1
|
Lu Z, Cai Q, Lai S, Chen N, Huang L, Liu Y, Lei L, Gan S, Zhang L, Paerl HW, Wang F. Coupling of cylindrospermopsin and pho-harboring Verrucomicrobia supports the formation of Raphidiopsis blooms in low-phosphorus waters. WATER RESEARCH 2024; 250:121010. [PMID: 38142507 DOI: 10.1016/j.watres.2023.121010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs. We found that, compared with algal-derived ALPs, bacteria-derived ALPs exhibited a more pronounced and sensitive response to CYN. This response to CYN was enhanced under low-P conditions. Interestingly, we found that Verrucomicrobia made the largest contribution to the total abundance of pho genes, which encode ALPs. Having high gene abundance of the CYN-sensing PI3K-AKT signaling pathway, Verrucomicrobia's proportion increased with higher concentrations of CYN under low-P conditions, thereby explaining the observed increase in pho gene abundance. Compared with other cyanobacterial genera, Raphidiopsis had a higher abundance of the pst gene. This suggests that Raphidiopsis exhibited a greater capacity to uptake the inorganic P generated by ALPs secreted by other organisms. Overall, our results reveal the mechanism of CYN-induced ALP secretion and its impact on planktonic P-cycling, and provide valuable insights into the role of CYN in supporting the formation of Raphidiopsis blooms.
Collapse
Affiliation(s)
- Zhe Lu
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China.
| | - Qijia Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Guangzhou, 510655, PR China
| | - Shuyan Lai
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510650, PR China
| | - Nan Chen
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510650, PR China
| | - Lincheng Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510650, PR China
| | - Yongxin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510650, PR China
| | - Lamei Lei
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510650, PR China.
| | - Shuchai Gan
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
| | - Lulu Zhang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China
| | - Hans W Paerl
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, USA
| | - Faming Wang
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, the CAS Engineering Laboratory for Ecological Restoration of Island and Coastal Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; South China National Botanical Garden, Guangzhou 510650, PR China.
| |
Collapse
|
2
|
Costa DFA, Castro-Montoya JM, Harper K, Trevaskis L, Jackson EL, Quigley S. Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products and On-Site Production. Microorganisms 2022; 10:microorganisms10122313. [PMID: 36557566 PMCID: PMC9786096 DOI: 10.3390/microorganisms10122313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
There is a wide range of algae species originating from a variety of freshwater and saltwater habitats. These organisms form nutritional organic products via photosynthesis from simple inorganic substances such as carbon dioxide. Ruminants can utilize the non-protein nitrogen (N) and the cell walls in algae, along with other constituents such as minerals and vitamins. Over recent decades, awareness around climate change has generated new interest into the potential of algae to suppress enteric methane emissions when consumed by ruminants and their potential to sequester atmospheric carbon dioxide. Despite the clear potential benefits, large-scale algae-livestock feedstuff value chains have not been established due to the high cost of production, processing and transport logistics, shelf-life and stability of bioactive compounds and inconsistent responses by animals under controlled experiments. It is unlikely that algal species will become viable ingredients in extensive grazing systems unless the cost of production and practical systems for the processing, transport and feeding are developed. The algae for use in ruminant nutrition may not necessarily require the same rigorous control during the production and processing as would for human consumption and they could be grown in remote areas or in marine environments, minimizing competition with cropping, whilst still generating high value biomass and capturing important amounts of atmospheric carbon. This review will focus on single-cell algal species and the opportunistic use of algal by-products and on-site production.
Collapse
Affiliation(s)
- Diogo Fleury Azevedo Costa
- School of Health, Medical and Applied Science, Institute for Future Farming Systems, CQUniversity, Rockhampton, QLD 4701, Australia
- Correspondence: ; Tel.: +61-409445454
| | | | - Karen Harper
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia
| | - Leigh Trevaskis
- School of Health, Medical and Applied Science, Institute for Future Farming Systems, CQUniversity, Rockhampton, QLD 4701, Australia
| | - Emma L. Jackson
- Coastal Marine Ecosystems Research Centre, School of Health, Medical and Applied Science, CQUniversity, Gladstone, QLD 4680, Australia
| | - Simon Quigley
- School of Health, Medical and Applied Science, Institute for Future Farming Systems, CQUniversity, Rockhampton, QLD 4701, Australia
| |
Collapse
|
3
|
Towards a Better Quantification of Cyanotoxins in Fruits and Vegetables: Validation and Application of an UHPLC-MS/MS-Based Method on Belgian Products. SEPARATIONS 2022. [DOI: 10.3390/separations9100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vegetables and fruits can potentially accumulate cyanotoxins after water contaminated with cyanobacteria is used for irrigation. We developed and validated an analytical method to quantify eight microcystin congeners (MCs) and nodularin (NOD) using ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) in three different matrices. Strawberries, carrots and lettuce are selected as model matrices to represent the fruits/berries, leafy and root vegetables, sequentially. The validation of a UHPLC-MS/MS method in the strawberry matrix is novel. Matrix effects are observed in all three matrices. Our methodology uses matrix-matched calibration curves to compensate for the matrix effect. The implementation of our method on 103 samples, containing nine different sorts of fruits and vegetables from the Belgian market, showed no presence of MCs or NOD. However, the recoveries of our quality controls showed the effectiveness of our method, illustrating that the use of this method in future research or monitoring as well as in official food controls in fruit and vegetable matrices is valid.
Collapse
|
4
|
Cyanotoxins uptake and accumulation in crops: Phytotoxicity and implications on human health. Toxicon 2022; 211:21-35. [DOI: 10.1016/j.toxicon.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
5
|
Diez-Quijada L, Casas-Rodriguez A, Guzmán-Guillén R, Molina-Hernández V, Albaladejo RG, Cameán AM, Jos A. Immunomodulatory Effects of Pure Cylindrospermopsin in Rats Orally Exposed for 28 Days. Toxins (Basel) 2022; 14:144. [PMID: 35202170 PMCID: PMC8877299 DOI: 10.3390/toxins14020144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 01/08/2023] Open
Abstract
Cylindrospermopsin (CYN) is a ubiquitous cyanotoxin showing increasing incidence worldwide. CYN has been classified as a cytotoxin and, among its toxic effects, its immunotoxicity is scarcely studied. This work investigates for the first time the influence of oral CYN exposure (18.75; 37.5 and 75 µg/kg b.w./day, for 28 days) on the mRNA expression of selected interleukin (IL) genes (IL-1β, IL-2, IL-6, Tumor Necrosis Factor alpha (TNF-α), Interferon gamma (IFN-γ)) in the thymus and the spleen of male and female rats, by quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, their serum levels were also measured by a multiplex-bead-based immunoassay, and a histopathological study was performed. CYN produced immunomodulation mainly in the thymus of rats exposed to 75 μg CYN/kg b.w./day in both sexes. However, in the spleen only IL-1β and IL-2 (males), and TNF-α and IFN-γ (females) expression was modified after CYN exposure. Only female rats exposed to 18.75 μg CYN/kg b.w./day showed a significant decrease in TNF-α serum levels. There were no significant differences in the weight or histopathology in the organs studied. Further research is needed to obtain a deeper view of the molecular mechanisms involved in CYN immunotoxicity and its consequences on long-term exposures.
