of Ciguatoxins in an Herbivorous Fish following Experimental Dietary Exposure to Gambierdiscus polynesiensis. Mar Drugs 2023; 22:14. [PMID: 38248639 PMCID: PMC10817614 DOI: 10.3390/md22010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Ciguatoxins (CTXs), potent neurotoxins produced by dinoflagellates of the genera Gambierdiscus and Fukuyoa, accumulate in commonly consumed fish species, causing human ciguatera poisoning. Field collections of Pacific reef fish reveal that consumed CTXs undergo oxidative biotransformations, resulting in numerous, often toxified analogs. Following our study showing rapid CTX accumulation in flesh of an herbivorous fish, we used the same laboratory model to examine the tissue distribution and metabolization of Pacific CTXs following long-term dietary exposure. Naso brevirostris consumed cells of Gambierdiscus polynesiensis in a gel food matrix over 16 weeks at a constant dose rate of 0.36 ng CTX3C equiv g-1 fish d-1. CTX toxicity determination of fish tissues showed CTX activity in all tissues of exposed fish (eight tissues plus the carcass), with the highest concentrations in the spleen. Muscle tissue retained the largest proportion of CTXs, with 44% of the total tissue burden. Moreover, relative to our previous study, we found that larger fish with slower growth rates assimilated a higher proportion of ingested toxin in their flesh (13% vs. 2%). Analysis of muscle extracts revealed the presence of CTX3C and CTX3B as well as a biotransformed product showing the m/z transitions of 2,3-dihydroxyCTX3C. This is the first experimental evidence of oxidative transformation of an algal CTX in a model consumer and known vector of CTX into the fish food web. These findings that the flesh intended for human consumption carries the majority of the toxin load, and that growth rates can influence the relationship between exposure and accumulation, have significant implications in risk assessment and the development of regulatory measures aimed at ensuring seafood safety.
Collapse
Affiliation(s)
- Rachel J. Clausing
- Dipartimento di Scienze della Terra dell’Ambiente e della Vita, Università degli Studi di Genova, 16132 Genova, Italy
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Hela Ben Gharbia
- IAEA Marine Environment Laboratories, International Atomic Energy Agency, 98000 Monaco, Monaco; (H.B.G.); (K.S.); (L.L.)
| | - Khalil Sdiri
- IAEA Marine Environment Laboratories, International Atomic Energy Agency, 98000 Monaco, Monaco; (H.B.G.); (K.S.); (L.L.)
| | - Manoëlla Sibat
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France; (M.S.); (P.H.)
| | - Ma. Llorina Rañada-Mestizo
- IAEA Collaborating Center on Harmful Algal Bloom (HAB) Studies, Chemistry Research Section, Department of Science and Technology, Philippine Nuclear Research Institute (DOST-PNRI), Diliman, Quezon City 1101, Philippines;
| | - Laura Lavenu
- IAEA Marine Environment Laboratories, International Atomic Energy Agency, 98000 Monaco, Monaco; (H.B.G.); (K.S.); (L.L.)
| | - Philipp Hess
- Ifremer, ODE/PHYTOX/METALG, Rue de l’île d’Yeu, F-44300 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Laboratoire des Biotoxines Marines, UMR 241 EIO, Institut Louis Malardé, BP 30, Papeete-Tahiti 98713, French Polynesia;
| | | |
Collapse
|
6
|
Costa PR, Churro C, Rodrigues SM, Frazão B, Barbosa M, Godinho L, Soliño L, Timóteo V, Gouveia N. A 15-Year Retrospective Review of Ciguatera in the Madeira Islands (North-East Atlantic, Portugal). Toxins (Basel) 2023; 15:630. [PMID: 37999493 PMCID: PMC10674775 DOI: 10.3390/toxins15110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new threat challenged scientists and regulators, as methods for toxic microalgae analyses and ciguatoxin (CTX) detection were not implemented. To minimise the risk of ciguatera, the Madeira Archipelago authorities interdicted fisheries in Selvagens Islands and banned the capture of amberjacks weighing more than 10 kg in the entire region of Madeira Archipelago. The accurate identification and quantification of the benthic toxin-producing algae species spreading to new areas require efforts in terms of both microscopy and molecular techniques. Two ciguatera-causing dinoflagellates, Gambierdiscus excentricus and Gambierdiscus australes, were identified in the Madeira Island and Selvagens sub-archipelago, respectively. Regarding the CTX analysis (N2a cell-based assay and LC-MS) in fish, the results indicate that the Selvagens Islands are a ciguatera risk area and that fish vectoring CTX are not limited to top predator species. Nevertheless, advances and improvements in screening methods for the fast detection of toxicity in seafood along with certified reference material and sensitive and selective targeted analytical methods for the determination of CTX content are still pending. This study aims to revise the occurrence of ciguatera cases in the Madeira Archipelago since its first detection in 2008, to discuss the risk management strategy that was implemented, and to provide a summary of the available data on the bioaccumulation of CTX in marine fish throughout the marine food web, taking into consideration their ecological significance, ecosystem dynamics, and fisheries relevance.
Collapse
Affiliation(s)
- Pedro Reis Costa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Catarina Churro
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal
| | - Susana Margarida Rodrigues
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Bárbara Frazão
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Miguel Barbosa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Lia Godinho
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Lucía Soliño
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Viriato Timóteo
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo nº 79, S. Martinho, 9000-254 Funchal, Portugal; (V.T.); (N.G.)
| | - Neide Gouveia
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo nº 79, S. Martinho, 9000-254 Funchal, Portugal; (V.T.); (N.G.)
| |
Collapse
|
7
|
Yokozeki T, Hama Y, Fujita K, Igarashi T, Hirama M, Tsumuraya T. Evaluation of relative potency of calibrated ciguatoxin congeners by near-infrared fluorescent receptor binding and neuroblastoma cell-based assays. Toxicon 2023; 230:107161. [PMID: 37201801 DOI: 10.1016/j.toxicon.2023.107161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Ciguatera fish poisoning (CFP) is a foodborne illness affecting > 50,000 people worldwide annually. It is caused by eating marine invertebrates and fish that have accumulated ciguatoxins (CTXs). Recently, the risk of CFP to human health, the local economy, and fishery resources have increased; therefore, detection methods are urgently needed. Functional assays for detecting ciguatoxins in fish include receptor binding (RBA) and neuroblastoma cell-based assay (N2a assay), which can detect all CTX congeners. In this study, we made these assays easier to use. For RBA, an assay was developed using a novel near-infrared fluorescent ligand, PREX710-BTX, to save valuable CTXs. In the N2a assay, a 1-day assay was developed with the same detection performance as the conventional 2-day assay. Additionally, in these assays, we used calibrated CTX standards from the Pacific determined by quantitative NMR for the first time to compare the relative potency of congeners, which differed significantly among previous studies. In the RBA, there was almost no difference in the binding affinity among congeners, showing that the differences in side chains, stereochemistry, and backbone structure of CTXs did not affect the binding affinity. However, this result did not correlate with the toxic equivalency factors (TEFs) based on acute toxicity in mice. In contrast, the N2a assay showed a good correlation with TEFs based on acute toxicity in mice, except for CTX3C. These findings, obtained with calibrated toxin standards, provide important insights into evaluating the total toxicity of CTXs using functional assays.
Collapse
Affiliation(s)
- Toshiaki Yokozeki
- Japan Food Research Laboratories, Osaka Saito Laboratory, 7-4-41 Saitoasagi, Ibaraki shi, Osaka, 567-0085, Japan; Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan; Osaka Metropolitan University, Department of Biological Chemistry, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan
| | - Yuka Hama
- Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan
| | - Kazuhiro Fujita
- Japan Food Research Laboratories, Osaka Saito Laboratory, 7-4-41 Saitoasagi, Ibaraki shi, Osaka, 567-0085, Japan
| | - Tomoji Igarashi
- Japan Food Research Laboratories, Tama Laboratory, 6-11-10 Nagayama, Tama-shi, Tokyo, 206-0025, Japan
| | - Masahiro Hirama
- Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan; Osaka Metropolitan University, Department of Biological Chemistry, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan
| | - Takeshi Tsumuraya
- Osaka Prefecture University, Department of Biological Science, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan; Osaka Metropolitan University, Department of Biological Chemistry, Graduate School of Science, 1-2 Gakuen-cho, Sakai-shi, Osaka, 599-8570, Japan.
| |
Collapse
|
8
|
Estevez P, Oses Prieto J, Burlingame A, Gago Martinez A. Characterization of the Ciguatoxin Profile in Fish Samples from the Eastern Atlantic Ocean using Capillary Liquid Chromatography-High Resolution Mass Spectrometry. Food Chem 2023; 418:135960. [PMID: 36965390 DOI: 10.1016/j.foodchem.2023.135960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Ciguatera Poisoning is an emerging risk in the east Atlantic Ocean. Despite characterization efforts, the complete profile of ciguatoxin chemical species in these waters is still unknown. These efforts have been complicated by a lack of reference materials and scarcity of fish contaminated with high levels of ciguatoxins. Development and application of analytical methods with enhanced selectivity and sensitivity is essential for ciguatoxin characterization. Here, we developed an analytical characterization approach using capillary liquid chromatography coupled to high resolution mass spectrometry applied to reference materials obtained from ciguatoxin contaminated fish. Capillary LC coupled mass spectrometry resulted in increased sensitivity leading to the confirmation of C-CTX1 as the principal ciguatoxin present in these samples. We also detected and structurally characterized minor C-CTXs analogues consisting of C-CTX3/4, hydroxy-, didehydro-, and methoxy- metabolites.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain.
