1
|
Saad G, Azrad M, Aias M, Leshem T, Hamo Z, Rahmoun LA, Peretz A. The effect of different C. difficile MLST strains on viability and activity of macrophages. Heliyon 2023; 9:e13846. [PMID: 36873553 PMCID: PMC9982624 DOI: 10.1016/j.heliyon.2023.e13846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Objectives Clostridioides difficile is the most common infectious agent of nosocomial diarrhea. C. difficile infection (CDI) pathogenesis and disease severity depend on its toxins (toxins A, B and binary) and on the host's immune response, especially the innate immune system. The current study examined the efficacy of macrophage activity, macrophages viability and cytokine secretion levelsin response to different sequence type (ST) strains of C. difficile. Methods RAW 264.7 macrophages were exposed to six different strains of C. difficile as well as to both toxins A and B and macrophage viability was measured. The levels of four secreted cytokines were determined by RT-PCR and ELISA. Morphological changes to the macrophages were investigated by fluorescent microscopy. Results Strains ST37 and ST42 affected macrophages' vitality the most. Toxins A and B led to a significant reduction in macrophages' vitality at most time points. In addition, starting at 30-min post-exposure to 5 ng/μl of both toxins led to significant differences in macrophage viability versus at lower concentrations. Furthermore, cytokine secretion levels, including IL-12, IL-6 and TNF-α, increased dramatically when macrophages were exposed to strains ST42 or ST104. Finally, gene expression surveys point to increases in IL-12 gene expression in response to both ST42 and ST104. Conclusions C. difficile strains with higher toxins levels induced an increased activation of the innate immune system and may activate macrophages more profoundly resulting in secretion of higher levels of pro-inflammatory cytokines. However, higher toxin levels may also damage macrophages' normal skeletal structure, reducing macrophage viability.
Collapse
Affiliation(s)
- Gewa Saad
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 1311502, Israel
| | - Maya Azrad
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias 1528001, Israel
| | - Meral Aias
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 1311502, Israel
| | - Tamar Leshem
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias 1528001, Israel
| | - Zohar Hamo
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 1311502, Israel
| | - Layan Abu Rahmoun
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 1311502, Israel
| | - Avi Peretz
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 1311502, Israel
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias 1528001, Israel
- Corresponding author. Hanna Senesh 818/2 Tiberias, Israel.
| |
Collapse
|
2
|
Jochems PGM, Garssen J, Rietveld PCS, Govers C, Tomassen MMM, Wichers HJ, van Bergenhenegouwen J, Masereeuw R. Novel Dietary Proteins Selectively Affect Intestinal Health In Vitro after Clostridium difficile-Secreted Toxin A Exposure. Nutrients 2020; 12:E2782. [PMID: 32932980 PMCID: PMC7551268 DOI: 10.3390/nu12092782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Bacterial gastroenteritis forms a burden on a global scale, both socially and economically. The Gram-positive bacterium Clostridium difficile is an inducer of gastrointestinal bacterial infections, often triggered following disruption of the microbiota by broad-spectrum antibiotics to treat other conditions. The clinical manifestatiaons, e.g., diarrhea, are driven by its toxins secretion, toxin A (TcdA) and toxin B (TcdB). Current therapies are focused on discontinuing patient medication, including antibiotics. However, relapse rates upon therapy are high (20-25%). Here, eighteen dietary proteins were evaluated for their capacity to restore gut health upon C. difficile-derived TcdA exposure. We used bioengineered intestinal tubules to assess proteins for their beneficial effects by examining the epithelial barrier, cell viability, brush-border enzyme activity, IL-6 secretion, IL-8 secretion and nitric oxide (NO) levels upon TcdA challenge. TcdA effectively disrupted the epithelial barrier, increased mitochondrial activity, but did not affect alkaline phosphatase activity, IL-6, IL-8 and NO levels. Intervention with dietary proteins did not show a protective effect on epithelial barrier integrity or mitochondrial activity. However, bovine plasma and potato protein increased alkaline phosphatase activity, egg-white protein increased IL-6 and IL-8 release and wheat, lesser mealworm and yeast protein increased NO levels after TcdA exposure. Hence, dietary proteins can influence parameters involved in intestinal physiology and immune activation suggesting that supplementation with specific dietary proteins may be of benefit during C. difficile infections.