Collapse
Affiliation(s)
- Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Antonio Casas-Rodriguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Verónica Molina-Hernández
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain;
| | - Rafael G. Albaladejo
- Department of Plant Biology and Ecology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (L.D.-Q.); (A.C.-R.); (A.M.C.); (A.J.)
| |
Collapse
|
6
|
Lu Z, Lei L, Lu Y, Peng L, Han B. Phosphorus deficiency stimulates dominance of Cylindrospermopsis through facilitating cylindrospermopsin-induced alkaline phosphatase secretion: Integrating field and laboratory-based evidences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117946. [PMID: 34425369 DOI: 10.1016/j.envpol.2021.117946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Potentially toxic Cylindrospermopsis raciborskii blooms are of emerging concerns, as its scale is spreading from tropical regions to high latitudes, increasing the risk of aquatic biota being exposed to cylindrospermopsin (CYN). So far, CYN-producing C. raciborskii strains have only been reported in tropical waters which are commonly phosphorus (P)-deficient, where they can dominate phytoplankton communities. However, the influence of CYN on phytoplankton communities under different P status remains unclear. In this study, we first analyzed the summer observations of 120 tropical reservoirs in Guangdong Province. The proportion of potential CYN-producers was significantly higher in P-deficient and CYN-present reservoirs than that in P-sufficient or CYN-absent ones. This suggested that in P-deficient condition, the potential CYN producers might gain more advantages by the help of CYN. Then, in laboratory experiments we found that upon P deprivation, CYN did not inhibit the cell growth of other algal cells, but significantly stimulates them to secret more alkaline phosphatase (ALP) than in P-sufficient condition. Through transcriptomics, we further revealed that under such P-deficient condition, CYN remarkably induced intracellular nitrogen allocation and protein export system by activating the PIK3/Akt-cGMP/PKG signaling pathways in Scenedesmus bijugatus, thus enhancing its ALP secretion. Our study implies that CYN-induced ALP secretion is facilitated upon P deficiency, thus supporting the dominance of its producers C. raciborskii.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Lamei Lei
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Yan Lu
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Liang Peng
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Boping Han
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Ahari H, Nowruzi B, Anvar AA, Porzani SJ. The Toxicity Testing of Cyanobacterial Toxins In Vivo and In Vitro by Mouse Bioassay: A Review. Mini Rev Med Chem 2021; 22:1131-1151. [PMID: 34720080 DOI: 10.2174/1389557521666211101162030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
Different biological methods based on bioactivity are available to detect cyanotoxins, including neurotoxicity, immunological interactions, hepatotoxicity, cytotoxicity, and enzymatic activity. The mouse bioassay is the first test employed in laboratory cultures, cell extracts, and water bloom materials to detect toxins. It is also used as a traditional method to estimate the LD50. Concerning the ease of access and low cost, it is the most common method for this purpose. In this method, a sample is injected intraperitoneally into adult mice, and accordingly, they are assayed and monitored for about 24 hours for toxic symptoms. The toxin can be detected using this method from minutes to a few hours; its type, e.g., hepatotoxin, neurotoxin, etc., can also be determined. However, this method is nonspecific, fails to detect low amounts, and cannot distinguish between homologues. Although the mouse bioassay is gradually replaced with new chemical and immunological methods, it is still the main technique to detect the bioactivity and efficacy of cyanotoxins using LD50 determined based on the survival time of animals exposed to the toxin. In addition, some countries oppose animal use in toxicity studies. However, high cost, ethical considerations, low-sensitivity, non-specificity, and prolonged processes persuade researchers to employ chemical and functional analysis techniques. The qualitative and quantitative analyses, as well as high specificity and sensitivity, are among the advantages of cytotoxicity tests to investigate cyanotoxins. The present study aimed at reviewing the results obtained from in-vitro and in-vivo investigations of the mouse bioassay to detect cyanotoxins, including microcystins, cylindrospermopsin, saxitoxins, etc.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| |
Collapse
|
8
|
Falfushynska H, Horyn O, Osypenko I, Rzymski P, Wejnerowski Ł, Dziuba MK, Sokolova IM. Multibiomarker-based assessment of toxicity of central European strains of filamentous cyanobacteria Aphanizomenon gracile and Raphidiopsis raciborskii to zebrafish Danio rerio. WATER RESEARCH 2021; 194:116923. [PMID: 33631698 DOI: 10.1016/j.watres.2021.116923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The global increase in cyanobacterial blooms poses environmental and health threats. Selected cyanobacterial strains reveal toxicities despite a lack of synthesis of known toxic metabolites, and the mechanisms of these toxicities are not well understood. Here we investigated the toxicity of non-cylindrospermopsin and non-microcystin producing Aphanizomenon gracile and Raphidiopsis raciborskii of Central European origin to zebrafish exposed for 14 days to their extracts. Toxicological screening revealed the presence of anabaenopeptins and a lack of anatoxin-a, ß-methylamino-L-alanine or saxitoxins in examined extracts. The responses were compared to 20 μg L-1 of common cyanobacterial toxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR). The expression of the marker genes involved in apoptosis (caspase 3a and 3b, Bcl-2, BAX, p53, MAPK, Nrf2), DNA damage detection and repair (GADD45, RAD51, JUN, XPC), detoxification (CYP1A, CYP26, EPHX1), lipid metabolism (PPARa, FABP1, PLA2), phosphorylation/dephosphorylation (PPP6C, PPM1) and cytoskeleton (actin, tubulin) were examined using targeted transcriptomics. Cellular stress and toxicity biomarkers (oxidative injury, antioxidant enzymes, thiol pool status, and lactate dehydrogenase activity) were measured in the liver, and acetylcholinesterase activity was determined as an index of neurotoxicity in the brain. The extracts of three cyanobacterial strains that produce no known cyanotoxins caused marked toxicity in D. rerio, and the biomarker profiles indicate different toxic mechanisms between the bioactive compounds extracted from these strains and the purified cyanotoxins. All studied cyanobacterial extracts and purified cyanotoxins induced oxidative stress and neurotoxicity, downregulated Nrf2 and CYP26B1, disrupted phosphorylation/dephosphorylation processes and actin/tubulin cytoskeleton and upregulated apoptotic activity in the liver. The tested strains and purified toxins displayed distinctively different effects on lipid metabolism. Unlike CYN and MC-LR, the Central European strain of A. gracile and R. raciborskii did not reveal a genotoxic potential. These findings help to further understand the ecotoxicological consequences of toxic cyanobacterial blooms in freshwater ecosystems.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Inna Osypenko
