1
|
Alberto-Silva C, Vieira Portaro FC, Kodama RT, Gomes L, da Silva BR, da Cunha e Silva FA, Nihei KI, Konno K. Scoliidines: Neuroprotective Peptides in Solitary Scoliid Wasp Venoms. Toxins (Basel) 2024; 16:446. [PMID: 39453222 PMCID: PMC11511111 DOI: 10.3390/toxins16100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
A comprehensive LC-MS study examined the venom components of the solitary scoliid wasp Scolia oculata. Online mass fingerprinting showed that crude venom contains 25 small molecules (amino acids, biogenic amines, and nucleosides/nucleotides) and 45 peptides with MW 400-2700. The small molecules were identified by elemental composition analysis, and peptide sequences were determined by ESI-MS/MS and MALDI-TOF/TOF MS analyses. As major peptide components, a known peptide, β-scoliidine (DYVTVKGFSPLRKA), and three new peptides, γ-scoliidine (YVTVKGFSPLR), δ-scoliidine (YVTVKGFSPLREP) and ε-scoliidine (DYVTVKGFSPLREP) were identified, all of which are closely homologous to each other. Once the neuroprotective effects of β-scoliidine have already been described, the other three new scoliidine peptides were analyzed against oxidative stress-induced toxicity in PC12 neuronal cells by mitochondrial metabolism assay, and the structure-activity relationship was evaluated. Interestingly, pre-treatment with ε-scoliidine increased the mitochondrial metabolism of PC12 cells (106 ± 3.6%; p = 0.007) exposed to H2O2-induced oxidative stress in contrast to γ- and δ-scoliidines (77.6 ± 4.8 and 68.5 ± 4.1%, respectively) in compared to cells treated only H2O2 (75.8 ± 2.4%). These new peptides were also analyzed for enzyme inhibitor/substrate assays with angiotensin-converting enzyme (ACE), neprilysin (NEP), and acetylcholinesterase (AChE). In these assays, only δ- and ε-scoliidines increased the AChE activity (128.7 ± 3.8%; p = 0.01; and 116.8 ± 3.8% p = 0.03; respectively) in relation to basal activity (100.1 ± 1.6%). In addition, the four peptides were analyzed through in silico analysis, and none of them demonstrated possible hemolytic and toxic activities. In our study, the comprehensive LC-MS and MS/MS analyses of Scolia oculate venom identified four major peptide components of the venom β-, γ-, δ- and ε-scoliidines, and small differences in their primary structures are important to their neuroprotective properties.
Collapse
Affiliation(s)
- Carlos Alberto-Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (F.A.d.C.e.S.)
| | - Fernanda Calheta Vieira Portaro
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, SP, Brazil; (F.C.V.P.); (R.T.K.); (L.G.)
| | - Roberto Tadashi Kodama
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, SP, Brazil; (F.C.V.P.); (R.T.K.); (L.G.)
| | - Lais Gomes
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, SP, Brazil; (F.C.V.P.); (R.T.K.); (L.G.)
| | - Brenda Rufino da Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (F.A.d.C.e.S.)
| | - Felipe Assumpção da Cunha e Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (F.A.d.C.e.S.)
| | - Ken-ichi Nihei
- School of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Tochigi, Japan;
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Toyama, Japan
| |
Collapse
|
2
|
Bea RDLS, Frawley E, Shen Q, Moyo S, Thelven JM, North L. Synthesized peptide analogs from Eumenes pomiformis (Hymenoptera: Eumenidae) venom reveals their antibiotic and pesticide activity potential. Toxicon 2023; 224:107032. [PMID: 36690087 DOI: 10.1016/j.toxicon.2023.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
One natural antimicrobial peptide (EpVP2a, Eumenes pomiformis Venom Peptide 2a) found in the venom of a potter wasp (Eumenes pomiformis) and six analogs were synthesized and tested to compare their antimicrobial, antifungal, pesticide, and hemolytic activity with the wild type. Our results indicated that while the original peptide and the synthetic analogs had no antifungal activity or anti-bacterial activity against Pseudomonas aeruginosa, the original peptide and the analog with substitution of the aspartic acid on the sequence by a lysine (EpVP2a-D2K2) had activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis. This same analog also shows significant insecticide activity. The analog with substitution of lysine with a slightly smaller ornithine had activity against E. coli and B. subtilis. All analogs show low hemolytic activity compared to the natural peptide. The peptide with a reverse sequence to the natural one (EpVp2a Retro) shows low helix structure which can also explain why it has no antibacterial activity and low hemolytic activity. Circular dichroism spectra show that these peptides form an alpha helix structure and their amino acid positions predict an amphipathic nature.