| | - Juan Oses Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ana Gago Martinez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
9
|
Sasaki M, Seida M, Umehara A. Convergent and Scalable Synthesis of the ABCDE-Ring Fragment of Caribbean Ciguatoxin C-CTX-1. J Org Chem 2023; 88:403-418. [PMID: 36537759 DOI: 10.1021/acs.joc.2c02414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Convergent and scalable synthesis of the ABCDE-ring fragment of Caribbean ciguatoxin C-CTX-1, the major causative toxin for ciguatera poisoning in the Caribbean Sea and the Northeast Atlantic areas, is described in detail. The key features of the synthesis include an iterative use of 2,2,6,6-tetramethyl piperidine 1-oxyl (TEMPO)/PhI(OAc)2-mediated oxidative lactonization and Suzuki-Miyaura coupling en route to the DE-ring system and a convergent fragment coupling to form the ABCDE-ring skeleton via the Suzuki-Miyaura coupling strategy.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Miku Seida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
10
|
Campàs M, Leonardo S, Rambla-Alegre M, Sagristà N, Vaya R, Diogène J, Torréns M, Fragoso A. Cyclodextrin polymer clean-up method for the detection of ciguatoxins in fish with cell-based assays. Food Chem 2022; 401:134196. [PMID: 36115230 DOI: 10.1016/j.foodchem.2022.134196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 12/26/2022]
Abstract
Ciguatoxins (CTXs) are marine toxins produced by microalgae of the genera Gambierdiscus and Fukuyoa, which are transferred through the food webs, reaching humans and causing a poisoning known as ciguatera. The cell-based assay (CBA) is commonly used for their detection because of its high sensitivity and the provided toxicological information. However, matrix effects may interfere in the CBA. In this work, γ-cyclodextrin-hexamethylene diisocyanate (γ-CD-HDI), γ-cyclodextrin-epichlorohydrin (γ-CD-EPI) and γ-CD-EPI conjugated to magnetic beads (γ-CD-EPI-MB) have been evaluated as clean-up materials for fish flesh extracts containing CTXs. The best results were achieved with γ-CD-HDI in column format, which showed a CTX1B recovery of 42% and 32% for Variola louti and Seriola dumerili, respectively, and allowed exposing cells to at least 400 mg/mL of fish flesh. This clean-up strategy provides at least 4.6 and 3.0-fold higher sensitivities to the assay for V.louti and S.dumerili, respectively, improving the reliability of CTX quantification.
Collapse
Affiliation(s)
- Mònica Campàs
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain.
| | - Sandra Leonardo
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Maria Rambla-Alegre
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Núria Sagristà
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Raquel Vaya
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mabel Torréns
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Alex Fragoso
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| |
Collapse
|
11
|
Reductive Amination for LC-MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish. Toxins (Basel) 2022; 14:toxins14060399. [PMID: 35737060 PMCID: PMC9245599 DOI: 10.3390/toxins14060399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) or high-resolution MS (LC-HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC-MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard's reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC-MS/MS and LC-HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1-GRT derivatization strategy mitigates many of the shortcomings of current LC-MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes.
Collapse
|
12
|
In vivo subchronic effects of ciguatoxin-related compounds, reevaluation of their toxicity. Arch Toxicol 2022; 96:2621-2638. [PMID: 35657391 PMCID: PMC9325831 DOI: 10.1007/s00204-022-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
Ciguatoxins are marine compounds that share a ladder-shaped polyether structure produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa, and include maitotoxins (MTX1 and MTX3), ciguatoxins (CTX3C) and analogues (gambierone), components of one of the most frequent human foodborne illness diseases known as ciguatera fish poisoning. This disease was previously found primarily in tropical and subtropical areas but nowadays, the dinoflagellates producers of ciguatoxins had spread to European coasts. One decade ago, the European Food Safety Authority has raised the need to complete the toxicological available data for the ciguatoxin group of compounds. Thus, in this work, the in vivo effects of ciguatoxin-related compounds have been investigated using internationally adopted guidelines for the testing of chemicals. Intraperitoneal acute toxicity was tested for maitotoxin 1 at doses between 200 and 3200 ng/kg and the acute oral toxicity of Pacific Ciguatoxin CTX3C at 330 and 1050 ng/kg and maitotoxin 1 at 800 ng/kg were also evaluated showing not effects on mice survival after a 96 h observation period. Therefore, for the following experiments the oral subchronic doses were between 172 and 1760 ng/kg for gambierone, 10 and 102 ng/kg for Pacific Ciguatoxin CTX3C, 550 and 1760 ng/kg for maitotoxin 3 and 800, 2560 and 5000 ng/kg for maitotoxin 1. The results presented here raise the need to reevaluate the in vivo activity of these agents. Although the intraperitoneal lethal dose of maitotoxin 1 is assumed to be 50 ng/kg, without chemical purity identifications and description of the bioassay procedures, in this work, an intraperitoneal lethal dose of 1107 ng/kg was obtained. Therefore, the data presented here highlight the need to use a common procedure and certified reference material to clearly establish the levels of these environmental contaminants in food.
Collapse
|
13
|
Loeffler CR, Abraham A, Stopa JE, Flores Quintana HA, Jester ELE, La Pinta J, Deeds J, Benner RA, Adolf J. Ciguatoxin in Hawai'i: Fisheries forecasting using geospatial and environmental analyses for the invasive Cephalopholis argus (Epinephelidae). ENVIRONMENTAL RESEARCH 2022; 207:112164. [PMID: 34627798 DOI: 10.1016/j.envres.2021.112164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Invasive species can precede far-reaching environmental and economic consequences. In the Hawai'ian Archipelago Cephalopholis argus (family Serranidae) is an established invasive species, now recognized as the dominant local reef predator, negatively impacting the native ecosystem and local fishery. In this region, no official C. argus fishery exists, due to its association with Ciguatera seafood poisoning (CP); a severe intoxication in humans occurring after eating (primarily) fish contaminated with ciguatoxins (CTXs). Pre-harvest prediction of CP is currently not possible; partly due to the ubiquitous nature of the microalgae producing CTXs and the diverse bioaccumulation pathways of the toxins. This study investigated the perceived risk of CP in two geographically discrete regions (Leeward and Windward) around the main island of Hawai'i, guided by local fishers. C. argus was collected and investigated for CTXs using the U.S. Food and Drug Administration (FDA) CTX testing protocol (in vitro neuroblastoma N2a-assay and LC-MS/MS). Overall, 76% of fish (87/113) exceeded the FDA guidance value for CTX1B (0.01 ng g-1 tissue equivalents); determined by the N2a-assay. Maximum CTX levels were ≅2× higher at the Leeward vs Windward location and, respectively, 95% (64/67) and 54% (25/46) of fish were positive for CTX-like activity. Fisher persons and environmental understandings, regarding the existence of a geographic predictor (Leeward vs Windward) for harvest, were found to be (mostly) accurate as CTXs were detected in both locations and the local designation of C. argus as a risk for CP was confirmed. This study provides additional evidence that supports the previous conclusions that this species is a severe CP risk in the coastal food web of Hawai'i, and that ocean exposure (wave power) may be a prominent factor influencing the CTX content in fish within a hyperendemic region for CP.
Collapse
Affiliation(s)
- Christopher R Loeffler
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA.
| | - Ann Abraham
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Justin E Stopa
- Department of Ocean and Resources Engineering, University of Hawaii Mānoa, Honolulu, HI, 96822, USA
| | - Harold A Flores Quintana
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Edward L E Jester
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Joshua La Pinta
- Marine Science Department, University of Hawaii Hilo, 200 W. Kawili St. Hilo, HI, 96720, USA
| | - Jonathan Deeds
- Office of Regulatory Science, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Ronald A Benner
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, 36528, USA
| | - Jason Adolf
- Marine Science Department, University of Hawaii Hilo, 200 W. Kawili St. Hilo, HI, 96720, USA
| |
Collapse
|
14
|
Sasaki M, Iwasaki K, Arai K, Hamada N, Umehara A. Convergent Synthesis of the HIJKLMN-Ring Fragment of Caribbean Ciguatoxin C-CTX-1 by a Late-Stage Reductive Olefin Coupling Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Kotaro Iwasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Naoya Hamada
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| |
Collapse
|
15
|
Zhu J, Lee WH, Wu J, Zhou S, Yip KC, Liu X, Kirata T, Chan LL. The Occurrence, Distribution, and Toxicity of High-Risk Ciguatera Fish Species (Grouper and Snapper) in Kiritimati Island and Marakei Island of the Republic of Kiribati. Toxins (Basel) 2022; 14:toxins14030208. [PMID: 35324705 PMCID: PMC8952361 DOI: 10.3390/toxins14030208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Ciguatera is one of the most widespread food poisonings caused by the ingestion of fish contaminated by ciguatoxins (CTXs). Snapper and grouper with high palatable and economic value are the primary food source and fish species for exportation in the Republic of Kiribati, but they are highly suspected CTX-contaminated species due to their top predatory characteristics. In this study, 60 fish specimens from 17 species of snappers and groupers collected from the Kiritimati Island and Marakei Island of the Republic of Kiribati were analyzed using mouse neuroblastoma (N2a) assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine Pacific CTX-1, -2 and -3 (P-CTX-1, -2 and -3). The LC-MS/MS results show that CTXs were detected in 74.5% of specimens from Marakei Island and 61.5% of specimens from Kiritimati Island. The most toxic fish Epinephelus coeruleopunctatus from Marakei Island and Cephalopholis miniata from Kiritimati Island were detected as 53-fold and 28-fold P-CTX-1 equivalents higher than the safety level of 10 pg/g P-CTX-1 equivalents, respectively. CTX levels and composition profiles varied with species and location. The N2a results suggested that fish specimens also contain high levels of other CTX-like toxins or sodium channel activators. The distribution patterns for ciguatoxic fish of the two islands were similar, with fish sampled from the northwest being more toxic than the southwest. This study shows that groupers and snappers are high-risk species for ciguatera in the Republic of Kiribati, and these species can further be used as indicator species in ciguatera endemic areas for risk assessment.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Wai-Hin Lee
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Shiwen Zhou
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Ki-Chun Yip
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Xiaowan Liu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
| | - Taratau Kirata
- Ministry of Fisheries & Marine Resources Development, Kiribati Government, Tarawa 276123, Kiribati;
| | - Leo-Lai Chan
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China; (J.Z.); (W.-H.L.); (J.W.); (S.Z.); (K.-C.Y.); (X.L.)