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Marcin K Dziuba
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
9
|
Evaluation of toxic effects induced by repeated exposure to Cylindrospermopsin in rats using a 28-day feeding study. Food Chem Toxicol 2021; 151:112108. [PMID: 33741479 DOI: 10.1016/j.fct.2021.112108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022]
Abstract
Cylindrospermopsin (CYN) is a toxin with a world-wide increasing occurrence. It can induce toxic effects both in humans and the environment, and toxicity studies are needed to complete its toxicological profile. In this sense, in vivo oral toxicity studies with pure CYN are scarce. The aim of this work was to perform a repeated dose 28-day oral study in rats following the OECD guideline 407 to provide information on health hazard likely to arise from this kind of exposure. Male and female Sprague-Dawley rats were dosed with 18.75, 37.5 and 75 μg CYN/kg b.w./day. After the study period, no clinical signs or mortality and no significant differences in final body weight, body weight gain and total feed intake in both sexes were observed. Only in females some biochemical parameters (triglycerides (TRIG) levels and aspartate aminotransferase (AST) activity) as well as changes in the weight of organs (absolute liver weight values, relative kidney/body weight ratios or relative liver weight/brain weight ratios) were altered, but without toxicological relevance. Histopathological analysis revealed a very mild affectation of liver and kidney in rats. These results suggest the need to perform longer oral toxicity studies to define the potential consequences of long term CYN exposure.
Collapse
|
10
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
11
|
Porzani SJ, Lima ST, Metcalf JS, Nowruzi B. In Vivo and In Vitro Toxicity Testing of Cyanobacterial Toxins: A Mini-Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:109-150. [PMID: 34622370 DOI: 10.1007/398_2021_74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Harmful cyanobacterial blooms are increasing and becoming a worldwide concern as many bloom-forming cyanobacterial species can produce toxic metabolites named cyanotoxins. These include microcystins, saxitoxins, anatoxins, nodularins, and cylindrospermopsins, which can adversely affect humans, animals, and the environment. Different methods to assess these classes of compounds in vitro and in vivo include biological, biochemical, molecular, and physicochemical techniques. Furthermore, toxic effects not attributable to known cyanotoxins can be observed when assessing bloom material. In order to determine exposures to cyanotoxins and to monitor compliance with drinking and bathing water guidelines, it is necessary to have reliable and effective methods for the analysis of these compounds. Many relatively simple low-cost methods can be employed to rapidly evaluate the potential hazard. The main objective of this mini-review is to describe the assessment of toxic cyanobacterial samples using in vitro and in vivo bioassays. Newly emerging cyanotoxins, the toxicity of analogs, or the interaction of cyanobacteria and cyanotoxins with other toxicants, among others, still requires bioassay assessment. This review focuses on some biological and biochemical assays (MTT assay, Immunohistochemistry, Micronucleus Assay, Artemia salina assay, Daphnia magna test, Radionuclide recovery, Neutral red cytotoxicity and Comet assay, Enzyme-Linked Immunosorbent Assay (ELISA), Annexin V-FITC assay and Protein Phosphatase Inhibition Assay (PPIA)) for the detection and measurement of cyanotoxins including microcystins, cylindrospermopsins, anatoxin-a, saxitoxins, and nodularins. Although most bioassay analyses often confirm the presence of cyanotoxins at low concentrations, such bioassays can be used to determine whether some strains or blooms of cyanobacteria may produce other, as yet unknown toxic metabolites. This review also aims to identify research needs and data gaps concerning the toxicity assessment of cyanobacteria.
Collapse
Affiliation(s)
- Samaneh J Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Stella T Lima
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | | | - Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Sidelev S, Koksharova O, Babanazarova O, Fastner J, Chernova E, Gusev E. Phylogeographic, toxicological and ecological evidence for the global distribution of Raphidiopsis raciborskii and its northernmost presence in Lake Nero, Central Western Russia. HARMFUL ALGAE 2020; 98:101889. [PMID: 33129449 DOI: 10.1016/j.hal.2020.101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Raphidiopsis raciborskii is a freshwater, potentially toxigenic cyanobacterium, originally described as a tropical species that is spreading to northern regions over several decades. The ability of R. raciborskii to produce cyanotoxins - in particular the alkaloid cylindrospermopsin (CYN), which is toxic to humans and animals - is of serious concern. The first appearance of R. raciborskii in Russia was noted in Lake Nero in the summer of 2010. This is the northernmost (57°N) recorded case of the simultaneous presence of R. raciborskii and detection of CYN. In this study, the data from long-term monitoring of the R. raciborskii population, temperature and light conditions in Lake Nero were explored. CYN and cyr/aoa genes present in environmental samples were examined using HPLC/MS-MS and PCR analysis. A R. raciborskii strain (R104) was isolated and its morphology, toxigenicity and phylogeography were studied. It is supposed that the trigger factor for the strong development of R. raciborskii in Lake Nero in summer 2010 may have been the relatively high water temperature, reaching 29-30 °C. Strain R. raciborskii R104 has straight trichomes and can produce akinetes, making it morphologically similar to European strains. Phylogeographic analysis based on nifH gene and 16S-23S rRNA ITS1 sequences showed that the Russian strain R104 grouped together with R. raciborskii strains isolated from Portugal, France, Germany and Hungary. The Russian strain R104 does not contain cyrA and cyrB genes, meaning that it - like all European strains - cannot produce CYN. Thus, while recent invasion of R. raciborskii into Lake Nero has occurred, morphological, genetic, and toxicological data supported the spreading of this cyanobacterium from other European lakes. Detection of CYN and cyr/aoa genes in environmental samples indicated the cyanobacterium Aphanizomenon gracile as a likely producer of CYN in Lake Nero. The article also discusses data on the global biogeography of R. raciborskii. Genetic similarity between R. raciborskii strains isolated from very remote continents might be related to the ancient origin of the cyanobacterium inhabiting the united continents of Laurasia and Gondwana, rather than comparably recent transoceanic exchange between R. raciborskii populations.