Collapse
Affiliation(s)
| | - Elaine Frawley
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Qian Shen
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Sydney Moyo
- Department of Biology and Program in Environmental Studies and Sciences, Rhodes College, Memphis, TN 38112, USA
| | - Jeremy M Thelven
- Department of Chemistry, North Carolina State University. Raleigh, NC 27695, USA
| | - Lily North
- Department of Chemistry, The University of Arizona. Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Bioactive Peptides and Proteins from Wasp Venoms. Biomolecules 2022; 12:biom12040527. [PMID: 35454116 PMCID: PMC9025469 DOI: 10.3390/biom12040527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wasps, members of the order Hymenoptera, use their venom for predation and defense. Accordingly, their venoms contain various constituents acting on the circulatory, immune and nervous systems. Wasp venom possesses many allergens, enzymes, bioactive peptides, amino acids, biogenic amines, and volatile matters. In particular, some peptides show potent antimicrobial, anti-inflammatory, antitumor, and anticoagulant activity. Additionally, proteinous components from wasp venoms can cause tissue damage or allergic reactions in organisms. These bioactive peptides and proteins involved in wasp predation and defense may be potential sources of lead pharmaceutically active molecules. In this review, we focus on the advances in bioactive peptides and protein from the venom of wasps and their biological effects, as well as the allergic reactions and immunotherapy induced by the wasp venom.
Collapse
|
4
|
Alberto-Silva C, Vieira Portaro FC, Kodama RT, Pantaleão HQ, Inagaki H, Nihei KI, Konno K. Comprehensive Analysis and Biological Characterization of Venom Components from Solitary Scoliid Wasp Campsomeriella annulata annulata. Toxins (Basel) 2021; 13:885. [PMID: 34941722 PMCID: PMC8708821 DOI: 10.3390/toxins13120885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Venoms of solitary wasps are utilized for prey capture (insects and spiders), paralyzing them with a stinger injection to be offered as food for their larvae. Thus, the identification and characterization of the components of solitary wasp venoms can have biotechnological application. In the present study, the venom components profile of a solitary scoliid wasp, Campsomeriella annulata annulata, was investigated through a comprehensive analysis using LC-MS and -MS/MS. Online mass fingerprinting revealed that the venom extract contains 138 components, and MS/MS analysis identified 44 complete sequences of the peptide components. The peptides are broadly divided into two classes: bradykinin-related peptides, and linear α-helical peptides. Among the components of the first class, the two main peptides, α-campsomerin (PRLRRLTGLSPLR) and β-campsomerin (PRLRRLTGLSPLRAP), had their biological activities evaluated. Both peptides had no effects on metallopeptidases [human neprilysin (NEP) and angiotensin-converting enzyme (ACE)] and acetylcholinesterase (AChE), and had no cytotoxic effects. Studies with PC12 neuronal cells showed that only α-campsomerin was able to enhance cell viability, while β-campsomerin had no effect. It is noteworthy that the only difference between the primary structures from these peptides is the presence of the AP extension at the C-terminus of β-campsomerin, compared to α-campsomerin. Among the linear α-helical peptides, annulatin (ISEALKSIIVG-NH2) was evaluated for its biological activities. Annulatin showed histamine releasing activity from mast cells and low hemolytic activity, but no antimicrobial activities against all microbes tested were observed. Thus, in addition to providing unprecedented information on the whole components, the three peptides selected for the study suggest that molecules present in solitary scoliid wasp venoms may have interesting biological activities.
Collapse
Affiliation(s)
- Carlos Alberto-Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil;
| | - Fernanda Calheta Vieira Portaro
- Structure and Functions of Biomolecules Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (F.C.V.P.); (R.T.K.)
| | - Roberto Tadashi Kodama
- Structure and Functions of Biomolecules Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (F.C.V.P.); (R.T.K.)
| | - Halyne Queiroz Pantaleão
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil;
| | - Hidetoshi Inagaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan;
| | - Ken-ichi Nihei
- School of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Tochigi, Japan;
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Toyama, Japan
| |
Collapse
|
5
|
Nihei KI, Peigneur S, Tytgat J, Lange AB, Konno K. Isolation and characterization of FMRFamide-like peptides in the venoms of solitary sphecid wasps. Peptides 2021; 142:170575. [PMID: 34023397 DOI: 10.1016/j.peptides.2021.170575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Purification of small peptide components in the venoms of the solitary sphecid wasps, Sphex argentatus argentatus and Isodontia harmandi, led to the isolation of several major peptides. Analysis of MS/MS spectra by MALDI-TOF/TOF revealed the sequence of a new peptide Sa112 (EDVDHVFLRF-NH2), which is structurally very similar to leucomyosupressin (pQDVDHVFLRF-NH2) and SchistoFLRFamide (PDVDHVFLRF-NH2), the FMRFamide-like peptides from cockroach and locust, respectively. Indeed, this new peptide, like SchistoFLRFamide, inhibited the frequency and amplitude of spontaneous contractions of the locust oviduct in a dose-dependent manner. A non-amidated peptide Sa12b (EDVDHVFLRF) was also isolated, but this peptide had no effect on spontaneous locust oviduct contraction. This is the first example of a FMRF-like peptide to be found in solitary wasp venom. Additionally, a truncated form of the myosuppressins, which has previously been synthesized and tested for biological activity, DVDHVFLRF-NH2 (Sh5b), was found for the first time as a natural product. Four other novel peptides were isolated and characterized as Sa81 (EDDLEDFNPTVS), Sa10 (EDDLEDFNPTIA), Sh41 (DDLSDFNPKV), and Sh42 (EDDLSDFNPKV). They are structurally related to each other, having a high content of acidic amino acids, but no structural similarity to any known peptides. Ion channel associated activities of Sh41 and Sh42 were tested, but did not show any activity for Na+, K+, Ca2+ channels.