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-34424125
| |
Collapse
|
16
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
17
|
Gaiani G, Cucchi F, Toldrà A, Andree KB, Rey M, Tsumuraya T, O'Sullivan CK, Diogène J, Campàs M. Electrochemical biosensor for the dual detection of Gambierdiscus australes and Gambierdiscus excentricus in field samples. First report of G. excentricus in the Balearic Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150915. [PMID: 34653452 DOI: 10.1016/j.scitotenv.2021.150915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Several genera of marine dinoflagellates are known to produce bioactive compounds that affect human health. Among them, Gambierdiscus and Fukuyoa stand out for their ability to produce several toxins, including the potent neurotoxic ciguatoxins (CTXs), which accumulate through the food web. Once fishes contaminated with CTXs are ingested by humans, it can result in an intoxication named ciguatera. Within the two genera, only some species are able to produce toxins, and G. australes and G. excentricus have been highlighted to be the most abundant and toxic. Although the genera Gambierdiscus and Fukuyoa are endemic to tropical areas, their presence in subtropical and temperate regions has been recently recorded. In this work, the combined use of species-specific PCR primers for G. australes and G. excentricus modified with short oligonucleotide tails allowed the development of a multiplex detection system for these two toxin-producing species. Simultaneous detection was achieved using capture probes specific for G. australes and G. excentricus immobilized on maleimide-coated magnetic beads (MBs), separately placed on the working electrodes of a dual electrode array. Additionally, a rapid DNA extraction technique based on a portable bead beater system and MBs was developed, significantly reducing the extraction time (from several hours to 30 min). The developed technique was able to detect as low as 10 cells of both Gambierdiscus species and allowed the first detection of G. excentricus in the Balearic Islands in 8 out of the 12 samples analyzed. Finally, field samples were screened for CTXs with an immunosensor, successfully reporting 13.35 ± 0.5 pg CTX1B equiv. cell-1 in one sample and traces of toxins in 3 out of the 9 samples analyzed. These developments provide rapid and cost-effective strategies for ciguatera risk assessment, with the aim of guaranteeing seafood safety.
Collapse
Affiliation(s)
- Greta Gaiani
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Francesca Cucchi
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain; Dipartimento di Scienze della Vita,UNITS, Via Giorgieri, 5, 34127 Trieste, Italy
| | - Anna Toldrà
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Karl B Andree
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - María Rey
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, URV, Països Catalans 26, 43007 Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
18
|
Ginés I, Gaiani G, Ruhela A, Skouridou V, Campàs M, Masip L. Nucleic acid lateral flow dipstick assay for the duplex detection of Gambierdiscus australes and Gambierdiscus excentricus. HARMFUL ALGAE 2021; 110:102135. [PMID: 34887012 DOI: 10.1016/j.hal.2021.102135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The proliferation of harmful microalgae endangers aquatic ecosystems and can have serious economic implications on a global level. Harmful microalgae and their associated toxins also pose a threat to human health since they can cause seafood-borne diseases such as ciguatera. Implementation of DNA-based molecular methods together with appropriate detection strategies in monitoring programs can support the efforts for effective prevention of potential outbreaks. A PCR-lateral flow assay (PCR-LFA) in dipstick format was developed in this work for the detection of two Gambierdiscus species, G. australes and G. excentricus, which are known to produce highly potent neurotoxins known as ciguatoxins and have been associated with ciguatera outbreaks. Duplex PCR amplification of genomic DNA from strains of these species utilizing species-specific ssDNA tailed primers and a common primer containing the binding sequence of scCro DNA binding protein resulted in the generation of hybrid ssDNA-dsDNA amplicons. These were captured on the dipsticks via hybridization with complementary probes and detected with a scCro/carbon nanoparticle (scCro/CNPs) conjugate. The two different test zones on the dipsticks allowed the discrimination of the two species and the assay exhibited high sensitivity, 6.3 pg/μL of genomic DNA from both G. australes and G. excentricus. The specificity of the approach was also demonstrated using genomic DNA from non-target Gambierdiscus species and other microalgae genera which did not produce any signals. The possibility to use cells directly for amplification instead of purified genomic DNA suggested the compatibility of the approach with field sample testing. Future work is required to further explore the potential use of the strategy for on-site analysis and its applicability to other toxic species.
Collapse
Affiliation(s)
- Iris Ginés
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Greta Gaiani
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ankur Ruhela
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Vasso Skouridou
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Lluis Masip
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain.
| |
Collapse
|
19
|
Dao HV, Uesugi A, Uchida H, Watanabe R, Matsushima R, Lim ZF, Jipanin SJ, Pham KX, Phan MT, Leaw CP, Lim PT, Suzuki T. Identification of Fish Species and Toxins Implicated in a Snapper Food Poisoning Event in Sabah, Malaysia, 2017. Toxins (Basel) 2021; 13:toxins13090657. [PMID: 34564661 PMCID: PMC8470750 DOI: 10.3390/toxins13090657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
In the coastal countries of Southeast Asia, fish is a staple diet and certain fish species are food delicacies to local populations or commercially important to individual communities. Although there have been several suspected cases of ciguatera fish poisoning (CFP) in Southeast Asian countries, few have been confirmed by ciguatoxins identification, resulting in limited information for the correct diagnosis of this food-borne disease. In the present study, ciguatoxin-1B (CTX-1B) in red snapper (Lutjanus bohar) implicated in a CFP case in Sabah, Malaysia, in December 2017 was determined by single-quadrupole selected ion monitoring (SIM) liquid chromatography/mass spectrometry (LC/MS). Continuous consumption of the toxic fish likely resulted in CFP, even when the toxin concentration in the fish consumed was low. The identification of the fish species was performed using the molecular characterization of the mitochondrial cytochrome c oxidase subunit I gene marker, with a phylogenetic analysis of the genus Lutjanus. This is the first report identifying the causative toxin in fish-implicated CFP in Malaysia.
Collapse
Affiliation(s)
- Ha Viet Dao
- Institute of Oceanography, Vietnam Academy of Science and Technology, 01 Cau Da, Nha Trang 650000, Vietnam; (K.X.P.); (M.-T.P.)
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi 100000, Vietnam
- Correspondence:
| | - Aya Uesugi
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| | - Hajime Uchida
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| | - Ryuichi Watanabe
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| | - Ryoji Matsushima
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| | - Zhen Fei Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia; (Z.F.L.); (C.P.L.); (P.T.L.)
| | - Steffiana J. Jipanin
- Likas Fisheries Complex, Department of Fisheries Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Ky Xuan Pham
- Institute of Oceanography, Vietnam Academy of Science and Technology, 01 Cau Da, Nha Trang 650000, Vietnam; (K.X.P.); (M.-T.P.)
| | - Minh-Thu Phan
- Institute of Oceanography, Vietnam Academy of Science and Technology, 01 Cau Da, Nha Trang 650000, Vietnam; (K.X.P.); (M.-T.P.)
- Faculty of Marine Science and Technology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi 100000, Vietnam
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia; (Z.F.L.); (C.P.L.); (P.T.L.)
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia; (Z.F.L.); (C.P.L.); (P.T.L.)
| | - Toshiyuki Suzuki
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama 236-8648, Japan; (A.U.); (H.U.); (R.W.); (R.M.); (T.S.)
| |
Collapse
|
20
|
Mullins ME. Ciguatera fish poisoning in the age of discovery and the age of enlightenment. Clin Toxicol (Phila) 2021; 60:392-396. [PMID: 34374612 DOI: 10.1080/15563650.2021.1962529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ciguatera fish poisoning (CFP) is the most common poisoning from seafood consumption with an estimated 50,000 cases per year worldwide. Attention to this malady in the English language literature has grown over the past five decades. Endemic areas include the South Pacific Ocean and the Caribbean Sea. It is likely that CFP has been present since ancient times, but records to substantiate this are scarce. OBJECTIVE This historical review looks for clues in earlier writings about potential encounters with CFP as Europeans sailed farther from home into these endemic regions with little idea of what awaited them. We divide these records into the Age of Discovery and the Age of Enlightenment. METHODS Review of available historical texts written by or about early European explorers with descriptions of illness attributed to eating fish. RESULTS Fish poisonings appear in translated writings of early Spanish and Portuguese explorers in the 1500s, the writings of Captain James Cook's voyages to the South Pacific, and in Captain William Bligh's fateful voyage after the Mutiny on the Bounty. The most credible description of CFP comes from an early author in the Spanish colony of Cuba in the late 1700s. CONCLUSIONS Although the quality of the observations varies, Parra in Cuba likely experienced CFP. Plausible CFP for Cook in the South Pacific and Locke in the Bahamas as both have elements of CFP. The descriptions from Quiros, Anghira, and Bligh lack sufficient detail to verify or to refute completely the possibility of CFP.
Collapse
Affiliation(s)
- Michael E Mullins
- Division of Medical Toxicology, Department of Emergency Medicine, Washington University School of Medicine Saint Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Holmes MJ, Venables B, Lewis RJ. Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes. Toxins (Basel) 2021; 13:toxins13080515. [PMID: 34437386 PMCID: PMC8402393 DOI: 10.3390/toxins13080515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023] Open
Abstract
We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.