Collapse
Affiliation(s)
- Sergey Sidelev
- Regional Center for Ecological Safety of Water Resources, Yaroslavl State University, Yaroslavl, Russia
| | - Olga Koksharova
- Belozersky Institute of Physicо-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Babanazarova
- Regional Center for Ecological Safety of Water Resources, Yaroslavl State University, Yaroslavl, Russia
| | | | - Ekaterina Chernova
- Saint-Petersburg Scientific Research Centre for Ecological Safety, Russian Academy of Sciences, St-Petersburg, Russia
| | - Evgeniy Gusev
- К.А. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Vico P, Bonilla S, Cremella B, Aubriot L, Iriarte A, Piccini C. Biogeography of the cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii: Integrating genomics, phylogenetic and toxicity data. Mol Phylogenet Evol 2020; 148:106824. [PMID: 32294544 DOI: 10.1016/j.ympev.2020.106824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Raphidiopsis (Cylindrospermopsis) raciborskii, a globally distributed bloom-forming cyanobacterium, produces either the cytotoxin cylindrospermopsin (CYL) in Oceania, Asia and Europe or the neurotoxin saxitoxin (STX) and analogues (paralytic shellfish poison, PSP) in South America (encoded by sxt genetic cluster) and none of them in Africa. Nevertheless, this particular geographic pattern is usually overlooked in current hypotheses about the species dispersal routes. Here, we combined genomics, phylogenetic analyses, toxicity data and a literature survey to unveil the evolutionary history and spread of the species. Phylogenies based on 354 orthologous genes from all the available genomes and ribosomal ITS sequences of the taxon showed two well-defined clades: the American, having the PSP producers; and the Oceania/Europe/Asia, including the CYL producers. We propose central Africa as the original dispersion center (non-toxic populations), reaching North Africa and North America (in former Laurasia continent). The ability to produce CYL probably took place in populations that advanced to sub-Saharan Africa and then to Oceania and South America. According to the genomic context of the sxt cluster found in PSP-producer strains, this trait was acquired once by horizontal transfer in South America, where the ability to produce CYL was lost.
Collapse
Affiliation(s)
- Paula Vico
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay
| | - Sylvia Bonilla
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Bruno Cremella
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay; Laboratory of Environmental Analysis, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luis Aubriot
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay.
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay.
| |
Collapse
|
14
|
Ballot A, Swe T, Mjelde M, Cerasino L, Hostyeva V, Miles CO. Cylindrospermopsin- and Deoxycylindrospermopsin-Producing Raphidiopsis raciborskii and Microcystin-Producing Microcystis spp. in Meiktila Lake, Myanmar. Toxins (Basel) 2020; 12:toxins12040232. [PMID: 32272622 PMCID: PMC7232193 DOI: 10.3390/toxins12040232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Meiktila Lake is a shallow reservoir located close to Meiktila city in central Myanmar. Its water is used for irrigation, domestic purposes and drinking water. No detailed study of the presence of cyanobacteria and their potential toxin production has been conducted so far. To ascertain the cyanobacterial composition and presence of cyanobacterial toxins in Meiktila Lake, water samples were collected in March and November 2017 and investigated for physico-chemical and biological parameters. Phytoplankton composition and biomass determination revealed that most of the samples were dominated by the cyanobacterium Raphidiopsis raciborskii. In a polyphasic approach, seven isolated cyanobacterial strains were classified morphologically and phylogenetically as R. raciborskii, and Microcystis spp. and tested for microcystins (MCs), cylindrospermopsins (CYNs), saxitoxins and anatoxins by enzyme-linked immunosorbent assay (ELISA) and liquid chromatography–mass spectrometry (LC–MS). ELISA and LC–MS analyses confirmed CYNs in three of the five Raphidiopsis strains between 1.8 and 9.8 μg mg−1 fresh weight. Both Microcystis strains produced MCs, one strain 52 congeners and the other strain 20 congeners, including 22 previously unreported variants. Due to the presence of CYN- and MC-producing cyanobacteria, harmful effects on humans, domestic and wild animals cannot be excluded in Meiktila Lake.
Collapse
Affiliation(s)
- Andreas Ballot
- Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway; (T.S.); (M.M.); (V.H.)
- Correspondence:
| | - Thida Swe
- Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway; (T.S.); (M.M.); (V.H.)
- Forest Research Institute, 15013 Yezin, Myanmar
- Department of Natural Sciences and Environmental Health, University of South- Eastern Norway, Gullbringvegen 36, N-3800 Bø, Norway
| | - Marit Mjelde
- Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway; (T.S.); (M.M.); (V.H.)
| | - Leonardo Cerasino
- Department of Sustainable Agro-ecosystem and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy;
| | - Vladyslava Hostyeva
- Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway; (T.S.); (M.M.); (V.H.)