Collapse
Affiliation(s)
- Ken-Ichi Nihei
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, Tochigi 321-0943, Japan
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Angela B Lange
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
6
|
Alberto-Silva C, Portaro FCV, Kodama RT, Pantaleão HQ, Rangel M, Nihei KI, Konno K. Novel neuroprotective peptides in the venom of the solitary scoliid wasp Scolia decorata ventralis. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200171. [PMID: 34194483 PMCID: PMC8215932 DOI: 10.1590/1678-9199-jvatitd-2020-0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Solitary wasp venoms may be a rich source of neuroactive substances, since their venoms are used for paralyzing preys. We have been exploring bioactive constituents of solitary wasp venoms and, in this study, the component profile of the venom from a solitary scoliid wasp, Scolia decorata ventralis, was investigated through a comprehensive analysis using LC-MS. Two peptides were synthesized, and their neuroprotective properties were evaluated. Methods A reverse-phase HPLC connected to ESI-MS was used for LC-MS analyses. Online mass fingerprinting was performed from TIC, and data-dependent tandem mass spectrometry gave the MS/MS spectra. The sequences of two major peptide components were determined by MALDI-TOF/TOF MS analysis, confirmed by solid phase synthesis. Using the synthetic peptides, biological activities were assessed. Cell integrity tests and neuroprotection analyzes using H2O2 as an oxidative stress inducer were performed for both peptides. Results Online mass fingerprinting revealed that the venom contains 123 components, and the MS/MS analysis resulted in 33 full sequences of peptide components. The two main peptides, α-scoliidine (DYVTVKGFSPLR) and β-scoliidine (DYVTVKGFSPLRKA), present homology with the bradykinin C-terminal. Despite this, both peptides did not behave as substrates or inhibitors of ACE, indicating that they do not interact with this metallopeptidase. In further studies, β-scoliidine, but not α -scoliidine, showed protective effects against oxidative stress-induced neurotoxicity in PC12 cells through integrity and metabolism cell assays. Interestingly, β-scoliidine has the extension of the KA dipeptide at the C-terminal in comparison with α-scoliidine. Conclusion Comprehensive LC-MS and MS/MS analyses from the Scolia decorata ventralis venom displayed the component profile of this venom. β-scoliidine showed an effective cytoprotective effect, probably due to the observed increase in the number of cells. This is the first report of solitary wasp venom peptides showing neuroprotective activity.
Collapse
Affiliation(s)
- Carlos Alberto-Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | | | | | - Halyne Queiroz Pantaleão
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Marisa Rangel
- Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | - Ken-Ichi Nihei
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
7
|
Molecular composition of the paralyzing venom of three solitary wasps (Hymenoptera: Pompilidae) collected in southeast Mexico. Toxicon 2019; 168:98-102. [DOI: 10.1016/j.toxicon.2019.06.224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022]
|
8
|
Abstract
Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.
Collapse
|
9
|
dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148:172-196. [DOI: 10.1016/j.toxicon.2018.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
|
10
|
A membrane disrupting toxin from wasp venom underlies the molecular mechanism of tissue damage. Toxicon 2018; 148:56-63. [PMID: 29654869 DOI: 10.1016/j.toxicon.2018.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
The molecular mechanism of the local hypersensitivity reactions to wasp venom including dermal necrosis remains an enigma regardless of the numerosity of the reported cases. In this study, we discovered a new membrane disrupting toxin, VESCP-M2 responsible for tissue damage symptoms following Vespa mandarinia envenomation. Electrophysiological assays revealed a potent ability of VESCP-M2 to permeate the cell membrane whereas in vivo experiments demonstrated that VESCP-M2 induces edema, pain and dermal necrosis characterized by the presence of morphological and behavioral phenotypes, pro-inflammatory mediators, biomarkers as well as the disruption of dermal tissue. This study presents the molecular mechanism and symptom-related function of VESCP-M2 which may form a basis for prognosis as well as therapeutic interventions.