Collapse
Affiliation(s)
- Michael J. Holmes
- Queensland Department of Environment and Science, Brisbane 4102, Australia;
| | | | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
- Correspondence:
| |
Collapse
|
22
|
Pierre O, Fouchard M, Le Goux N, Buscaglia P, Leschiera R, Lewis RJ, Mignen O, Fluhr JW, Misery L, Le Garrec R. Pacific-Ciguatoxin-2 and Brevetoxin-1 Induce the Sensitization of Sensory Receptors Mediating Pain and Pruritus in Sensory Neurons. Mar Drugs 2021; 19:387. [PMID: 34356812 PMCID: PMC8306505 DOI: 10.3390/md19070387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022] Open
Abstract
Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.
Collapse
Affiliation(s)
- Ophélie Pierre
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Maxime Fouchard
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Nelig Le Goux
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Paul Buscaglia
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Raphaël Leschiera
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Olivier Mignen
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Joachim W. Fluhr
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
- Department of Dermatology and Allergology, Universitaetsmedizin Charité Berlin, D-10117 Berlin, Germany
| | - Laurent Misery
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaële Le Garrec
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| |
Collapse
|
23
|
Sasaki M, Iwasaki K, Arai K. Synthesis and Structural Implication of the JKLMN-Ring Fragment of Caribbean Ciguatoxin C-CTX-1. J Org Chem 2021; 86:4580-4597. [PMID: 33667088 DOI: 10.1021/acs.joc.0c03031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis of the JKLMN-ring fragment of Caribbean ciguatoxin C-CTX-1, the causative toxin of ciguatera fish poisoning in the Caribbean Sea and the Northeast Atlantic areas, is described in detail. Key to the synthesis are a [2,3]-sigmatropic rearrangement to construct a seven-membered α-hydroxy exo-enol ether, stereoselective construction of an angular tetrasubstituted stereogenic center on the seven-membered M-ring by a hydrogen atom transfer-based reductive olefin coupling, Suzuki-Miyaura coupling of the KLMN-ring enol phosphate with a highly congested M-ring, and silica gel-mediated epoxide ring opening to form the J-ring. Comparison of the nuclear magnetic resonance spectroscopic data for the synthesized fragment with those for the natural product provided support for the formerly assigned structure of the N-ring in the right-hand terminal of C-CTX-1.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Kotaro Iwasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| |
Collapse
|
24
|
Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3027. [PMID: 33804281 PMCID: PMC7999458 DOI: 10.3390/ijerph18063027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Globally, the livelihoods of over a billion people are affected by changes to marine ecosystems, both structurally and systematically. Resources and ecosystem services, provided by the marine environment, contribute nutrition, income, and health benefits for communities. One threat to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex pathways. Ciguatera-derived food insecurity is particularly extreme for small island-nations, where fear of intoxication can lead to fishing restrictions by region, species, or size. Exacerbating these complexities are anthropogenic or natural changes occurring in global marine habitats, e.g., climate change, greenhouse-gas induced physical oceanic changes, overfishing, invasive species, and even the international seafood trade. Here we provide an overview of the challenges and opportunities of the 21st century regarding the many facets of ciguatera, including the complex nature of this illness, the biological/environmental factors affecting the causative organisms, their toxins, vectors, detection methods, human-health oriented responses, and ultimately an outlook towards the future. Ciguatera research efforts face many social and environmental challenges this century. However, several future-oriented goals are within reach, including digital solutions for seafood supply chains, identifying novel compounds and methods with the potential for advanced diagnostics, treatments, and prediction capabilities. The advances described herein provide confidence that the tools are now available to answer many of the remaining questions surrounding ciguatera and therefore protection measures can become more accurate and routine.
Collapse
Affiliation(s)
- Christopher R. Loeffler
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
- CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Miriam Friedemann
- Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Astrid Spielmeyer
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Oliver Kappenstein
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| | - Dorina Bodi
- National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (A.S.); (O.K.); (D.B.)
| |
Collapse
|
25
|
Yñiguez AT, Lim PT, Leaw CP, Jipanin SJ, Iwataki M, Benico G, Azanza RV. Over 30 years of HABs in the Philippines and Malaysia: What have we learned? HARMFUL ALGAE 2021; 102:101776. [PMID: 33875175 DOI: 10.1016/j.hal.2020.101776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 06/12/2023]
Abstract
In the Southeast Asian region, the Philippines and Malaysia are two of the most affected by Harmful Algal Blooms (HABs). Using long-term observations of HAB events, we determined if these are increasing in frequency and duration, and expanding across space in each country. Blooms of Paralytic Shellfish Toxin (PST)-producing species in the Philippines did increase in frequency and duration during the early to mid-1990s, but have stabilized since then. However, the number of sites affected by these blooms continue to expand though at a slower rate than in the 1990s. Furthermore, the type of HABs and causative species have diversified for both toxic blooms and fish kill events. In contrast, Malaysia showed no increasing trend in the frequency of toxic blooms over the past three decades since Pyrodinium bahamense was reported in 1976. However, similar to the Philippines, other PST producers such as Alexandrium minutum and Alexandrium tamiyavanichii have become a concern. No amnesic shellfish poisoning (ASP) has been confirmed in either Philippines or Malaysia thus far, while ciguatera fish poisoning cases are known from the Philippines and Malaysia but the causative organisms remain poorly studied. Since the 1990s and early 2000s, recognition of the distribution of other PST-producing species such as species of Alexandrium and Gymnodinium catenatum in Southeast Asia has grown, though there has been no significant expansion in the known distributions within the last decade. A major more recent problem in the two countries and for Southeast Asia in general are the frequent fish-killing algal blooms of various species such as Prorocentrum cordatum, Margalefidinium polykrikoides, Chattonella spp., and unarmored dinoflagellates (e.g., Karlodinium australe and Takayama sp.). These new sites affected and the increase in types of HABs and causative species could be attributed to various factors such as introduction through mariculture and eutrophication, and partly because of increased scientific awareness. These connections still need to be more concretely investigated. The link to the El Niño Southern Oscillation (ENSO) should also be better understood if we want to discern how climate change plays a role in these patterns of HAB occurrences.
Collapse
Affiliation(s)
- Aletta T Yñiguez
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Steffiana J Jipanin
- Department of Fisheries Sabah, Likas Fisheries Complex, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Garry Benico
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Rhodora V Azanza
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
26
|
Chinain M, Gatti CMI, Darius HT, Quod JP, Tester PA. Ciguatera poisonings: A global review of occurrences and trends. HARMFUL ALGAE 2021; 102:101873. [PMID: 33875186 DOI: 10.1016/j.hal.2020.101873] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Ciguatera Poisoning (CP) is the most prevalent, phycotoxin related seafood poisoning across the globe, affecting between 10,000 and 50,000 people annually. This illness results from the consumption of seafood contaminated with lipid soluble toxins known as ciguatoxins (CTXs) that are produced by benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. The present work reviews the global occurrence of CP events and outbreaks, based on both scientific and gray literature. Ciguatera prevalence is significantly underestimated due to a lack of recognition of ciguatera symptoms, limited collection of epidemiological data on a global level, and reticence to report ciguatera in CP-endemic regions. Analysis of the time-series data available for a limited number of countries indicates the highest incidence rates are consistently reported from two historical CP-endemic areas i.e., the Pacific and Caribbean regions, a situation due in part to the strong reliance of local communities on marine resources. Ciguatera-related fatalities are rare (<0.1% of reported cases). The vast majority of outbreaks involve carnivorous fish including snappers, groupers, wrasses, and barracudas. Since 2000, an expansion of the geographical range of CP has been observed in several areas like Macaronesia and east and southeast Asia. In some of these locales, random surveys confirmed the presence of CTXs in locally sourced fish, consistent with the concurrent report of novel CP incidents (e.g., Canary Islands, Madeira, Selvagens Islands, New South Wales). One characteristic of outbreaks occurring in Asia is that they often present as large disease clusters due to group consumption of a single contaminated fish. Similar observations are reported from the Indian Ocean in the form of shark poisoning outbreaks which often lead to singular types of CP characterized by a high fatality rate. Other atypical forms of CP linked to the consumption of marine invertebrates also have been documented recently. Owing to the significant health, socioeconomic and socio-cultural impacts of ciguatera, there is an urgent need for increased, standardized, coordinated efforts in ciguatera education, monitoring and research programs. Several regional and international initiatives have emerged recently, that may help improve patients' care, data collection at a global scale, and risk monitoring and management capabilities in countries most vulnerable to CP's toxic threat.