| | | |
Collapse
|
15
|
Stefanova K, Radkova M, Uzunov B, Gärtner G, Stoyneva-Gärtner M. Pilot search for cylindrospermopsin-producers in nine shallow Bulgarian waterbodies reveals nontoxic strains of Raphidiopsis raciborskii, R. mediterranea and Chrysosporum bergii. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1758595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
| | - Mariana Radkova
- AgroBioInstitute, Bulgarian Agricultural Academy, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University, Sofia, Bulgaria
| | - Georg Gärtner
- Institute of Botany, Innsbruck University, Innsbruck, Austria
| | | |
Collapse
|
16
|
Kubickova B, Laboha P, Hildebrandt JP, Hilscherová K, Babica P. Effects of cylindrospermopsin on cultured immortalized human airway epithelial cells. CHEMOSPHERE 2019; 220:620-628. [PMID: 30597370 DOI: 10.1016/j.chemosphere.2018.12.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Anthropogenic eutrophication of freshwater bodies increases the occurrence of toxic cyanobacterial blooms. The cyanobacterial toxin cylindrospermopsin (CYN) is detected in the environment with increasing frequency, driving the scientific effort to assess emerging health risks from CYN-producing blooms. Oral exposure to CYN results primarily in hepatotoxicity. Nevertheless, extrahepatic manifestations of CYN toxicity have been reported. Furthermore, cyanotoxins have been detected in aerosols and dust particles, suggesting potential toxic effects in the respiratory tract. To assess the susceptibility of airway epithelia towards cyanotoxins, monolayers of immortalized human bronchial epithelial cells HBE1 and 16HBE14o- were exposed to a concentration range of 0.1-10 μM CYN. Cytotoxic endpoints were assessed as morphologic alterations, resazurin reduction capacity, esterase activity, neutral red uptake, and by impedimetric real-time cell analysis. Depending on the endpoint assessed, EC50 values ranged between 0.7 and 1.8 μM (HBE1) and 1.6-4.8 μM (16HBE14o-). To evaluate alterations of other cellular events by subcytotoxic concentration of CYN (1 μM), phosphorylation of mitogen-activated protein kinases ERK and p38 was determined. Only a slight increase in p38 phosphorylation was induced by CYN in HBE1 cell line after 48 h, while activities of both ERK1/2 and p38 gradually and significantly increased in 16HBE14o- cells during 8-48 h exposure. This study suggests possible hazards of inhalation CYN exposures, which may severely impact the integrity of airway epithelia and epithelial cell signaling. Further research of CYN-induced toxicity and underlying mechanisms is needed, as well as more data on environmental concentrations of cyanotoxins in aerosols for exposure assessment.
Collapse
Affiliation(s)
- Barbara Kubickova
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Petra Laboha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Jan-Peter Hildebrandt
- University of Greifswald, Zoological Institute and Museum, Department of Animal Physiology and Biochemistry, Felix-Hausdorff-Str. 1, 17489 Greifswald, Germany.
| | - Klara Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
17
|
Huguet A, Lanceleur R, Quenault H, Le Hégarat L, Fessard V. Identification of key pathways involved in the toxic response of the cyanobacterial toxin cylindrospermopsin in human hepatic HepaRG cells. Toxicol In Vitro 2019; 58:69-77. [PMID: 30905859 DOI: 10.1016/j.tiv.2019.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
The hepatotoxin cylindrospermopsin (CYN) has been involved in cases of poisoning in humans following ingestion. As its liver toxicity process is complex, we studied the transcriptomic profile of HepaRG cells exposed to CYN. The affected pathways were confirmed through the expression of key genes and the investigation of toxicity markers. In addition, CYP450 activities and cell redox homeostasis were investigated following acute and repeated exposure. CYN induced the down-regulation of genes involved in xenobiotic metabolism and cell cycle progression. There was cell cycle disturbance characterised by an accumulation of G1/S and G2/M cells and an increase in phospho-H3-positive cells. This was linked to the induction of DNA damage demonstrated by an increase in γH2AX-positive cells as well as an accumulation of sub-G1 cells indicating apoptosis but not involving caspase-3. While glutathione (GSH) content sharply decreased following acute exposure to CYN, it increased following repeated exposure, reflecting an adaptive response of cell redox homeostasis. However, our data also suggested that CYN induced the down-regulation of phase I and II metabolism gene products, and CYP450 activities were affected following both acute and repeated exposure to CYN. Our study indicated that repeated exposure of liver cells to low concentrations of CYN may affect their detoxification capacities.
Collapse
Affiliation(s)
- Antoine Huguet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue Claude Bourgelat, 35306 Fougères, France.
| | - Rachelle Lanceleur
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue Claude Bourgelat, 35306 Fougères, France
| | - Hélène Quenault
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Genetic and Biosecurity Unit, 22440 Ploufragan, France
| | - Ludovic Le Hégarat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue Claude Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue Claude Bourgelat, 35306 Fougères, France
| |
Collapse
|
18
|
Zupo V, Mutalipassi M, Ruocco N, Glaviano F, Pollio A, Langellotti AL, Romano G, Costantini M. Distribution of Toxigenic Halomicronema spp. in Adjacent Environments on the Island of Ischia: Comparison of Strains from Thermal Waters and Free Living in Posidonia Oceanica Meadows. Toxins (Basel) 2019; 11:toxins11020099. [PMID: 30747108 PMCID: PMC6409854 DOI: 10.3390/toxins11020099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/01/2019] [Indexed: 11/30/2022] Open
Abstract
Organisms adaptable to extreme conditions share the ability to establish protective biofilms or secrete defence toxins. The extracellular substances that are secreted may contain monosaccharides and other toxic compounds, but environmental conditions influence biofilm characteristics. Microorganisms that are present in the same environment achieve similar compositions, regardless of their phylogenetic relationships. Alternatively, cyanobacteria phylogenetically related may live in different environments, but we ignore if their physiological answers may be similar. To test this hypothesis, two strains of cyanobacteria that were both ascribed to the genus Halomicronema were isolated. H. metazoicum was isolated in marine waters off the island of Ischia (Bay of Naples, Italy), free living on leaves of Posidonia oceanica. Halomicronema sp. was isolated in adjacent thermal waters. Thus, two congeneric species adapted to different environments but diffused in the same area were polyphasically characterized by microscopy, molecular, and toxicity analyses. A variable pattern of toxicity was exhibited, in accordance with the constraints imposed by the host environments. Cyanobacteria adapted to extreme environments of thermal waters face a few competitors and exhibit a low toxicity; in contrast, congeneric strains that have adapted to stable and complex environments as seagrass meadows compete with several organisms for space and resources, and they produce toxic compounds that are constitutively secreted in the surrounding waters.
Collapse
Affiliation(s)
- Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Mirko Mutalipassi
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Francesca Glaviano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Naples, Italy.
| | - Antonio Luca Langellotti
- CAISIAL, Aquaculture division, University of Naples Federico II. Via Università, 80055 Portici (NA), Italy.