Collapse
Affiliation(s)
- Paulus G. M. Jochems
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.G.M.J.); (J.G.); (P.C.S.R.); (J.v.B.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.G.M.J.); (J.G.); (P.C.S.R.); (J.v.B.)
- Nutricia Research, Global Center of Excellence Immunology, 3584 CT Utrecht, The Netherlands
| | - Pascale C. S. Rietveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.G.M.J.); (J.G.); (P.C.S.R.); (J.v.B.)
| | - Coen Govers
- Food & Biobased Research, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (C.G.); (M.M.M.T.); (H.J.W.)
| | - Monic M. M. Tomassen
- Food & Biobased Research, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (C.G.); (M.M.M.T.); (H.J.W.)
| | - Harry J. Wichers
- Food & Biobased Research, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (C.G.); (M.M.M.T.); (H.J.W.)
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.G.M.J.); (J.G.); (P.C.S.R.); (J.v.B.)
- Nutricia Research, Global Center of Excellence Immunology, 3584 CT Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.G.M.J.); (J.G.); (P.C.S.R.); (J.v.B.)
| |
Collapse
|
3
|
Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int J Mol Sci 2019; 20:ijms20081887. [PMID: 30995806 PMCID: PMC6515381 DOI: 10.3390/ijms20081887] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium constitutes an indispensable single-layered barrier to protect the body from invading pathogens, antigens or toxins. At the same time, beneficial nutrients and water have to be absorbed by the epithelium. To prevent development of intestinal inflammation or tumour formation, intestinal homeostasis has to be tightly controlled and therefore a strict balance between cell death and proliferation has to be maintained. The proinflammatory cytokine tumour necrosis factor alpha (TNFα) was shown to play a striking role for the regulation of this balance in the gut. Depending on the cellular conditions, on the one hand TNFα is able to mediate cell survival by activating NFκB signalling. On the other hand, TNFα might trigger cell death, in particular caspase-dependent apoptosis but also caspase-independent programmed necrosis. By regulating these cell death and survival mechanisms, TNFα exerts a variety of beneficial functions in the intestine. However, TNFα signalling is also supposed to play a critical role for the pathogenesis of inflammatory bowel disease (IBD), infectious diseases, intestinal wound healing and tumour formation. Here we review the literature about the physiological and pathophysiological role of TNFα signalling for the maintenance of intestinal homeostasis and the benefits and difficulties of anti-TNFα treatment during IBD.
Collapse
|
4
|
Popoff MR. Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response. Toxicon 2018; 149:54-64. [DOI: 10.1016/j.toxicon.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022]
|
5
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Cavaillon JM. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 2017; 149:45-53. [PMID: 29056305 DOI: 10.1016/j.toxicon.2017.10.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
Endotoxins and exotoxins are among the most potent bacterial inducers of cytokines. During infectious processes, the production of inflammatory cytokines including tumor necrosis factor (TNF), interleukin-1β (IL-1β), gamma interferon (IFNγ) and chemokines orchestrates the anti-infectious innate immune response. However, an overzealous production, leading up to a cytokine storm, can be deleterious and contributes to mortality consecutive to sepsis or toxic shock syndrome. Endotoxins of Gram-negative bacteria (lipopolysaccharide, LPS) are particularly inflammatory because they generate auto-amplificatory loops after activation of monocytes/macrophages. LPS and numerous pore-forming exotoxins also activate the inflammasome, the molecular platform that allows the release of mature IL-1β and IL-18. Among exotoxins, some behave as superantigens, and as such activate the release of cytokines by T-lymphocytes. In most cases, pre-exposure to exotoxins enhances the cytokine production induced by LPS and its lethality, whereas pre-exposure to endotoxin usually results in tolerance. In this review we recall the various steps, which, from the very early discovery of pyrogenicity induced by bacterial products, ended to the discovery of the endogenous pyrogen. Furthermore, we compare the specific characteristics of endotoxins and exotoxins in their capacity to induce inflammatory cytokines.