Collapse
Affiliation(s)
- M Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| | - C M I Gatti
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - H T Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - J-P Quod
- ARVAM-Pareto, Technopole de la Réunion, 14 rue Henri Cornu, 97490 Sainte-Clotilde, La Réunion, France
| | - P A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC 28516, USA
| |
Collapse
|
27
|
Pitz KJ, Richlen ML, Fachon E, Smith TB, Parsons ML, Anderson DM. Development of fluorescence in situ hybridization (FISH) probes to detect and enumerate Gambierdiscus species. HARMFUL ALGAE 2021; 101:101914. [PMID: 33526178 PMCID: PMC8016406 DOI: 10.1016/j.hal.2020.101914] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 05/11/2023]
Abstract
Ciguatera poisoning (CP) is a syndrome caused by the bioaccumulation of lipophilic ciguatoxins in coral reef fish and invertebrates, and their subsequent consumption by humans. These phycotoxins are produced by Gambierdiscus spp., tropical epiphytic dinoflagellates that live on a variety of macrophytes, as well as on dead corals and sand. Recent taxonomic studies have identified novel diversity within the Gambierdiscus genus, with at least 18 species and several sub-groups now identified, many of which co-occur and differ significantly in toxicity. The ability to accurately and quickly distinguish Gambierdiscus species in field samples and determine community composition and abundance is central to assessing CP risk, yet most Gambierdiscus species are indistinguishable using light microscopy, and other enumeration methods are semi-quantitative. In order to investigate the spatial and temporal dynamics of Gambierdiscus species and community toxicity, new tools for species identification and enumeration in field samples are needed. Here, fluorescence in situ hybridization (FISH) probes were designed for seven species commonly found in the Caribbean Sea and Pacific Ocean, permitting their enumeration in field samples using epifluorescence microscopy. This technique enables the assessment of community composition and accurate determination of cell abundances of individual species. Molecular probes detecting G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, and the G. silvae/G. polynesiensis clade were designed using alignments of large subunit ribosomal RNA (rRNA) sequences. These probes were tested for specificity and cross-reactivity through experiments in which field samples were spiked with known concentrations of Gambierdiscus cultures, and analyzed to confirm that Gambierdiscus can be successfully detected and enumerated by FISH in the presence of detritus and other organisms. These probes were then used to characterize Gambierdiscus community structure in field samples collected from the Florida Keys and Hawai'i, USA. The probes revealed the co-occurrence of multiple species at each location. Time-series FISH analyses of samples collected from the Florida Keys quantified seasonal shifts in community composition as well as fluctuations in overall Gambierdiscus cell abundance. Application of species-specific FISH probes provides a powerful new tool to those seeking to target individual Gambierdiscus species, including significant toxin-producers, in field populations. Moving forward, analysis of Gambierdiscus community composition across multiple environments and over time will also allow species dynamics to be linked to environmental parameters, improving our ability to understand and manage the current and changing risks of CP worldwide.
Collapse
Affiliation(s)
- Kathleen J Pitz
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mindy L Richlen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Evangeline Fachon
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Tyler B Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St Thomas, U.S. Virgin Islands 00802, USA
| | - Michael L Parsons
- Coastal Watershed Institute, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
28
|
Gaiani G, Leonardo S, Tudó À, Toldrà A, Rey M, Andree KB, Tsumuraya T, Hirama M, Diogène J, O'Sullivan CK, Alcaraz C, Campàs M. Rapid detection of ciguatoxins in Gambierdiscus and Fukuyoa with immunosensing tools. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111004. [PMID: 32768745 DOI: 10.1016/j.ecoenv.2020.111004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Consumption of seafood contaminated with ciguatoxins (CTXs) leads to a foodborne disease known as ciguatera. Primary producers of CTXs are epibenthic dinoflagellates of the genera Gambierdiscus and Fukuyoa. In this study, thirteen Gambierdiscus and Fukuyoa strains were cultured, harvested at exponential phase, and CTXs were extracted with an implemented rapid protocol. Microalgal extracts were obtained from pellets with a low cell abundance (20,000 cell/mL) and were then analyzed with magnetic bead (MB)-based immunosensing tools (colorimetric immunoassay and electrochemical immunosensor). It is the first time that these approaches are used to screen Gambierdiscus and Fukuyoa strains, providing not only a global indication of the presence of CTXs, but also the ability to discriminate between two series of congeners (CTX1B and CTX3C). Analysis of the microalgal extracts revealed the presence of CTXs in 11 out of 13 strains and provided new information about Gambierdiscus and Fukuyoa toxin profiles. The use of immunosensing tools in the analysis of microalgal extracts facilitates the elucidation of further knowledge regarding these dinoflagellate genera and can contribute to improved ciguatera risk assessment and management.
Collapse
Affiliation(s)
- G Gaiani
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - S Leonardo
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - À Tudó
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - A Toldrà
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - M Rey
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - K B Andree
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - T Tsumuraya
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - M Hirama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - J Diogène
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - C K O'Sullivan
- Departament D'Enginyeria Química, URV, Av. Països Catalans 26, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - C Alcaraz
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain
| | - M Campàs
- IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain.
| |
Collapse
|
29
|
Advances in Detecting Ciguatoxins in Fish. Toxins (Basel) 2020; 12:toxins12080494. [PMID: 32752046 PMCID: PMC7472146 DOI: 10.3390/toxins12080494] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 01/28/2023] Open
Abstract
Ciguatera fish poisoning (CFP) is currently the most common marine biotoxin food poisoning worldwide, associated with human consumption of circumtropical fish and marine invertebrates that are contaminated with ciguatoxins. Ciguatoxins are very potent sodium-channel activator neurotoxins, that pose risks to human health at very low concentrations (>0.01 ng per g of fish flesh in the case of the most potent Pacific ciguatoxin). Symptoms of CFP are nonspecific and intoxication in humans is often misdiagnosed. Presently, there is no medically approved treatment of ciguatera. Therefore, to mitigate the risks of CFP, reliable detection of ciguatoxins prior to consumption of fish tissue is acutely needed, which requires application of highly sensitive and quantitative analytical tests. During the last century a number of methods have been developed to identify and quantify the concentration of ciguatoxins, including in vivo animal assays, cell-based assays, receptor binding assays, antibody-based immunoassays, electrochemical methods, and analytical techniques based on coupling of liquid chromatography with mass spectrometry. Development of these methods, their various advantages and limitations, as well as future challenges are discussed in this review.
Collapse
|
30
|
Modeling the time-lag effect of sea surface temperatures on ciguatera poisoning in the South Pacific: Implications for surveillance and response. Toxicon 2020; 182:21-29. [PMID: 32387348 DOI: 10.1016/j.toxicon.2020.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 11/23/2022]
Abstract
Ciguatera poisoning (CP), arising from ciguatoxins produced by toxic dinoflagellate Gambierdiscus, is one of the most common food-borne diseases in the South Pacific. Climate change as well as its related events have been hypothesized to a higher abundance and wider presence of toxic dinoflagellates, hence a higher risk of the disease. Yet existing studies assessing the relationship between climate factors and CP are limited or based on old data. In this study, we used prewhitened cross-correlation analysis and auto-regressive integrated moving-average (ARIMA) modeling to develop predictive models of monthly CP incidence in Cook Islands and French Polynesia, two ciguatera-endemic regions in the South Pacific, utilizing the latest epidemiological data. Results reveal the significant time-lagged associations between the monthly CP incidence rate and several indicators relating to sea surface temperature (SST). In particular, SST anomaly is proven to be a strong positive predictor of an increased ciguatera incidence for both countries. If these time-lags can be supported by more investigations, it will allow health authorities to take appropriate actions, to limit or avoid an epidemic risk, especially on high-risk climate scenarios.
Collapse
|
31
|
Effects of substratum and depth on benthic harmful dinoflagellate assemblages. Sci Rep 2020; 10:11251. [PMID: 32647125 PMCID: PMC7347539 DOI: 10.1038/s41598-020-68136-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 11/14/2022] Open
Abstract
Microhabitats influence the distribution and abundance of benthic harmful dinoflagellate (BHAB) species. Currently, much of the information on the relationships between BHABs and microhabitat preferences is based on non-quantitative anecdotal observations, many of which are contradictory. The goal of this study was to better quantify BHAB and microhabitat relationships using a statistically rigorous approach. Between April 2016 to May 2017, a total of 243 artificial substrate samplers were deployed at five locations in the Perhentian Islands, Malaysia while simultaneous photo-quadrat surveys were performed to characterize the benthic substrates present at each sampling site. The screen samplers were retrieved 24 h later and the abundances of five BHAB genera, Gambierdiscus, Ostreopsis, Coolia, Amphidinium, and Prorocentrum were determined. Substrate data were then analyzed using a Bray–Curtis dissimilarity matrix to statistically identify distinct microhabitat types. Although BHABs were associated with a variety of biotic and abiotic substrates, the results of this study demonstrated differing degrees of microhabitat preference. Analysis of the survey results using canonical correspondence analysis explained 70.5% (horizontal first axis) and 21.6% (vertical second axis) of the constrained variation in the distribution of various genera among microhabitat types. Prorocentrum and Coolia appear to have the greatest range being broadly distributed among a wide variety of microhabitats. Amphidinium was always found in low abundances and was widely distributed among microhabitats dominated by hard coral, turf algae, sand and silt, and fleshy algae and reached the highest abundances there. Gambierdiscus and Ostreopsis had more restricted distributions. Gambierdiscus were found preferentially associated with turf algae, hard coral and, to a lesser extent, fleshy macroalgae microhabitats. Ostreopsis, almost always more abundant than Gambierdiscus, preferred the same microhabitats as Gambierdiscus and were found in microbial mats as well. With similar habitat preferences Ostreopsis may serve as an indicator organism for the presence of Gambierdiscus. This study provides insight into how BHAB-specific microhabitat preferences can affect toxicity risks.
Collapse
|
32
|
Leonardo S, Gaiani G, Tsumuraya T, Hirama M, Turquet J, Sagristà N, Rambla-Alegre M, Flores C, Caixach J, Diogène J, O'Sullivan CK, Alcaraz C, Campàs M. Addressing the Analytical Challenges for the Detection of Ciguatoxins Using an Electrochemical Biosensor. Anal Chem 2020; 92:4858-4865. [PMID: 32133843 DOI: 10.1021/acs.analchem.9b04499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of ciguatoxins (CTXs) in seafood safety and their emerging occurrence in locations far away from tropical areas highlight the need for simple and low-cost methods for the sensitive and rapid detection of these potent marine toxins to protect seafood consumers. Herein, an electrochemical immunosensor for the detection of CTXs is presented. A sandwich configuration is proposed, using magnetic beads (MBs) as immobilization supports for two capture antibodies, with their combination facilitating the detection of CTX1B, CTX3C, 54-deoxyCTX1B, and 51-hydroxyCTX3C. PolyHRP-streptavidin is used for the detection of the biotinylated detector antibody. Experimental conditions are first optimized using colorimetry, and these conditions are subsequently used for electrochemical detection on electrode arrays. Limits of detection at the pg/mL level are achieved for CTX1B and 51-hydroxyCTX3C. The applicability of the immunosensor to the analysis of fish samples is demonstrated, attaining detection of CTX1B at contents as low as 0.01 μg/kg and providing results in correlation with those obtained using mouse bioassay (MBA) and cell-based assay (CBA), and confirmed by liquid chromatography coupled to high-resolution mass spectrometry (LC-ESI-HRMS). This user-friendly bioanalytical tool for the rapid detection of CTXs can be used to mitigate ciguatera risk and contribute to the protection of consumer health.