Collapse
|
11
|
Mortari MR, Cunha AOS, Carolino ROG, Silva JDCE, Lopes NP, Santos WFD. Evaluation of Thr 6-bradykinin purified from Polybia occidentalis wasp venom in the choline uptake of mammal cortices. PHARMACEUTICAL BIOLOGY 2016; 54:3169-3171. [PMID: 27564011 DOI: 10.1080/13880209.2016.1211715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Thr6-bradykinin is a peptide found in the venom of social and solitary wasps. This kinin, along with other bradykinin-like peptides, is known to cause irreversible paralysis in insects by presynaptic blockade of cholinergic transmission. However, this activity has never been tested in mammals. OBJECTIVE As such, the objective of this study was to evaluate the effect of Thr6-bradykinin on the cholinergic system of rats. MATERIALS AND METHODS The peptide was isolated from the venom of the Neotropical social wasp Polybia occidentalis Olivier (Vespidae). After correct identification and quantification by ESI-MS and MS/MS, the peptide was tested in [14C]-choline uptake using rat cortical synaptosomes. Each uptake assay was accompanied by lactic acid dehydrogenase (LDH) activity measurement to evaluate synaptosome integrity in the presence of six increasing concentrations of BK or Thr6-BK (0.039, 0.156, 0.625, 2.500, 10.000 and 40.000 μM). RESULTS Data revealed that neither BK nor Thr6-BK at any of the six concentrations tested (from 0.039 to 40.000 μM) affected [14C]-choline uptake in synaptosomes. Moreover, there was no increase in LDH in the supernatants, indicating that BK and Thr6-BK did not disrupt the synaptosomes. DISCUSSION AND CONCLUSION In contrast to previous reports for the insect central nervous system (CNS), Thr6-BK had no effect on mammalian cholinergic transmission. Nevertheless, this selectivity for the insect CNS, combined with its irreversible mode of action may be relevant to the discovery of new sources of insecticides and could contribute to understanding the role of kinins in the mammalian CNS.
Collapse
Affiliation(s)
- Márcia Renata Mortari
- a Neuropharmacology Laboratory, Department of Physiological Sciences , Institute of Biological Sciences, University of Brasília , Brasília , Brazil
| | - Alexandra Olimpio Siqueira Cunha
- d Neurobiology and Venoms Laboratory, Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto , University of São Paulo , São Paulo , Brazil
| | - Ruither Oliveira Gomes Carolino
- b Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto , University of São Paulo , São Paulo , Brazil
| | - Juliana de Castro E Silva
- a Neuropharmacology Laboratory, Department of Physiological Sciences , Institute of Biological Sciences, University of Brasília , Brasília , Brazil
| | - Norberto Peporine Lopes
- c Organic Chemistry Laboratory, Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , São Paulo , Brazil
| | - Wagner Ferreira Dos Santos
- d Neurobiology and Venoms Laboratory, Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
12
|
Peptide Toxins in Solitary Wasp Venoms. Toxins (Basel) 2016; 8:114. [PMID: 27096870 PMCID: PMC4848640 DOI: 10.3390/toxins8040114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na⁺ channel inactivation, in particular against neuronal type Na⁺ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B₁ or B₂ receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized.
Collapse
|
13
|
White SR, Kadavakollu S. Bradykinin in Hemipepsis ustulata: A novel method for safely milking wasps. Toxicon 2016; 117:49-52. [PMID: 26996494 DOI: 10.1016/j.toxicon.2016.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/26/2023]
Abstract
Wasp venom characterization is of interest across multiple disciplines such as medicinal chemistry and evolutionary biology. A simple method is described herein to milk wasp venom without undue risks to the researcher. The wasps were immobilized by cooling for safe handling, restrained, and their venom was collected on parafilm. Bradykinin from Hemipepsis ustulata was identified by LC-MS/MS during method verification.
Collapse
Affiliation(s)
- Shawn R White
- Western New Mexico University, Department of Chemistry, 1000 W. College Ave, Silver City, NM 88061, USA.
| | - Samuel Kadavakollu
- Western New Mexico University, Department of Chemistry, 1000 W. College Ave, Silver City, NM 88061, USA.
| |
Collapse
|
14
|
dos Anjos LC, Gomes FMM, do Couto LL, Mourão CA, Moreira KG, Silva LP, Mortari MR. Anxiolytic activity and evaluation of potentially adverse effects of a bradykinin-related peptide isolated from a social wasp venom. Life Sci 2016; 149:153-9. [PMID: 26898126 DOI: 10.1016/j.lfs.2016.02.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are major health problems in terms of costs stemming from sick leave, disabilities, healthcare and premature mortality. Despite the availability of classic anxiolytics, some anxiety disorders are still resistant to treatment, with higher rates of adverse effects. In this respect, several toxins isolated from arthropod venoms are useful in identifying new compounds to treat neurological disorders, particularly pathological anxiety. Thus, the aims of this study were to identify and characterize an anxiolytic peptide isolated from the venom of the social wasp Polybia paulista. The peptide was identified as Polisteskinin R, with nominal molecular mass [M+H](+)=1301Da and primary structure consisting of Ala-Arg-Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg-OH. The anxiolytic effect was tested using the elevated plus maze test. Moreover, adverse effects on the spontaneous behavior and motor coordination of animals were assessed using the open field and rotarod tests. Polisteskinin R induced a dose-dependent anxiolytic effect. Animals treated with the peptide and diazepam spent significantly more time into the open arms when compared to the groups treated with the vehicle and pentylenetetrazole. No significant differences in spontaneous behavior or motor coordination were observed between the groups, showing that the peptide was well tolerated. The interaction by agonists in both known BK receptors induces a variability of physiological effects; Polisteskinin R can act on these receptors, inducing modulatory activity and thus, attenuating anxiety behaviors. The results of this study demonstrated that the compound Polisteskinin R exerted potent anxiolytic effects and its analogues are promising candidates for experimental pharmacology.