Collapse
Affiliation(s)
- Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 Rue Dr. Roux, 75015, Paris, France.
| |
Collapse
|
7
|
Koon HW, Su B, Xu C, Mussatto CC, Tran DHN, Lee EC, Ortiz C, Wang J, Lee JE, Ho S, Chen X, Kelly CP, Pothoulakis C. Probiotic Saccharomyces boulardii CNCM I-745 prevents outbreak-associated Clostridium difficile-associated cecal inflammation in hamsters. Am J Physiol Gastrointest Liver Physiol 2016; 311:G610-G623. [PMID: 27514478 PMCID: PMC5142203 DOI: 10.1152/ajpgi.00150.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/29/2016] [Indexed: 01/31/2023]
Abstract
C. difficile infection (CDI) is a common debilitating nosocomial infection associated with high mortality. Several CDI outbreaks have been attributed to ribotypes 027, 017, and 078. Clinical and experimental evidence indicates that the nonpathogenic yeast Saccharomyces boulardii CNCM I-745 (S.b) is effective for the prevention of CDI. However, there is no current evidence suggesting this probiotic can protect from CDI caused by outbreak-associated strains. We used established hamster models infected with outbreak-associated C. difficile strains to determine whether oral administration of live or heat-inactivated S.b can prevent cecal tissue damage and inflammation. Hamsters infected with C. difficile strain VPI10463 (ribotype 087) and outbreak-associated strains ribotype 017, 027, and 078 developed severe cecal inflammation with mucosal damage, neutrophil infiltration, edema, increased NF-κB phosphorylation, and increased proinflammatory cytokine TNFα protein expression. Oral gavage of live, but not heated, S.b starting 5 days before C. difficile infection significantly reduced cecal tissue damage, NF-κB phosphorylation, and TNFα protein expression caused by infection with all strains. Moreover, S.b-conditioned medium reduced cell rounding caused by filtered supernatants from all C. difficile strains. S.b-conditioned medium also inhibited toxin A- and B-mediated actin cytoskeleton disruption. S.b is effective in preventing C. difficile infection by outbreak-associated via inhibition of the cytotoxic effects of C. difficile toxins.
Collapse
Affiliation(s)
- Hon Wai Koon
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Bowei Su
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chunlan Xu
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, P.R. China
| | - Caroline C Mussatto
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Diana Hoang-Ngoc Tran
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Elaine C Lee
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Christina Ortiz
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jiani Wang
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jung Eun Lee
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Samantha Ho
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| | - Ciaran P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California;
| |
Collapse
|
8
|
Minami K, Sakaguchi Y, Yoshida D, Yamamoto M, Ikebe M, Morita M, Toh Y. Successful treatments with polymyxin B hemoperfusion and recombinant human thrombomodulin for fulminant Clostridium difficile-associated colitis with septic shock and disseminated intravascular coagulation: a case report. Surg Case Rep 2016; 2:76. [PMID: 27468959 PMCID: PMC4965360 DOI: 10.1186/s40792-016-0199-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/01/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Clostridium difficile (CD)-associated colitis (CDAC) is endemic and a common nosocomial enteric disease encountered by surgeons in modern hospitals due to prophylactic or therapeutic antibiotic therapies. Currently, the incidence of fulminant CDAC, which readily causes septic shock followed by multiple organ dysfunction syndromes, is increasing. Fulminant CDAC requires surgeons to perform a prompt surgery, such as subtotal colectomy, to remove the septic source. It is known that fulminant CDAC is caused by the shift from an inflammatory response at a local mucosal level to a general systemic inflammatory reaction in which CD toxin-induced mediators' cascades disseminate. Recently, it has been proven that polymyxin B hemoperfusion (PMX-HP) improves septic shock and recombinant human thrombomodulin (rhTM) controls disseminated intravascular coagulation (DIC). In addition, clinically and basically, it has been shown that these treatments can control serous chemical mediators. Therefore, it is considered that