Collapse
Affiliation(s)
- Sandra Leonardo
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Greta Gaiani
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Masahiro Hirama
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Jean Turquet
- Citeb, C/o CYROI, 2 Rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
| | - Núria Sagristà
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, URV, Av. Països Catalans 26, 43007 Tarragona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Carles Alcaraz
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
33
|
Wang Z, Fuquay JM, Ledreux A, Barbieri M, Ramsdell JS. Sample preparation and liquid chromatography-tandem mass spectrometry for the analysis of selected Pacific ciguatoxins in blood samples. J Chromatogr A 2020; 1621:461050. [PMID: 32265050 DOI: 10.1016/j.chroma.2020.461050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/25/2022]
Abstract
Consumption of ciguatoxin-contaminated seafood can lead to ciguatera poisoning (CP). The diagnosis of CP in humans is based on the clinical symptoms after eating the fish from tropical or subtropical areas because no confirmatory clinical tests are available. One of the challenges for ciguatoxin analysis is their extremely low but toxicologically relevant concentration in biological samples. We previously reported a method using acetonitrile to precipitate proteins and extract the ciguatoxins simultaneously in whole blood samples from animals for toxin quantification by N2A cell-based assay. However, a test method for unambiguous confirmation of exposure of marine animals or humans to ciguatoxins is still needed. In the present study, we adopted the acetonitrile extraction method and added sample clean-up in the sample preparation for the determination of Pacific ciguatoxins CTX1B (aka P-CTX-1), 52-epi-54-deoxyCTX1B (aka P-CTX-2), and CTX3C (aka P-CTX-3C) in blood plasma by LC-MS/MS. We investigated sample clean-up, LC mobile phases, LC solvent programming, and settings of the two mass spectrometers (4000 Q TRAP and AB SCIEX Triple Quad 5500) in order to improve the ability to detect the Pacific ciguatoxins at ppt level. Rat blood plasma was used for the method development. Average recoveries of the three toxins in the rat plasma samples ranged from 90% to 116% with relative standard deviations of less than 15%. The method detection limits were still not low enough for the determination of the Pacific ciguatoxins in individual blood samples from Hawaiian monk seals with the two LC-MS systems. The methods were applied to a pooled sample of blood plasma collected from Hawaiian monk seals for confirmation of toxin exposure. This study will benefit monitoring of Pacific ciguatoxins in marine mammals and potentially humans by LC-MS/MS.
Collapse
Affiliation(s)
- Zhihong Wang
- CSS, Inc. under contract to NOAA, HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 219 Fort Johnson Road, Charleston, SC 29412, USA
| | - Jennifer Maucher Fuquay
- CSS, Inc. under contract to NOAA, HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 219 Fort Johnson Road, Charleston, SC 29412, USA
| | - Aurelie Ledreux
- HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 219 Fort Johnson Road, Charleston, SC 29412, USA
| | - Michelle Barbieri
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, NOAA, 1845 Wasp Boulevard, No. 176, Honolulu, HI 96818, USA
| | - John S Ramsdell
- HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 219 Fort Johnson Road, Charleston, SC 29412, USA.
| |
Collapse
|
34
|
From the cradle to the grave: Green turtle hatchlings (Chelonia mydas) preyed upon by two-spots red snappers (Lutjanus bohar). FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2019.e00129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Mustapa NI, Yong HL, Lee LK, Lim ZF, Lim HC, Teng ST, Luo Z, Gu H, Leaw CP, Lim PT. Growth and epiphytic behavior of three Gambierdiscus species (Dinophyceae) associated with various macroalgal substrates. HARMFUL ALGAE 2019; 89:101671. [PMID: 31672230 DOI: 10.1016/j.hal.2019.101671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Species of the benthic dinoflagellate Gambierdiscus produce polyether neurotoxins that caused ciguatera fish/shellfish poisoning in human. The toxins enter marine food webs by foraging of herbivores on the biotic substrates like macroalgae that host the toxic dinoflagellates. Interaction of Gambierdiscus and their macroalgal substrate hosts is believed to shape the tendency of substrate preferences and habitat specialization. This was supported by studies that manifested epiphytic preferences and behaviors in Gambierdiscus species toward different macroalgal hosts. To further examine the supposition, a laboratory-based experimental study was conducted to examine the growth, epiphytic behaviors and host preferences of three Gambierdiscus species towards four macroalgal hosts over a culture period of 40 days. The dinoflagellates Gambierdiscus balechii, G. caribaeus, and a new ribotype, herein designated as Gambierdiscus type 7 were initially identified based on the thecal morphology and molecular characterization. Our results showed that Gambierdiscus species tested in this study exhibited higher growth rates in the presence of macroalgal hosts. Growth responses and attachment behaviors, however, differed among different species and strains of Gambierdiscus over different macroalgal substrate hosts. Cells of Gambierdiscus mostly attached to substrate hosts at the beginning of the experiments but detached at the later time. Localized Gambierdiscus-host interactions, as demonstrated in this study, could help to better inform efforts of sampling and monitoring of this benthic toxic dinoflagellate.
Collapse
Affiliation(s)
- Nurin Izzati Mustapa
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaysia, Bachok, 16310, Kelantan, Malaysia
| | - Hwa Lin Yong
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaysia, Bachok, 16310, Kelantan, Malaysia
| | - Li Keat Lee
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaysia, Bachok, 16310, Kelantan, Malaysia
| | - Zhen Fei Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaysia, Bachok, 16310, Kelantan, Malaysia
| | - Hong Chang Lim
- Faculty of Applied Sciences, Tunku Abdul Rahman University College, Johor Branch Campus, 85000, Segamat, Johor, Malaysia
| | - Sing Tung Teng
- Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaysia, Bachok, 16310, Kelantan, Malaysia.
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaysia, Bachok, 16310, Kelantan, Malaysia.
| |
Collapse
|
36
|
Tsumuraya T, Hirama M. Rationally Designed Synthetic Haptens to Generate Anti-Ciguatoxin Monoclonal Antibodies, and Development of a Practical Sandwich ELISA to Detect Ciguatoxins. Toxins (Basel) 2019; 11:E533. [PMID: 31540301 PMCID: PMC6784113 DOI: 10.3390/toxins11090533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/02/2022] Open
Abstract
"Ciguatera" fish poisoning (CFP) is one of the well-known food poisoning caused by the ingestion of fish that have accumulated trace amounts of ciguatoxins (CTXs). CFP affects more than 50,000 individuals annually. The difficulty in preventing CFP comes from the lack of reliable methods for analysis of CTXs in contaminated fish, together with the normal appearance, taste, and smell of CTX-contaminated fish. Thus, a sensitive, accurate, routine, and portable analytical method to detect CTXs is urgently required. Monoclonal antibodies (mAbs) specific against either wing of major CTX congeners (CTX1B, 54-deoxyCTX1B, CTX3C, and 51-hydroxyCTX3C) were generated by immunizing mice with rationally designed synthetic haptens-KLH conjugates instead of the CTXs. Haptenic groups with a surface area greater than 400 Å2 are required to produce mAbs that can strongly bind to CTXs. Furthermore, a highly sensitive fluorescence-based sandwich enzyme-linked immunosorbent assay (ELISA) was developed. This protocol can detect and quantify four major CTX congeners (CTX1B, 54-deoxyCTX1B, CTX3C, and 51-hydroxyCTX3C) with a limit of detection (LOD) of less than 1 pg/mL. The LOD determined for this sandwich ELISA is sufficient to detect CTX1B-contaminated fish at the FDA guidance level of 0.01 ppb.
Collapse
Affiliation(s)
- Takeshi Tsumuraya
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| | - Masahiro Hirama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
37
|
Bravo I, Rodriguez F, Ramilo I, Rial P, Fraga S. Ciguatera-Causing Dinoflagellate Gambierdiscus spp. (Dinophyceae) in a Subtropical Region of North Atlantic Ocean (Canary Islands): Morphological Characterization and Biogeography. Toxins (Basel) 2019; 11:toxins11070423. [PMID: 31331083 PMCID: PMC6669716 DOI: 10.3390/toxins11070423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/04/2022] Open
Abstract
Dinoflagellates belonging to the genus Gambierdiscus produce ciguatoxins (CTXs), which are metabolized in fish to more toxic forms and subsequently cause ciguatera fish poisoning (CFP) in humans. Five species of Gambierdiscus have been described from the Canary Islands, where CTXs in fish have been reported since 2004. Here we present new data on the distribution of Gambierdiscus species in the Canary archipelago and specifically from two islands, La Palma and La Gomera, where the genus had not been previously reported. Gambierdiscus spp. concentrations were low, with maxima of 88 and 29 cells·g−1 wet weight in samples from La Gomera and La Palma, respectively. Molecular analysis (LSUrRNA gene sequences) revealed differences in the species distribution between the two islands: only G. excentricus was detected at La Palma whereas four species, G. australes, G. caribaeus, G. carolinianus, and G. excentricus, were identified from La Gomera. Morphometric analyses of cultured cells of the five Canary Islands species and of field specimens from La Gomera included cell size and a characterization of three thecal arrangement traits: (1) the shape of the 2′ plate, (2) the position of Po in the anterior suture of the 2′ plate, and (3) the length–width relationship of the 2″″ plate. Despite the wide morphological variability within the culture and field samples, the use of two or more variables allowed the discrimination of two species in the La Gomera samples: G. cf. excentricus and G. cf. silvae. A comparison of the molecular data with the morphologically based classification demonstrated important coincidences, such as the dominance of G. excentricus, but also differences in the species composition of Gambierdiscus, as G. caribaeus was detected in the study area only by using molecular methods.