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| |
Collapse
|
19
|
Tamele IJ, Silva M, Vasconcelos V. The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea. Toxins (Basel) 2019; 11:E58. [PMID: 30669603 PMCID: PMC6357038 DOI: 10.3390/toxins11010058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region.
Collapse
Affiliation(s)
- Isidro José Tamele
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique.
| | - Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| |
Collapse
|
20
|
Fuentes-Valdés JJ, Soto-Liebe K, Pérez-Pantoja D, Tamames J, Belmar L, Pedrós-Alió C, Garrido D, Vásquez M. Draft genome sequences of Cylindrospermopsis raciborskii strains CS-508 and MVCC14, isolated from freshwater bloom events in Australia and Uruguay. Stand Genomic Sci 2018; 13:26. [PMID: 30344889 PMCID: PMC6186047 DOI: 10.1186/s40793-018-0323-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/24/2018] [Indexed: 12/28/2022] Open
Abstract
Members of the genus Cylindrospermopsis represent an important environmental and health concern. Strains CS-508 and MVCC14 of C. raciborskii were isolated from freshwater reservoirs located in Australia and Uruguay, respectively. While CS-508 has been reported as non-toxic, MVCC14 is a saxitoxin (STX) producer. We annotated the draft genomes of these C. raciborskii strains using the assembly of reads obtained from Illumina MiSeq sequencing. The final assemblies resulted in genome sizes close to 3.6 Mbp for both strains and included 3202 ORFs for CS-508 (in 163 contigs) and 3560 ORFs for MVCC14 (in 99 contigs). Finally, both the average nucleotide identity (ANI) and the similarity of gene content indicate that these two genomes should be considered as strains of the C. raciborskii species.
Collapse
Affiliation(s)
- Juan J Fuentes-Valdés
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Katia Soto-Liebe
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, 8940577 Santiago, Chile
| | - Javier Tamames
- Systems Biology Program, CNB, CSIC, Calle Darwin 3, 28049 Madrid, Spain
| | - Lucy Belmar
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | | | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Mónica Vásquez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| |
Collapse
|
21
|
Development of Time-Resolved Fluoroimmunoassay for Detection of Cylindrospermopsin Using Its Novel Monoclonal Antibodies. Toxins (Basel) 2018; 10:toxins10070255. [PMID: 29933618 PMCID: PMC6070832 DOI: 10.3390/toxins10070255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin that is of particular concern for its potential toxicity to human and animal health and ecological consequences due to contamination of drinking water. The increasing emergence of CYN around the world has led to urgent development of rapid and high-throughput methods for its detection in water. In this study, a highly sensitive monoclonal antibody N8 was produced and characterized for CYN detection through the development of a direct competitive time-resolved fluorescence immunoassay (TRFIA). The newly developed TRFIA exhibited a typical sigmoidal response for CYN at concentrations of 0.01–100 ng mL−1, with a wide quantitative range between 0.1 and 50 ng mL−1. The detection limit of the method was calculated to be 0.02 ng mL−1, which is well below the guideline value of 1 μg L−1 and is sensitive enough to provide an early warning of the occurrence of CYN-producing cyanobacterial blooms. The newly developed TRFIA also displayed good precision and accuracy, as evidenced by low coefficients of variation (4.1–6.5%). Recoveries ranging from 92.6% to 108.8% were observed upon the analysis of CYN-spiked water samples. Moreover, comparison of the TRIFA with an ELISA kit through testing 76 water samples and 15 Cylindrospermopsis cultures yielded a correlation r2 value of 0.963, implying that the novel immunoassay was reliable for the detection of CYN in water and algal samples.
Collapse
|
22
|
Chernoff N, Hill DJ, Chorus I, Diggs DL, Huang H, King D, Lang JR, Le TT, Schmid JE, Travlos GS, Whitley EM, Wilson RE, Wood CR. Cylindrospermopsin toxicity in mice following a 90-d oral exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:549-566. [PMID: 29693504 PMCID: PMC6764423 DOI: 10.1080/15287394.2018.1460787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/26/2018] [Indexed: 05/19/2023]
Abstract
Cylindrospermopsin (CYN) is a toxin associated with numerous species of freshwater cyanobacteria throughout the world. It is postulated to have caused an episode of serious illnesses in Australia through treated drinking water, as well as lethal effects in livestock exposed to water from farm ponds. Toxicity included effects indicative of both hepatic and renal dysfunction. In humans, symptoms progressed from initial hepatomegaly, vomiting, and malaise to acidosis and hypokalemia, bloody diarrhea, and hyperemia in mucous membranes. Laboratory animal studies predominantly involved the intraperitoneal (i.p.) route of administration and confirmed this pattern of toxicity with changes in liver enzyme activities and histopathology consistent with hepatic injury and adverse renal effects. The aim of this study was designed to assess subchronic oral exposure (90 d) of purified CYN from 75 to 300 µg/kg/d in mouse. At the end of the dosing period, examinations of animals noted (1) elevated organ to body weight ratios of liver and kidney at all dose levels, (2) treatment-related increases in serum alanine aminotransferase (ALT) activity, (3) decreased blood urea nitrogen (BUN) and cholesterol concentrations in males, and (4) elevated monocyte counts in both genders. Histopathological alterations included hepatocellular hypertrophy and cord disruption in the liver, as well as renal cellular hypertrophy, tubule dilation, and cortical tubule lesions that were more prominent in males. A series of genes were differentially expressed including Bax (apoptosis), Rpl6 (tissue regeneration), Fabp4 (fatty acid metabolism), and Proc (blood coagulation). Males were more sensitive to many renal end points suggestive of toxicity. At the end of exposure, toxicity was noted at all dose levels, and the 75 µg/kg group exhibited significant effects in liver and kidney/body weight ratios, reduced BUN, increased serum monocytes, and multiple signs of histopathology indicating that a no-observed-adverse-effect level could not be determined for any dose level.