these treatments are promising ones for patients with fulminant CDAC. In the current report, we present that these treatments without surgery contributed to the improvement of sepsis due to fulminant CDAC. CASE PRESENTATION We encountered a case who developed fulminant CDAC with septic shock and DIC after laparoscopic gastrectomy for gastric cancer. At admission to the intensive care unit, his APACHE II score was 22, which indicated an estimated risk of hospital death of 42.4 %. Our therapies were not the subtotal colectomy to remove septic sources but the combination treatments with both PMX-HP and rhTM. These combination therapies resulted in excellent outcomes, namely the dramatic improvement of septic shock and DIC and the patient's survival. We speculate that these combination therapies completely inhibit the CD toxin-induced mediators' cascades and correspond to the removal of septic sources. CONCLUSIONS We recommend both PMX-HP and rhTM for patients who develop fulminant CDAC with septic shock and DIC to increase the survival benefit and replace the need for surgical treatment.
Collapse
Affiliation(s)
- Kazuhito Minami
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan.
| | - Yoshihisa Sakaguchi
- Department of Gastroenterological Surgery, National Hospital Organization Kyushu Medical Center, Jigyohama 1-8-1, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Daisuke Yoshida
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| | - Manabu Yamamoto
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| | - Masahiko Ikebe
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| | - Masaru Morita
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| | - Yasushi Toh
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| |
Collapse
|
9
|
D'Auria KM, Bloom MJ, Reyes Y, Gray MC, van Opstal EJ, Papin JA, Hewlett EL. High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types. BMC Microbiol 2015; 15:7. [PMID: 25648517 PMCID: PMC4323251 DOI: 10.1186/s12866-015-0361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/22/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Clostridium difficile toxins A and B (TcdA and TcdB), considered to be essential for C. difficile infection, affect the morphology of several cell types with different potencies and timing. However, morphological changes over various time scales are poorly characterized. The toxins' glucosyltransferase domains are critical to their deleterious effects, and cell responses to glucosyltransferase-independent activities are incompletely understood. By tracking morphological changes of multiple cell types to C. difficile toxins with high temporal resolution, cellular responses to TcdA, TcdB, and a glucosyltransferase-deficient TcdB (gdTcdB) are elucidated. RESULTS Human umbilical vein endothelial cells, J774 macrophage-like cells, and four epithelial cell lines (HCT8, T84, CHO, and immortalized mouse cecal epithelial cells) were treated with TcdA, TcdB, gdTcdB. Impedance across cell cultures was measured to track changes in cell morphology. Metrics from impedance data, developed to quantify rapid and long-lasting responses, produced standard curves with wide dynamic ranges that defined cell line sensitivities. Except for T84 cells, all cell lines were most sensitive to TcdB. J774 macrophages stretched and increased in size in response to TcdA and TcdB but not gdTcdB. High concentrations of TcdB and gdTcdB (>10 ng/ml) greatly reduced macrophage viability. In HCT8 cells, gdTcdB did not induce a rapid cytopathic effect, yet it delayed TcdA and TcdB's rapid effects. gdTcdB did not clearly delay TcdA or TcdB's toxin-induced effects on macrophages. CONCLUSIONS Epithelial and endothelial cells have similar responses to toxins yet differ in timing and degree. Relative potencies of TcdA and TcdB in mouse epithelial cells in vitro do not correlate with potencies in vivo. TcdB requires glucosyltransferase activity to cause macrophages to spread, but cell death from high TcdB concentrations is glucosyltransferase-independent. Competition experiments with gdTcdB in epithelial cells confirm common TcdA and TcdB mechanisms, yet different responses of macrophages to TcdA and TcdB suggest different, additional mechanisms or targets in these cells. This first-time, precise quantification of the response of multiple cell lines to TcdA and TcdB provides a comparative framework for delineating the roles of different cell types and toxin-host interactions.