Collapse
Affiliation(s)
- Lilian Carneiro dos Anjos
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil; Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil
| | - Flávia Maria Medeiros Gomes
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil; Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil
| | - Lucianna Lopes do Couto
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Cecília Alves Mourão
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | | | - Luciano Paulino Silva
- Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil; Laboratory of Mass Spectrometry and Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Márcia Renata Mortari
- Neuropharmacology Laboratory, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil; Graduate Program of Animal Biology, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
15
|
Lee SH, Baek JH, Yoon KA. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps. Toxins (Basel) 2016; 8:32. [PMID: 26805885 PMCID: PMC4773785 DOI: 10.3390/toxins8020032] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps' sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed.
Collapse
Affiliation(s)
- Si Hyeock Lee
- Department of Agricultural Biology, Seoul National University, Seoul 151-921, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| | - Ji Hyeong Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Kyungjae Andrew Yoon
- Department of Agricultural Biology, Seoul National University, Seoul 151-921, Korea.
| |
Collapse
|
16
|
Bhagavathula NC, Kumar M, Krishnappa C. A simple non-invasive technique for venom milking from a solitary wasp Delta conoideum Gmelin (Hymenoptera: Vespidae). Toxicon 2015; 109:4-6. [PMID: 26556656 DOI: 10.1016/j.toxicon.2015.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022]
Abstract
Prospecting wasp, ant and bee venom for active bio-molecules has gained considerable interest among researchers in recent years. Collecting sufficient quantity of venom from solitary wasps without sacrificing them is often difficult. Here we describe a non-invasive technique for collecting venom from a solitary wasp Delta conoideum Gmelin (Red-backed potter wasp). Venom was milked by presenting an agar block to a single female wasp for stinging. The venom was extracted from the agar block using ACN: water solvent system. The total protein in venom was estimated quantitatively and the presence of peptides in the venom was confirmed by MALDI-TOF analysis. The proposed technique is non-invasive and pure venom can be repeatedly 'milked' using this method from other wasps and also bees without the need for sacrificing a large number of individuals.
Collapse
Affiliation(s)
- Naga Chaitanya Bhagavathula
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore 560065, India; Department of Agricultural Entomology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Mukesh Kumar
- National Centre for Biological Sciences (NCBS), GKVK, Bellary Road, Bangalore 560012, India
| | - Chandrashekra Krishnappa
- Department of Agricultural Entomology, University of Agricultural Sciences, GKVK, Bangalore 560065, India.
| |
Collapse
|
17
|
Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools. Toxins (Basel) 2015; 7:3179-209. [PMID: 26295258 PMCID: PMC4549745 DOI: 10.3390/toxins7083179] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
|
18
|
Wang W, Luo L, Lu H, Chen S, Kang L, Cui F. Angiotensin-converting enzymes modulate aphid-plant interactions. Sci Rep 2015; 5:8885. [PMID: 25744345 PMCID: PMC4351530 DOI: 10.1038/srep08885] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/10/2015] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-converting enzymes (ACEs) are key components of the renin–angiotensin system in mammals. However, the function of ACE homologs in insect saliva is unclear. Aphids presumably deliver effector proteins via saliva into plant cells to maintain a compatible insect–plant interaction. In this study, we showed that ACE modulates aphid–plant interactions by affecting feeding behavior and survival of aphids on host plants. Three ACE genes were identified from the pea aphid Acyrthosiphon pisum genome. ACE1 and ACE2 were highly expressed in the salivary glands and are predicted to function as secretory proteins. The ACE2 transcript level decreased in aphids fed on artificial diet compared with aphids fed on Vicia faba. The knockdown of the expression of each ACE by RNAi failed to affect aphid survival. When ACE1 and ACE2 were simultaneously knocked down, aphid feeding was enhanced. Aphids required less time to find the phloem sap and showed longer passive ingestion. However, the simultaneous knockdown of ACE1 and ACE2 resulted in a higher mortality rate than the control group when aphids were fed on plants. These results indicated that ACE1 and ACE2 function together to modulate A. pisum feeding and survival on plants.