Collapse
Affiliation(s)
- N Chernoff
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - D J Hill
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - I Chorus
- b Division of Drinking-Water and Swimming-Pool Hygiene , Umweltbundesamt , Berlin , Germany
| | - D L Diggs
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - H Huang
- d North Carolina State University , Raleigh , NC , USA
| | - D King
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - J R Lang
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - T-T Le
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - J E Schmid
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - G S Travlos
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - E M Whitley
- f Pathogenesis , LLC , Gainesville , FL , USA
| | - R E Wilson
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - C R Wood
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| |
Collapse
|
23
|
Saoudi A, Brient L, Boucetta S, Ouzrout R, Bormans M, Bensouilah M. Management of toxic cyanobacteria for drinking water production of Ain Zada Dam. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:361. [PMID: 28667413 DOI: 10.1007/s10661-017-6058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Blooms of toxic cyanobacteria in Algerian reservoirs represent a potential health problem, mainly from drinking water that supplies the local population of Ain Zada (Bordj Bou Arreridj). The objective of this study is to monitor, detect, and identify the existence of cyanobacteria and microcystins during blooming times. Samples were taken in 2013 from eight stations. The results show that three potentially toxic cyanobacterial genera with the species Planktothrix agardhii were dominant. Cyanobacterial biomass, phycocyanin (PC) concentrations, and microcystin (MC) concentrations were high in the surface layer and at 14 m depth; these values were also high in the treated water. On 11 May 2013, MC concentrations were 6.3 μg/L in MC-LR equivalent in the drinking water. This study shows for the first time the presence of cyanotoxins in raw and treated waters, highlighting that regular monitoring of cyanobacteria and cyanotoxins must be undertaken to avoid potential health problems.
Collapse
Affiliation(s)
- Amel Saoudi
- Faculty of Sciences, Ecobiology Laboratory for Marine Environments and Coastal Areas, BP 12 El-Hadjar, University of Badji Mokhtar, 23000, Annaba, Algeria.
| | - Luc Brient
- UMR/CNRS Ecobio 6553, University of Rennes I, Rennes, 35 042, France
| | - Sabrine Boucetta
- Department of Biology and Plant Ecology, University Ferhat Abbas Sétif 1, Sétif, Algeria
| | - Rachid Ouzrout
- Department of Veterinary Sciences, Faculty of natural and life sciences, Chadli Bendjedid University, Box. P.0.73, 36000, El Tarf, Algeria
| | - Myriam Bormans
- UMR/CNRS Ecobio 6553, University of Rennes I, Rennes, 35 042, France
| | - Mourad Bensouilah
- Faculty of Sciences, Ecobiology Laboratory for Marine Environments and Coastal Areas, BP 12 El-Hadjar, University of Badji Mokhtar, 23000, Annaba, Algeria
| |
Collapse
|
24
|
Đorđević NB, Matić SL, Simić SB, Stanić SM, Mihailović VB, Stanković NM, Stanković VD, Ćirić AR. Impact of the toxicity of Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju on laboratory rats in vivo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14259-14272. [PMID: 28421526 DOI: 10.1007/s11356-017-8940-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
In vivo laboratory studies of toxicity were performed on Wistar rats using a methanol extract produced by the natural population of Cylindrospermopsis raciborskii (abundance of 2.13 × 105 trichomes mL-1) collected at Aleksandrovac Lake (Serbia). HPLC analysis showed that the extract contains 6.65 μg cylindrospermopsin (CYN) mg-1. The rats were killed 24 or 72 h after a single intraperitoneal injection of C. raciborskii extract in concentrations of 1500, 3000, 6000 and 12,000 μg kg-1 body weight (bw) and an equivalent amount of CYN as present in the highest dose of the extract (79.80 μg CYN kg-1 bw). The genotoxic effect on the livers treated with C. raciborskii was evaluated using comet assay and potential induction of oxidative stress as the toxicity mechanism associated with the presence of CYN in extract. The results from the analyses of DNA damage in the comet tail length, tail moment and percentage of DNA in the tail in the liver indicated that administration of extract and CYN present statistically significant difference when compared with the negative control group. Although an increase in the frequency of selected parameters induced by the CYN was observed in the liver, this damage was less than the damage resulting from the administration of the highest dose of extract. The changes in the biochemical parameters of the hepatic damage showed that the application of single doses of the extract and CYN did not cause serious liver damage in rats. The extract and CYN significantly increased oxidative stress in rats' liver after a single exposure.
Collapse
Affiliation(s)
- Nevena B Đorđević
- Faculty of Science, Institute of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Sanja Lj Matić
- Faculty of Science, Institute of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Snežana B Simić
- Faculty of Science, Institute of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia.
| | - Snežana M Stanić
- Faculty of Science, Institute of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Vladimir B Mihailović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Nevena M Stanković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Vesna D Stanković
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, Kragujevac, 34 000, Serbia
| | - Andrija R Ćirić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| |
Collapse
|
25
|
Guzmán-Guillén R, Prieto Ortega AI, Moreno IM, Ríos V, Moyano R, Blanco A, Vasconcelos V, Cameán AM. Effects of depuration on histopathological changes in tilapia (Oreochromis niloticus) after exposure to cylindrospermopsin. ENVIRONMENTAL TOXICOLOGY 2017; 32:1318-1332. [PMID: 27463828 DOI: 10.1002/tox.22326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Cylindrospermopsin (CYN) is a highly water-soluble cytotoxin produced by several species of freshwater cyanobacteria and it is considered the second most studied cyanotoxin worldwide. CYN acts as a potent protein and glutathione synthesis inhibitor, as well as inducing genotoxicity, oxidative stress and histopathological alterations. Studies concerning the depuration of cyanobacterial toxins in aquatic organisms, especially in fish, are of great interest for fish economy and public health, but are scarce in the case of CYN. This is the first study reporting the ability of depuration (3 - 7 days) in reversing or ameliorating the histopathological lesions induced in liver, kidney, heart, intestines, and gills of tilapia (Oreochromis niloticus) due to exposure by immersion to repeated doses of a CYN-containing culture of A. ovalisporum for 14 days. The main histopathological changes induced by CYN were glucogenic degeneration and loss of the normal hepatic cord-structure (liver), hyperemia, dilated Bowman's capsule and cellular tumefaction (kidney), myofibrolysis, hemorrhages and edema (heart), necrosis and partial loss of microvilli (gastrointestinal tract), and hyperemia and inflammatory cells infiltrates (gills). After 3 days of depuration, gills were totally recovered, while the liver, kidney, and gastrointestinal tract required 7 days, and longer depuration periods may be needed for a full recovery of the heart. In addition, the morphometric study indicated that depuration managed to reverse the affectation in the hepatocytes nuclear diameters and cross sections of the proximal and distal convoluted tubules induced in CYN-exposed fish. In general, these results validate depuration as an effective practice for detoxification of fish contaminated with CYN. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1318-1332, 2017.