Collapse
Affiliation(s)
- Kevin M D'Auria
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA, 22908, USA.
| | - Meghan J Bloom
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA, 22908, USA. .,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA.
| | - Yesenia Reyes
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA.
| | - Mary C Gray
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA.
| | - Edward J van Opstal
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA. .,Current address: Vanderbilt University School of Medicine, 340 Light Hall, Nashville, TN, 27232, USA.
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA, 22908, USA.
| | - Erik L Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, PO Box 801340, Charlottesville, VA, 22908, USA.
| |
Collapse
|
10
|
Abstract
Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future.
Collapse
Affiliation(s)
- Katie Solomon
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
11
|
Tomar N, De RK. Modeling host-pathogen interactions: H. sapiens as a host and C. difficile as a pathogen. J Mol Recognit 2012; 25:474-85. [DOI: 10.1002/jmr.2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit; Indian Statistical Institute; 203 B.T. Road; Kolkata; 700108; India
| | - Rajat K. De
- Machine Intelligence Unit; Indian Statistical Institute; 203 B.T. Road; Kolkata; 700108; India
| |
Collapse
|
12
|
Vohra P, Poxton IR. Induction of cytokines in a macrophage cell line by proteins of Clostridium difficile. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2012; 65:96-104. [PMID: 22409477 DOI: 10.1111/j.1574-695x.2012.00952.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/09/2012] [Accepted: 03/01/2012] [Indexed: 12/18/2022]
Abstract
Clostridium difficile is a major cause of nosocomial diarrhoea. The toxins produced by C. difficile are responsible for the characteristic pathology observed in C. difficile disease, but several surface-associated proteins of C. difficile are also recognized by the immune system and could modulate the immune response in infection. The aim of this study was to assess the induction of cytokines in a macrophage cell line in response to different antigens prepared from five C. difficile strains: the hypervirulent ribotype 027, ribotypes 001 and 106 and reference strains VPI 10463 and 630 (ribotype 012). PMA-activated THP-1 cells were challenged with surface-layer proteins, flagella, heat-shock proteins induced at 42 and 60 °C and culture supernatants of the five C. difficile strains. The production of the pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-8 and IL-12p70 was observed in response to the surface-associated proteins, and high levels of TNF-α, IL-1β and IL-8 were detected in response to challenge with culture supernatants. The immune response triggered by the surface-associated proteins was independent of the strain from which the antigens were derived, suggesting that these proteins might not be related to the varying virulence of the hypervirulent ribotype 027 or ribotypes 001 and 106. There was no interstrain difference observed in response to the culture supernatants of the tested C. difficile strains, but this was perhaps due to toxicity induced in the macrophages by large amounts of toxin A and toxin B.
Collapse
Affiliation(s)
- Prerna Vohra
- Medical Microbiology, University of Edinburgh College of Medicine and Veterinary Medicine, Edinburgh, UK
| | | |
Collapse
|
13
|
Adenosine deaminase inhibition prevents Clostridium difficile toxin A-induced enteritis in mice. Infect Immun 2010; 79:653-62. [PMID: 21115723 DOI: 10.1128/iai.01159-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A(2A) adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A₁, A(2A), A(2B), and A₃ adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A₁ and A(2A) adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A(2A) adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease.