Collapse
Affiliation(s)
- Wei Wang
- 1] State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Mortari MR, do Couto LL, dos Anjos LC, Mourão CBF, Camargos TS, Vargas JAG, Oliveira FN, Gati CDC, Schwartz CA, Schwartz EF. Pharmacological characterization of Synoeca cyanea venom: An aggressive social wasp widely distributed in the Neotropical region. Toxicon 2012; 59:163-70. [DOI: 10.1016/j.toxicon.2011.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
20
|
Baek JH, Ji Y, Shin JS, Lee S, Lee SH. Venom peptides from solitary hunting wasps induce feeding disorder in lepidopteran larvae. Peptides 2011; 32:568-72. [PMID: 21184791 DOI: 10.1016/j.peptides.2010.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 12/24/2022]
Abstract
The cell lytic activity and toxicity against lepidopteran larvae of 13 venom peptides (4 OdVPs and 9 EpVPs) from two solitary hunting wasps, Orancistrocerus drewseni and Eumenes pomiformis, were examined with mastoparan as a reference peptide. Of the 13 peptides, 7 were predicted to have α-helical structures that exhibit the typical character of amphipathic α-helical antimicrobial peptides. The remaining peptides exhibited coil structures; among these, EpVP5 possesses two Cys residues that form an internal disulfide bridge. All the helical peptides including mastoparan showed antimicrobial and insect cell lytic activities, whereas only two of them were hemolytic against human erythrocytes. The helical peptides induced a feeding disorder when injected into the vicinity of the head and thorax of Spodoptera exigua larvae, perhaps because their non-specific neurotoxic or myotoxic action induced cell lysis. At low concentrations, however, these helical peptides increased cell permeability without inducing cell lysis. These findings suggest that the helical venom peptides may function as non-specific neurotoxins or myotoxins and venom-spreading factors at low concentrations, as well as preservatives for long-term storage of the prey via antimicrobial, particularly antifungal, activities.
Collapse
Affiliation(s)
- Ji Hyeong Baek
- Research institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | |
Collapse
|
21
|
Baek JH, Lee SH. Isolation and molecular cloning of venom peptides from Orancistrocerus drewseni (Hymenoptera: Eumenidae). Toxicon 2010; 55:711-8. [DOI: 10.1016/j.toxicon.2009.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 12/17/2022]
|
22
|
Picolo G, Hisada M, Moura AB, Machado MF, Sciani JM, Conceição IM, Melo RL, Oliveira V, Lima-Landman MTR, Cury Y, Konno K, Hayashi MA. Bradykinin-related peptides in the venom of the solitary wasp Cyphononyx fulvognathus. Biochem Pharmacol 2010; 79:478-86. [DOI: 10.1016/j.bcp.2009.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 11/26/2022]
|
23
|
Baek JH, Lee SH. Differential gene expression profiles in the venom gland/sac of Eumenes pomiformis (Hymenoptera: Eumenidae). Toxicon 2010; 55:1147-56. [PMID: 20096300 DOI: 10.1016/j.toxicon.2010.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/07/2009] [Accepted: 01/02/2010] [Indexed: 10/19/2022]
Abstract
To search for novel transcripts encoding biologically active venom components, a subtractive cDNA library specific to the venom gland and sac (gland/sac) of a solitary hunting wasp species, Eumenes pomiformis Fabricius (1781), was constructed by suppression subtractive hybridization. A total of 541 expressed sequence tags (ESTs) were clustered and assembled into 102 contigs (31 multiple sequences and 71 singletons). In total, 37 cDNAs were found in the library via BLASTx searching and manual annotation. Eight contigs (337 ESTs) encoding short venom peptides (10 to 16 amino acids) occupied 62% of the library. The deduced amino acid sequence (78 amino acids) of a novel venom peptide transcript shared sequence similarity with trypsin inhibitors and dendrotoxin-like venom peptides known to be K(+) channel blockers, implying that this novel peptide may play a role in the paralysis of prey. In addition to phospholipase A2 and hyaluronidase, which are known to be the main components of wasp venoms, several transcripts encoding enzymes, including three metallopeptidases and a decarboxylase likely involved in the processing and activation of venomous proteins, peptides, amines, and neurotransmitters, were also isolated from the library. The presence of a transcript encoding a putative insulin/insulin-like peptide binding protein suggests that solitary hunting wasps use their venom to control their prey, leading to larval growth cessation. The abundance of these venom components in the venom gland/sac and in the alimentary canal was confirmed by quantitative real-time PCR. Discovery of venom gland/sac-specific transcripts should promote further studies on biologically active components in the venom of solitary hunting wasps.
Collapse
Affiliation(s)
- Ji Hyeong Baek
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
24
|
Toxins of Venomous Hymenoptera Insects. Chin J Nat Med 2009. [DOI: 10.3724/sp.j.1009.2009.00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Yshii LM, Souza GH, Camargo EA, Eberlin MN, Ribela MTC, Muscará MN, Hyslop S, Costa SK. Characterization of the mechanisms underlying the inflammatory response to Polistes lanio lanio (paper wasp) venom in mouse dorsal skin. Toxicon 2009; 53:42-52. [DOI: 10.1016/j.toxicon.2008.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/22/2008] [Accepted: 10/07/2008] [Indexed: 12/29/2022]
|
26
|
Conceição K, Konno K, de Melo RL, Antoniazzi MM, Jared C, Sciani JM, Conceição IM, Prezoto BC, de Camargo ACM, Pimenta DC. Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis. Peptides 2007; 28:515-23. [PMID: 17098329 DOI: 10.1016/j.peptides.2006.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/02/2006] [Accepted: 10/03/2006] [Indexed: 11/29/2022]
Abstract
Bradykinin potentiating peptides (BPPs) from Bothrops jararaca venom were first described in the middle of 1960s and were the first natural inhibitors of the angiotensin-converting enzyme (ACE). BPPs present a classical motif and can be recognized by their typical pyroglutamyl (Pyr)/proline rich sequences presenting, invariably, a proline residue at the C-terminus. In the present study, we describe the isolation and biological characterization of a novel BPP isolated from the skin secretion of the Brazilian tree-frog Phyllomedusa hypochondrialis. This new BPP, named Phypo Xa presents the sequence Pyr-Phe-Arg-Pro-Ser-Tyr-Gln-Ile-Pro-Pro and is able to potentiate bradykinin activities in vivo and in vitro, as well as efficiently and competitively inhibit ACE. This is the first canonical BPP (i.e. Pyr-Aaa(n)-Gln-Ile-Pro-Pro) to be found not only in the frog skin but also in any other natural source other than the snake venoms.