Collapse
Affiliation(s)
- Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Francisco Rodriguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Isabel Ramilo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Pilar Rial
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Santiago Fraga
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
38
|
Díaz-Asencio L, Vandersea M, Chomérat N, Fraga S, Clausing RJ, Litaker RW, Chamero-Lago D, Gómez-Batista M, Moreira-González A, Tester P, Alonso-Hernández C, Dechraoui Bottein MY. Morphology, toxicity and molecular characterization of Gambierdiscus spp. towards risk assessment of ciguatera in south central Cuba. HARMFUL ALGAE 2019; 86:119-127. [PMID: 31358271 DOI: 10.1016/j.hal.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Ciguatera poisoning is caused by the consumption of reef fish or shellfish that have accumulated ciguatoxins, neurotoxins produced by benthic dinoflagellates of the genera Gambierdiscus or Fukuyoa. Although ciguatera constitutes the primary cause of seafood intoxication in Cuba, very little information is available on the occurrence of ciguatoxins in the marine food web and the causative benthic dinoflagellate species. This study conducted on the south-central coast of Cuba reports the occurrence of Gambierdiscus and Fukuyoa genera and the associated benthic genera Ostreopsis and Prorocentrum. Gambierdiscus/Fukuyoa cells were present at low to moderate abundances depending on the site and month of sampling. This genus was notably higher on Dictyotaceae than on other macrophytes. PCR analysis of field-collected samples revealed the presence of six different Gambierdiscus and one Fukuyoa species, including G. caribaeus, G. carolinianus, G. carpenteri, G. belizeanus, F. ruetzleri, G. silvae, and Gambierdiscus sp. ribotype 2. Only Gambierdiscus excentricus was absent from the eight Gambierdiscus/Fukuyoa species known in the wider Caribbean region. Eleven clonal cultures were established and confirmed by PCR and SEM as being either G. carolinianus or G. caribaeus. Toxin production in each isolate was assessed by a radioligand receptor binding assay and found to be below the assay quantification limit. These novel findings augment the knowledge of the ciguatoxin-source dinoflagellates that are present in Cuba, however further studies are needed to better understand the correlation between their abundance, species-specific toxin production in the environment, and the risk for fish contamination, in order to develop better informed ciguatera risk management strategies.
Collapse
Affiliation(s)
- Lisbet Díaz-Asencio
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Mark Vandersea
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Nicolas Chomérat
- Ifremer, Laboratory of Environment and Resources Western Britanny, Coastal Research Unit, Place de la Croix, B.P. 40537, 29185, Concarneau Cedex, France
| | - Santiago Fraga
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Rachel J Clausing
- Environment Laboratories, Department of Nuclear Science and Application, International Atomic Energy Agency, 98000, Monaco
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Donaida Chamero-Lago
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Miguel Gómez-Batista
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Angel Moreira-González
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | - Patricia Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC, 28516, USA
| | - Carlos Alonso-Hernández
- Centro de Estudios Ambientales de Cienfuegos (CEAC), Carretera a Castillo de Jagua Km 1 ½ Ciudad Nuclear AP, 59350, Cienfuegos, Cuba
| | | |
Collapse
|
39
|
Litaker RW, Tester PA, Vandersea MW. Species-specific PCR assays for Gambierdiscus excentricus and Gambierdiscus silvae (Gonyaulacales, Dinophyceae). JOURNAL OF PHYCOLOGY 2019; 55:730-732. [PMID: 30817008 DOI: 10.1111/jpy.12852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The two most toxic Gambierdiscus species identified from the Caribbean are G. excentricus and G. silvae. These species are the primary causes of ciguatera fish poisoning and likely contribute disproportionately to the toxicity of marine food webs. While Gambierdiscus species are difficult to distinguish using light or scanning electron microscopy, reliable species-specific molecular identification methods have been developed and used successfully to identify a number of other Gambierdiscus species. Corresponding species-specific assays are not yet available for G. excentricus and G. silvae, which imposes limitations on species identification and related ecological studies. The following note describes species-specific polymerase chain reaction assays for G. excentricus and G. silvae that can be used for these purposes.
Collapse
Affiliation(s)
- R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Rd., Beaufort, North Carolina, 28516, USA
| | - Patricia A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, North Carolina, 28516, USA
| | - Mark W Vandersea
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Rd., Beaufort, North Carolina, 28516, USA
| |
Collapse
|
40
|
Mazzola EP, Deeds JR, Stutts WL, Ridge CD, Dickey RW, White KD, Williamson RT, Martin GE. Elucidation and partial NMR assignment of monosulfated maitotoxins from the Caribbean. Toxicon 2019; 164:44-50. [PMID: 30954452 DOI: 10.1016/j.toxicon.2019.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 11/25/2022]
Abstract
Compounds similar to maitotoxin (MTX) have been isolated from several laboratory strains of the dinoflagellate Gambierdiscus spp. from the Caribbean. Mass spectral results suggest that these compounds differ from MTX by the loss of one sulfate group and, in some cases, the loss of one methyl group with the addition of one degree of unsaturation. NMR experiments, using approximately 50 nmol of one of these compounds, have demonstrated that the 9-sulfo group of MTX is still present, suggesting that these compounds are 40-desulfo congeners of MTX.
Collapse
Affiliation(s)
- Eugene P Mazzola
- University of Maryland-FDA Joint Institute, College Park, MD, 20742, USA
| | - Jonathan R Deeds
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, 20740, USA
| | - Whitney L Stutts
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, 20740, USA
| | - Clark D Ridge
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, 20740, USA.
| | - Robert W Dickey
- Food and Drug Administration Gulf Coast Seafood Laboratory, Office of Food Safety, Dauphin Island, AL, 36528, USA
| | - Kevin D White
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, 20740, USA
| | - R Thomas Williamson
- Merck Research Laboratories, Process and Analytical Chemistry, NMR Structure Elucidation Group, Rahway, NJ, 07065, USA
| | - Gary E Martin
- Merck Research Laboratories, Process and Analytical Chemistry, NMR Structure Elucidation Group, Rahway, NJ, 07065, USA
| |
Collapse
|
41
|
Tamele IJ, Silva M, Vasconcelos V. The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea. Toxins (Basel) 2019; 11:E58. [PMID: 30669603 PMCID: PMC6357038 DOI: 10.3390/toxins11010058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region.
Collapse
Affiliation(s)
- Isidro José Tamele
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique.
| | - Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| |
Collapse
|
42
|
Murk AJ, Nicolas J, Smulders FJ, Bürk C, Gerssen A. Marine biotoxins: types of poisoning, underlying mechanisms of action and risk management programmes. CHEMICAL HAZARDS IN FOODS OF ANIMAL ORIGIN 2019. [DOI: 10.3920/978-90-8686-877-3_09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Albertinka J. Murk
- Department of Animal Sciences, Marine Animal Ecology group, Wageningen University and Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - Jonathan Nicolas
- 68300 Saint-Louis, France, formerly affiliated with Division of Toxicology, Wageningen University and Research Centre, the Netherlands
| | - Frans J.M. Smulders
- Institute of Meat Hygiene, Meat Technology and Food Science, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Christine Bürk
- Milchwirstschaftliche Untersuchungs- und Versuchsanstalt (MUVA) Kempten, GmbH, Ignaz-Kiechle-Straße 20-22, 87437 Kempten (Allgäu), Germany
| | - Arjen Gerssen
- RIKILT, Wageningen University & Research, P.O. Box 230, 6708 WB Wageningen, the Netherlands
| |
Collapse
|
43
|
Ciguatera in Mexico (1984⁻2013). Mar Drugs 2018; 17:md17010013. [PMID: 30597874 PMCID: PMC6356608 DOI: 10.3390/md17010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Historical records of ciguatera in Mexico date back to 1862. This review, including references and epidemiological reports, documents 464 cases during 25 events from 1984 to 2013: 240 (51.72%) in Baja California Sur, 163 (35.12%) in Quintana Roo, 45 (9.69%) in Yucatan, and 16 (3.44%) cases of Mexican tourists intoxicated in Cuba. Carnivorous fish, such as snapper (Lutjanus) and grouper (Epinephelus and Mycteroperca) in the Pacific Ocean, and great barracuda (Sphyraena barracuda) and snapper (Lutjanus) in the Atlantic (Gulf of Mexico and Caribbean Sea), were involved in all cases. In the Mexican Caribbean, a sub-record of ciguatera cases that occurred before 1984 exists. However, the number of intoxications has increased in recent years, and this food poisoning is poorly studied in the region. Current records suggest that ciguatera fish poisoning in humans is the second most prevalent form of seafood poisoning in Mexico, only exceeded by paralytic shellfish poisoning (505 cases, 21 fatalities in the same 34-year period). In this study, the status of ciguatera in Mexico (epidemiological and treatment), and the fish vectors are reviewed. Dinoflagellate species Gambierdiscus, Ostreopsis, and Prorocentrum are related with the reported outbreaks, marine toxins, ecological risk, and the potential toxicological impact.