Collapse
|
14
|
Sun X, Savidge T, Feng H. The enterotoxicity of Clostridium difficile toxins. Toxins (Basel) 2010; 2:1848-80. [PMID: 22069662 PMCID: PMC3153265 DOI: 10.3390/toxins2071848] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 06/23/2010] [Accepted: 07/09/2010] [Indexed: 02/06/2023] Open
Abstract
The major virulence factors of Clostridium difficile infection (CDI) are two large exotoxins A (TcdA) and B (TcdB). However, our understanding of the specific roles of these toxins in CDI is still evolving. It is now accepted that both toxins are enterotoxic and proinflammatory in the human intestine. Both purified TcdA and TcdB are capable of inducing the pathophysiology of CDI, although most studies have focused on TcdA. C. difficile toxins exert a wide array of biological activities by acting directly on intestinal epithelial cells. Alternatively, the toxins may target immune cells and neurons once the intestinal epithelial barrier is disrupted. The toxins may also act indirectly by stimulating cells to produce chemokines, proinflammatory cytokines, neuropeptides and other neuroimmune signals. This review considers the mechanisms of TcdA- and TcdB-induced enterotoxicity, and recent developments in this field.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA;
| | - Tor Savidge
- The University of Texas Medical Branch, Galveston, TX, 77555, USA;
| | - Hanping Feng
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA;
- Author to whom correspondence should be addressed; ; Tel.: +1-508-887-4252; Fax: +1-508-839-7911
| |
Collapse
|
15
|
Hirota SA, Fines K, Ng J, Traboulsi D, Lee J, Ihara E, Li Y, Willmore WG, Chung D, Scully MM, Louie T, Medlicott S, Lejeune M, Chadee K, Armstrong G, Colgan SP, Muruve DA, MacDonald JA, Beck PL. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology 2010; 139:259-69.e3. [PMID: 20347817 PMCID: PMC3063899 DOI: 10.1053/j.gastro.2010.03.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 03/09/2010] [Accepted: 03/17/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Clostridium difficile is the leading cause of nosocomial infectious diarrhea. Antibiotic resistance and increased virulence of strains have increased the number of C difficile-related deaths worldwide. The innate host response mechanisms to C difficile are not resolved; we propose that hypoxia-inducible factor (HIF-1) has an innate, protective role in C difficile colitis. We studied the impact of C difficile toxins on the regulation of HIF-1 and evaluated the role of HIF-1alpha in C difficile-mediated injury/inflammation. METHODS We assessed HIF-1alpha mRNA and protein levels and DNA binding in human mucosal biopsy samples and Caco-2 cells following exposure to C difficile toxins. We used the mouse ileal loop model of C difficile toxin-induced intestinal injury. Mice with targeted deletion of HIF-1alpha in the intestinal epithelium were used to assess the effects of HIF-1alpha signaling in response to C difficile toxin. RESULTS Mucosal biopsy specimens and Caco-2 cells exposed to C difficile toxin had a significant increase in HIF-1alpha transcription and protein levels. Toxin-induced DNA binding was also observed in Caco-2 cells. Toxin-induced HIF-1alpha accumulation was attenuated by nitric oxide synthase inhibitors. In vivo deletion of intestinal epithelial HIF-1alpha resulted in more severe, toxin-induced intestinal injury and inflammation. In contrast, stabilization of HIF-1alpha with dimethyloxallyl glycine attenuated toxin-induced injury and inflammation. This was associated with induction of HIF-1-regulated protective factors (such as vascular endothelial growth factor-alpha, CD73, and intestinal trefoil factor) and down-regulation of proinflammatory molecules such as tumor necrosis factor and Cxcl1. CONCLUSIONS HIF-1alpha protects the intestinal mucosa from C difficile toxins. The innate protective actions of HIF-1alpha in response to C difficile toxins be developed as therapeutics for C difficile-associated disease.