Collapse
Affiliation(s)
- Katia Conceição
- Laboratório Especial de Toxinologia Aplicada, Center for Applied Toxinology (CAT/CEPID), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP 05503-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cerovský V, Pohl J, Yang Z, Alam N, Attygalle AB. Identification of three novel peptides isolated from the venom of the neotropical social waspPolistes major major. J Pept Sci 2007; 13:445-50. [PMID: 17559065 DOI: 10.1002/psc.860] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three novel peptides designated as PMM1, PMM2, and PMM3 were isolated and characterized from the venom of the social wasp Polistes major major, one of the most common wasps in the Dominican Republic. By Edman degradation, and MALDI-TOF and ESI-QTOF mass spectrometry, the primary sequences of these peptides were established as follows: PMM1, H-Lys-Arg-Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg-OH (1357.77 Da); PMM2, H-Ile-Asn-Trp-Lys-Lys-Ile-Ala-Ser-Ile-Gly-Lys-Glu-Val-Leu-Lys-Ala-Leu-NH2 (1909.19 Da); and PMM3, H-Phe-Leu-Ser-Ala-Leu-Leu-Gly-Met-Leu-Lys-Asn-Leu-NH2 (1317.78 Da). The suggested sequences were confirmed by MS analysis of peptide fragments obtained by enzymatic digestion. The peptide PMM1 is a lysyl-arginyl-Thr(6)-bradykinine that belongs to the wasp kinins group. The sequence of the PMM2 peptide is unique; it resembles somewhat the tetradecapeptide amides of the mastoparan group; however, the chain is extended by three additional amino acid residues. The sequence of PMM3 dodecapeptide is homologous to the peptides of the wasp chemotactic group.
Collapse
Affiliation(s)
- Václav Cerovský
- Laboratory of Chemical Ecology, Stevens Institute of Technology, Punta Cana Center for Biodiversity and Sustainability, Punta Cana Resort & Club, Punta Cana, Dominican Republic.
| | | | | | | | | |
Collapse
|
28
|
Volsi ECFR, Mendes MA, Marques MR, dos Santos LD, Santos KS, de Souza BM, Babieri EF, Palma MS. Multiple bradykinin-related peptides from the capture web of the spider Nephila clavipes (Araneae, Tetragnatidae). Peptides 2006; 27:690-7. [PMID: 16202476 DOI: 10.1016/j.peptides.2005.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 11/20/2022]
Abstract
Three bradykinin-related peptides (nephilakinins-I to -III) and bradykinin itself were isolated from the aqueous washing extract of the capture web of the spider Nephila clavipes by gel permeation chromatography on a Sephacryl S-100 column, followed by chromatography in a Hi-Trap Sephadex-G25 Superfine column. The novel peptides occurred in low concentrations and were sequenced through ESI-MS/MS analysis: nephilakinin-I (G-P-N-P-G-F-S-P-F-R-NH2), nephilakinin-II (E-A-P-P-G-F-S-P-F-R-NH2) and nephilakinin-III (P-S-P-P-G-F-S-P-F-R-NH2). Synthetic peptides replicated the novel bradykinin-related peptides, which were submitted to biological characterizations. Nephilakinins were shown to cause constriction on isolated rat ileum preparations and relaxation on rat duodenum muscle preparations at amounts higher than bradykinin; apparently these peptides constitute B2-type agonists of ileal and duodenal smooth muscles. All peptides including the bradykinin were moderately lethal to honeybees. These bradykinin peptides may be related to the predation of insects by the webs of N. clavipes.