Collapse
|
44
|
Murray JS, Boundy MJ, Selwood AI, Harwood DT. Development of an LC-MS/MS method to simultaneously monitor maitotoxins and selected ciguatoxins in algal cultures and P-CTX-1B in fish. HARMFUL ALGAE 2018; 80:80-87. [PMID: 30502815 DOI: 10.1016/j.hal.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 06/09/2023]
Abstract
Ciguatera fish poisoning is a serious human health issue that is highly localized to tropical and sub-tropical coastal areas, affecting many of the indigenous island communities intrinsically linked to reef systems for sustenance and trade. It is caused by the consumption of reef fish contaminated with ciguatoxins and is reported as the most common cause of non-bacterial food poisoning. The causative toxins bioaccumulate up the food web, from small herbivorous fish that graze on microalgae of the genus Gambierdiscus into the higher trophic level omnivorous and carnivorous fish predating on them. The number of Gambierdiscus species being described is increasing rapidly and the role of other toxins produced by this microalgal genus in ciguatera intoxications, such as maitotoxin, remains unclear. Ciguatoxins and maitotoxin are among the most potent marine toxins known and there are currently no methods of analysis that can simultaneously monitor these toxins with a high degree of specificity. To meet this need a rapid and selective ultra-performance liquid chromatography tandem mass spectrometry method has been developed to rapidly screen Gambierdiscus cultures and environmental sample device extracts for ciguatoxins and maitotoxins. A fast sample preparation method has also been developed to allow sensitive quantification of the potent ciguatoxin fish metabolite P-CTX-1B from fish extracts, and this method has been subjected to a small validation study. Novel aspects of this approach include the use of alkaline mobile phase for chromatographic separation and specific monitoring of the various toxins. This method has good potential to help evaluate ciguatera risk associated with Gambierdiscus and related microalgal species, and to help promote method development activities for this important and analytically challenging toxin class.
Collapse
Affiliation(s)
- J Sam Murray
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand(1)
| | | | | | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand(1).
| |
Collapse
|
45
|
Sasaki M, Iwasaki K, Arai K. Studies toward the Total Synthesis of Caribbean Ciguatoxin C-CTX-1: Synthesis of the LMN-Ring Fragment through Reductive Olefin Cross-Coupling. Org Lett 2018; 20:7163-7166. [PMID: 30362358 DOI: 10.1021/acs.orglett.8b03102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Synthesis of the LMN-ring fragment of Caribbean ciguatoxin C-CTX-1, the principal causative toxin for ciguatera fish poisoning around the Caribbean Sea areas, is described. The key feature of the synthesis is the stereoselective introduction of an angular methyl group on the sterically encumbered seven-membered M-ring by the application of a hydrogen atom transfer-based reductive olefin coupling.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences , Tohoku University , 2-1-1 Katahira, Aoba-ku , Sendai 980-8577 , Japan
| | - Kotaro Iwasaki
- Graduate School of Life Sciences , Tohoku University , 2-1-1 Katahira, Aoba-ku , Sendai 980-8577 , Japan
| | - Keisuke Arai
- Graduate School of Life Sciences , Tohoku University , 2-1-1 Katahira, Aoba-ku , Sendai 980-8577 , Japan
| |
Collapse
|
46
|
Identification of Causative Ciguatoxins in Red Snappers Lutjanus bohar Implicated in Ciguatera Fish Poisonings in Vietnam. Toxins (Basel) 2018; 10:toxins10100420. [PMID: 30347818 PMCID: PMC6215179 DOI: 10.3390/toxins10100420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
Ciguatera fish poisoning (CFP) is a type of food poisoning caused by the consumption of a variety of toxic ciguatera fish species in the tropical and subtropical waters. Although there have been a large number of suspected CFP cases in the Southeast Asian countries, few were confirmed with causative ciguatoxins (CTXs), and reliable information on the symptoms still remains rather limited. In the present study, CTXs in red snapper Lutjanus bohar, implicated in two suspected CFP cases in Vietnam in 2014 and 2016, were determined by use of the single-quadrupole selected ion monitoring (SIM) liquid chromatography/mass spectrometry (LC/MS). Ciguatoxin-1B (CTX-1B), 54-deoxyCTX-1B, and 52-epi-54-deoxyCTX-1B were detected in the red snapper by our LC/MS method. Moreover, CTX-1B, 54-deoxyCTX-1B, and 52-epi-54-deoxyCTX-1B were further identified by the time of flight (TOF) LC/MS with the exact mass spectrum. The CTX profile of the red snapper in Vietnam is similar to those of ciguatera fish from Australia, Okinawa Islands in Japan, Kiribati, and Hong Kong. This is the first comprehensive report unambiguously identifying the causative toxins in fish implicated with reliable information on the poisoning symptoms in CFP in Vietnam and/or Southeast Asian countries.
Collapse
|
47
|
Vilariño N, Louzao MC, Abal P, Cagide E, Carrera C, Vieytes MR, Botana LM. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins (Basel) 2018; 10:E324. [PMID: 30096904 PMCID: PMC6116008 DOI: 10.3390/toxins10080324] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Eva Cagide
- Laboratorio CIFGA S.A., Plaza Santo Domingo 20-5°, 27001 Lugo, Spain.
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
48
|
Toxins as tools: Fingerprinting neuronal pharmacology. Neurosci Lett 2018; 679:4-14. [DOI: 10.1016/j.neulet.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
|
49
|
Clausing RJ, Losen B, Oberhaensli FR, Darius HT, Sibat M, Hess P, Swarzenski PW, Chinain M, Dechraoui Bottein MY. Experimental evidence of dietary ciguatoxin accumulation in an herbivorous coral reef fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:257-265. [PMID: 29803968 DOI: 10.1016/j.aquatox.2018.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Ciguatoxins (CTXs) are potent algal toxins that cause widespread ciguatera poisoning and are found ubiquitously in coral reef food webs. Here we developed an environmentally-relevant, experimental model of CTX trophic transfer involving dietary exposure of herbivorous fish to the CTX-producing microalgae Gambierdiscus polynesiensis. Juvenile Naso brevirostris were fed a gel-food embedded with microalgae for 16 weeks (89 cells g-1 fish daily, 0.4 μg CTX3C equiv kg-1 fish). CTXs in muscle tissue were detectable after 2 weeks at levels above the threshold for human intoxication (1.2 ± 0.2 μg CTX3C equiv kg-1). Although tissue CTX concentrations stabilized after 8 weeks (∼3 ± 0.5 μg CTX3C equiv kg-1), muscle toxin burden (total μg CTX in muscle tissue) continued to increase linearly through the end of the experiment (16 weeks). Toxin accumulation was therefore continuous, yet masked by somatic growth dilution. The observed CTX concentrations, accumulation rates, and general absence of behavioural signs of intoxication are consistent with field observations and indicate that this method of dietary exposure may be used to develop predictive models of tissue-specific CTX uptake, metabolism and depuration. Results also imply that slow-growing fish may accumulate higher CTX flesh concentrations than fast-growing fish, which has important implications for global seafood safety.
Collapse
Affiliation(s)
- Rachel J Clausing
- International Atomic Energy Agency, IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Monaco
| | - Barbara Losen
- International Atomic Energy Agency, IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Monaco
| | - Francois R Oberhaensli
- International Atomic Energy Agency, IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Monaco
| | - H Taiana Darius
- Institut Louis Malardé- UMR 241 EIO, Laboratoire des Micro-algues Toxiques, BP 30, 98713, Papeete-Tahiti, French Polynesia
| | - Manoella Sibat
- Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Peter W Swarzenski
- International Atomic Energy Agency, IAEA Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Monaco
| | - Mireille Chinain
- Institut Louis Malardé- UMR 241 EIO, Laboratoire des Micro-algues Toxiques, BP 30, 98713, Papeete-Tahiti, French Polynesia
| | | |
Collapse
|
50
|
Wang B, Yao M, Zhou J, Tan S, Jin H, Zhang F, Mak YL, Wu J, Lai Chan L, Cai Z. Growth and Toxin Production of Gambierdiscus spp. Can Be Regulated by Quorum-Sensing Bacteria. Toxins (Basel) 2018; 10:toxins10070257. [PMID: 29932442 PMCID: PMC6071102 DOI: 10.3390/toxins10070257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 11/23/2022] Open
Abstract
Gambierdiscus spp. are the major culprit responsible for global ciguatera fish poisoning (CFP). At present, the effects of microbiological factors on algal proliferation and toxin production are poorly understood. To evaluate the regulatory roles of quorum-sensing (QS) bacteria in the physiology of Gambierdiscus, co-culture experiments with screened QS strains were conducted in this study. Except for the growth-inhibiting effect from the strain Marinobacter hydrocarbonoclasticus, the algal host generally displayed much higher growth potential and toxin production ability with the existence of QS strains. In addition, Bacillus anthracis particularly exhibited a broad-spectrum growth enhancement effect on various Gambierdiscus types, as well as a remarkable influence on algal toxicity. The variations of algal physiological status, including growth rate, chlorophyll content, and responsive behaviors, are potential reasons for the observed positive or negative affection. This study suggests that QS bacteria regulate the algal growth and toxin production. Based on the evidence, we further speculate that QS bacteria may contribute to the site-specific distribution of CFP risk through regulating the algal host biomass and toxicity.
Collapse
Affiliation(s)
- Bo Wang
- School of Life Science, Tsinghua University, Beijing 100084, China.
| | - Mimi Yao
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China.
| | - Jin Zhou
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Shangjin Tan
- School of Life Science, Tsinghua University, Beijing 100084, China.
| | - Hui Jin
- School of Life Science, Tsinghua University, Beijing 100084, China.
| | - Feng Zhang
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong 999077, China.
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Yim Ling Mak
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong 999077, China.
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Jiajun Wu
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong 999077, China.
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Leo Lai Chan
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong 999077, China.
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Zhonghua Cai
- Shenzhen Public Platform of Screening & Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|