Collapse
Affiliation(s)
- Simon A. Hirota
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada,Department of Medicine, University of Calgary, Calgary, Canada
| | - Kyla Fines
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada,Department of Medicine, University of Calgary, Calgary, Canada
| | - Jeffery Ng
- Department of Medicine, University of Calgary, Calgary, Canada
| | - Danya Traboulsi
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Josh Lee
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Eikichi Ihara
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Yan Li
- Department of Medicine, University of Calgary, Calgary, Canada
| | | | - Daniel Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Melanie M. Scully
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado, Health Sciences Center, Denver, USA
| | - Thomas Louie
- Department of Medicine, University of Calgary, Calgary, Canada
| | - Sean Medlicott
- Department of Pathology, University of Calgary, Calgary, Canada
| | - Manigandan Lejeune
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Kris Chadee
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Glen Armstrong
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Sean P. Colgan
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado, Health Sciences Center, Denver, USA
| | | | - Justin A. MacDonald
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Paul L. Beck
- Department of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
16
|
Sun X, He X, Tzipori S, Gerhard R, Feng H. Essential role of the glucosyltransferase activity in Clostridium difficile toxin-induced secretion of TNF-alpha by macrophages. Microb Pathog 2009; 46:298-305. [PMID: 19324080 DOI: 10.1016/j.micpath.2009.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 01/30/2023]
Abstract
Clostridium difficile causes serious and potentially fatal inflammatory diseases of the colon. Two large protein toxins, TcdA and TcdB, have been clearly implicated in pathogenesis. The goal of this study was to determine whether the glucosyltransferase activity of the toxins is critical for the induction of tumor necrosis factor-alpha (TNF-alpha), an important cytokine mediating both local and systematic inflammatory response. A dose-dependent TNF-alpha secretion was demonstrated in murine macrophage cell line RAW 264.7 after exposure to TcdA or TcdB. TNF-alpha production was blocked by anti-toxin antibodies, indicating that the cytokine-driven response is mediated by the toxins. Both toxins disrupted the cytoskeleton of host cells, while cytoskeleton disruptions using Cytochalasin-D and latrunculin B did not affect TNF-alpha production. The TNF-alpha synthesis was inhibited by reagents that target clathrin-dependent endocytosis or prevent endosomal acidification, suggesting that the endocytosis pathway is necessary for the induction of TNF-alpha. Furthermore, knockout of the enzymatic activity by mutating two key amino acids in the catalytic domain of TcdA abolished its cytokine-inducing activity. Our studies demonstrated a crucial role of the glucosyltransferase activity of C. difficile toxins in the induction of TNF-alpha in macrophages.
Collapse
Affiliation(s)
- Xingmin Sun
- Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | | | | | | | | |
Collapse
|
17
|
Rocha MF, Soares AM, Ribeiro RA, Lima AA. Absence of intestinal secretion on supernatants from macrophages stimulated with Clostridium difficile toxin B on rabbit ileum. Toxicon 2001; 39:335-40. [PMID: 10978752 DOI: 10.1016/s0041-0101(00)00133-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several studies have documented the involvement of both Clostridium difficile, toxins, A and B in the pathogenesis of antibiotic-associated diarrhea. Recently, we demonstrated that IL-1 beta is the intestinal secretory factor released by macrophages stimulated with toxin A. The aim of this study was to evaluate the importance of macrophages stimulated with toxin B on rabbit ileal ion transport. The changes in ion transport were analyzed by studying the short-circuit current of the rabbit ileal mucosa mounted in Ussing chambers. The supernatants of macrophages treated with toxin B (3.6 x 10(-7) M) had no effect on the ion transport (change in short-circuit current =28.0+/-9.2 vs. control=26.8+/-3.6 microA cm(-2)). Supernatants of macrophages stimulated with toxin A (3.2 x 10(-7) M), our positive control, induced a significant change in ileal ion transport (delta I(sc)=55.2+/-5.7 mA cm(-2)). It was also observed that, like toxin A, toxin B stimulated macrophages to produce TNF-alpha (555.0+/-37.9 pg/ml vs. control=182.0+/-39.8 pg/ml; p<0.05). Nevertheless, in contrast to toxin A, toxin B did not stimulate IL-1 beta synthesis (28.0+/-7.5 pg/ml vs. control=40. 0+/-14.4 pg/ml; p>0.05). We conclude that the supernatants of macrophages stimulated with toxin B are not able to stimulate ion transport and that both toxins stimulate the genesis of TNF-alpha, but only toxin A induces the synthesis of IL-1 beta, which, we have earlier reported, causes an electrogenic intestinal response in rabbit ileum.