Collapse
Affiliation(s)
- Evelyn C F R Volsi
- Institute of Immunological Investigations/MCT-CNPq, InCor-São Paulo University, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Murata K, Shinada T, Ohfune Y, Hisada M, Yasuda A, Naoki H, Nakajima T. Novel Biologically Active Peptides from the Venom of Polistes rothneyi iwatai. Biol Pharm Bull 2006; 29:2493-7. [PMID: 17142988 DOI: 10.1248/bpb.29.2493] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four novel peptides, polistes-mastoparan-R1, 2, 3, and polistes-protonectin, were isolated from the venom of a paper wasp, Polistes rothneyi iwatai. MALDI-TOF MS analysis of a small amount of the crude venom gave six molecular-related ion peaks. Among them, m/z 1565 was expected to be a novel peptide. Purification of the crude venom by HPLC gave two known kinins, Thr6-bradykinin and Ala-Arg-Thr6-bradykinin, and four novel peptides named polistes-mastoparan-R1, 2, and 3, and polistes-protonectin. Polistes-mastoparan-R1, 2, and 3 (Pm-R) were tetradecapeptides that possess high sequence homology with that of mastoparan. The sequence of polistes-protonectin was similar to that of protonectin isolated from a Brazilian paper wasp. Histamine-releasing activities of Pm-R1, 2, and 3 were more potent than that of mastoparan. Polistes-protonectin exhibited the most potent hemolytic activity in comparison with the four novel peptides and mastoparan.
Collapse
Affiliation(s)
- Kazuya Murata
- Graduate School of Science, Osaka City University, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Pimenta AMC, De Lima ME. Small peptides, big world: biotechnological potential in neglected bioactive peptides from arthropod venoms. J Pept Sci 2005; 11:670-6. [PMID: 16103988 DOI: 10.1002/psc.701] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Until recently, a toxinologist's tasks involved the search for highly toxic or lethal toxins in animal venoms that could explain the harmful effects in clinically observed symptoms. Most of these toxins were put on evidence using a function to structure approach, in which a biological phenomena observation usually guided the isolation and characterization of the causative molecule. Paving this way, many toxins were promptly purified because of their readily observed effect. Nevertheless, small molecules with micro-effects that are not easily visualized can be relatively neglected or poorly studied. This situation has changed now with the advent of the sensitivity, resolution and accuracy of techniques such as mass spectrometry and proteomic approaches used in toxinology. Taking advantage of these methodologies, small peptides with 'newly exploited' biological activities such as vasoactive, hormone-like, antimicrobial and others have been recently given much more attention, enlarging the known repertoire of bioactive molecules found in animal venoms. This article aims to review current knowledge on small biologically active peptides (<3 kDa) found in arthropod venoms and discuss their potentialities as new drug candidates or therapeutic lead compounds.
Collapse
Affiliation(s)
- Adriano M C Pimenta
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | |
Collapse
|
32
|
de O Beleboni R, Pizzo AB, Fontana ACK, de O G Carolino R, Coutinho-Netto J, Dos Santos WF. Spider and wasp neurotoxins: pharmacological and biochemical aspects. Eur J Pharmacol 2004; 493:1-17. [PMID: 15189759 DOI: 10.1016/j.ejphar.2004.03.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Venoms from several arthropods are recognized as useful sources of bioactive substances, such as peptides, acylpolyamines, and alkaloids, which show a wide range of pharmacological effects on synaptic transmission. In this work, we summarize and compile several biochemical and pharmacological aspects related to spider and wasp neurotoxins. Their inhibitory and stimulatory actions on ion channels, receptors, and transporters involved in mammalian and insect neurotransmission are considered.
Collapse
Affiliation(s)
- Renê de O Beleboni
- Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Dani MP, Richards EH, Isaac RE, Edwards JP. Antibacterial and proteolytic activity in venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera: Ichneumonidae). JOURNAL OF INSECT PHYSIOLOGY 2003; 49:945-954. [PMID: 14511827 DOI: 10.1016/s0022-1910(03)00163-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Venom from the endoparasitic wasp, Pimpla hypochondriaca, is composed of a mixture of high and low molecular weight proteins, possesses phenoloxidase activity, has immunosuppressive properties, and induces paralysis in several insect species. In the present study we demonstrate that P. hypochondriaca venom also contains antibacterial and proteolytic activity. Antibacterial activity was detected against the Gram-negative bacteria Escherichia coli and Xanthamonas campestris but not against Pseudomonas syringae nor against two Gram-positive bacteria, Bacillus cereus and Bacillus subtilis. Endopeptidase and aminopeptidase activity in venom was detected using the synthetic fluorogenic substrates N-t-BOC-Phe-Ser-Arg-AMC, Arg-AMC and Leu-Arg. The aminopeptidase activity towards Arg-AMC was sensitive to amastatin (70% inhibition), an aminopeptidase inhibitor. Angiotensin-converting enzyme (ACE)-like enzyme activity was detected, by reverse-phase HPLC using the synthetic tripeptide Hip-His-Leu as a substrate. This activity was sensitive to captopril, an ACE inhibitor (IC(50) 3.8 x 10(-8) M). Using an antiserum raised against recombinant Drosophila melanogaster ACE-like enzyme, (rAnce), Western blot analysis revealed an immunoreactive protein, with a molecular weight estimate of 74 kDa, in P. hypochondriaca venom. The possibility that the endopeptidase, aminopeptidase and ACE are involved in the processing of peptide precursors in the venom sac is discussed.
Collapse
Affiliation(s)
- M P Dani
- Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | | | | | |
Collapse
|