Collapse
Affiliation(s)
- M F Rocha
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | |
Collapse
|
18
|
Chakrabarti S, Lees A, Jones SG, Milligan DW. Clostridium difficile infection in allogeneic stem cell transplant recipients is associated with severe graft-versus-host disease and non-relapse mortality. Bone Marrow Transplant 2000; 26:871-6. [PMID: 11081387 DOI: 10.1038/sj.bmt.1702627] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We retrospectively evaluated 75 allogeneic stem cell transplant recipients to ascertain the incidence, risk factors and outcome of infection with Clostridium difficile. Ten patients (13%) had Clostridium difficile infection at a median of 38 days (range day -6 to day +72) following the transplant. There was no difference in the duration or severity of diarrhoea in patients with Clostridium difficile infection compared to the uninfected patients and no relationship to the prior antibiotic or chemotherapy usage, age, gender, underlying disease, donor type, CMV serostatus, total body irradiation or time to engraftment. The incidence of viral infections was increased in patients infected with Clostridium difficile (7/10 vs 15/65, P = 0.005, odds ratio 7.7), but the strongest association was with GVHD >grade 2 (5/10 vs 6/65 uninfected patients, P = 0.004, odds ratio 9.8). Patients infected with Clostridium difficile also suffered a higher non-relapse mortality with 7/10 patients succumbing to either GVHD or infections, compared to 19/65 patients in the uninfected group (P = 0.02, odds ratio 5.6). Thus Clostridium difficile infections in our study had a strong association with GVHD and increased non-relapse mortality. It is possible that Clostridium difficile toxin might predispose to increased severity of GVHD leading to an adverse outcome.
Collapse
Affiliation(s)
- S Chakrabarti
- Department of Haematology, Birmingham Heartlands Hospital, UK
| | | | | | | |
Collapse
|
19
|
Rocha MF, Sidrim JJ, Lima AA. [Clostridium difficile as an inducer of inflammatory diarrhea]. Rev Soc Bras Med Trop 1999; 32:47-52. [PMID: 9927825 DOI: 10.1590/s0037-86821999000100009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clostridium difficile has been pointed out as an important agent of diarrheal diseases associated with antibiotic use. However, due to its complexity, the physiopathology of these diseases is only partially elucidated, although a series of scientific works has demonstrated the importance of toxins A and B in the pathogenesis of the inflammatory diarrhea induced by this microorganism. The inflammatory mechanisms involved in the biological activities of these toxins are complex. There are some studies demonstrating that toxin B has no enterotoxic activity in vivo. However, this toxin causes dose-dependent eletrophysiologic and morphologic modifications of human colonic mucosa in vitro. In addition, toxin B stimulates the synthesis of potent inflammatory mediators by monocytes and macrophages. The effects provoked by toxin A on the intestinal mucosa are quite evident and are characterized by intense fluid secretion and by inflammatory cell accumulation, such as macrophages, mast cells, lymphocytes and neutrophils, with the consequent release of mediators such as prostaglandins, leukotrienes, platelet activating factor, nitric oxide and cytokines.
Collapse
Affiliation(s)
- M F Rocha
- Departamento de Medicina Veterinária da Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, Brasil
| | | | | |
Collapse
|