Collapse
Affiliation(s)
- Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Ana I Prieto Ortega
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Isabel M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Victoria Ríos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, University of Córdoba, Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Alfonso Blanco
- Department of Anatomy and Comparative Pathology and Anatomy, University of Córdoba, Campus De Rabanales Carretera Madrid- Cádiz S/N, Córdoba, 14071, Spain
| | - Vitor Vasconcelos
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos, Bragas, 289, 4050-123, Porto, Portugal
- Department of Biology, Faculty of Sciences of the University of Porto, Porto, 4169-007, Portugal
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| |
Collapse
|
26
|
Guzmán-Guillén R, Prieto Ortega AI, Moyano R, Blanco A, Vasconcelos V, Cameán AM. Dietary l-carnitine prevents histopathological changes in tilapia (Oreochromis Niloticus) exposed to cylindrospermopsin. ENVIRONMENTAL TOXICOLOGY 2017; 32:241-254. [PMID: 26714798 DOI: 10.1002/tox.22229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Cylindrospermopsin (CYN) is a cytotoxin highly water-soluble, which is easily taken up by several aquatic organisms. CYN acts as a potent protein and glutathione synthesis inhibitor, as well as inducing genotoxicity, oxidative stress, and histopathological alterations. This is the first study reporting the protective effect of a l-carnitine (LC) pretreatment (400 or 880 mg LC/kg bw fish/day, for 21 days) on the histopathological alterations induced by pure CYN or Aphanizomenon ovalisporum lyophilized cells (400 µg CYN/kg bw fish) in liver, kidney, heart, intestines, and gills of tilapia (Oreochromis niloticus) acutely exposed to the toxin by oral route. The main histopathological changes induced by CYN were disorganized parenchyma with presence of glycogen and lipids in the cytoplasm (liver), glomerulonephritis, glomerular atrophy, and dilatation of Bowman's capsule (kidney), myofibrolysis, loss of myofibrils, with edema and hemorrhage (heart), intestinal villi with necrotic enterocytes and partial loss of microvilli (gastrointestinal tract), and hyperemia and hemorrhage (gills). LC pretreatment was able to totally prevent those CYN-induced alterations from 400 mg LC/kg bw fish/day in almost all organs, except in the heart, where 880 mg LC/kg bw fish/day were needed. In addition, the morphometric study indicated that LC managed to recover totally the affectation in the cross sections of the proximal and distal convoluted tubules in CYN-exposed fish. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 241-254, 2017.
Collapse
Affiliation(s)
- Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Ana I Prieto Ortega
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, University of Córdoba. Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Alfonso Blanco
- Department of Anatomy and Comparative Pathology and Anatomy, University of Córdoba, Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
- Department of Biology, Faculty of Sciences of the University of Porto, 4169-007, Portugal
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| |
Collapse
|
27
|
Liyanage HM, Arachchi DNM, Abeysekara T, Guneratne L. Toxicology of freshwater cyanobacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:137-168. [PMID: 27229761 DOI: 10.1080/10590501.2016.1193923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Many chemical contaminants in drinking water have been shown to cause adverse health effects in humans after prolonged exposure. Cyanobacteria are one of the most potent and diverse groups of photosynthetic prokaryotes. One key component of cyanobacterial success in the environment is the production of potent toxins as secondary metabolites, which have been responsible for numerous adverse health impacts in humans. Anthropogenic activities have led to the increase of eutrophication in freshwater bodies' worldwide, causing cyanobacterial blooms to become more frequent. The present article will discuss about harmful cyanobacteria and their toxicology with special references to microcystin, nodularin, and cylindrospermopsin.
Collapse
Affiliation(s)
- H M Liyanage
- a National Institute of Fundamental Studies , Kandy , Sri Lanka
| | | | - T Abeysekara
- b Nephrology and Transplantation Unit, Teaching Hospital , Kandy , Sri Lanka
| | - L Guneratne
- c Renal Care & Research Centre, District Hospital , Girandurukotte , Sri Lanka
| |
Collapse
|
28
|
Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D'Agostino PM, Neilan BA. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. HARMFUL ALGAE 2016; 54:98-111. [PMID: 28073484 DOI: 10.1016/j.hal.2015.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 05/28/2023]
Abstract
The production of toxic metabolites by cyanobacterial blooms represents a significant threat to the health of humans and ecosystems worldwide. Here we summarize the current state of the knowledge regarding the genetics, biosynthesis and regulation of well-characterized cyanotoxins, including the microcystins, nodularin, cylindrospermopsin, saxitoxins and anatoxins, as well as the lesser-known marine toxins (e.g. lyngbyatoxin, aplysiatoxin, jamaicamides, barbamide, curacin, hectochlorin and apratoxins).
Collapse
Affiliation(s)
- Leanne A Pearson
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Elke Dittmann
- Institut für Biochemie und Biologie, Mikrobiologie, Universität Potsdam, Potsdam-Golm 14476, Germany
| | - Rabia Mazmouz
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Sarah E Ongley
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Paul M D'Agostino
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Brett A Neilan
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia.
| |
Collapse
|
29
|
Draft Genome Sequence of Cylindrospermopsis sp. Strain CR12 Extracted from the Minimetagenome of a Nonaxenic Unialgal Culture from a Tropical Freshwater Lake. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01726-15. [PMID: 26868404 PMCID: PMC4751328 DOI: 10.1128/genomea.01726-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cylindrospermopsis is known to be one of the major bloom-forming cyanobacterial genera in many freshwater environments. We report here the draft genome sequence of a tropical Cylindrospermopsis sp. strain, CR12, which is capable of producing the hepatotoxic cylindrospermopsin.
Collapse
|
30
|
Esterhuizen-Londt M, Kühn S, Pflugmacher S. Development and validation of an in-house quantitative analysis method for cylindrospermopsin using hydrophilic interaction liquid chromatography-tandem mass spectrometry: Quantification demonstrated in 4 aquatic organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2878-2883. [PMID: 26126753 DOI: 10.1002/etc.3138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
The cyanobacterial toxin cylindrospermopsin (CYN) is of great concern in aquatic environments because of its incidence, multiple toxicity endpoints, and, therefore, the severity of health implications. It may bioaccumulate in aquatic food webs, resulting in high exposure concentrations to higher-order trophic levels, particularly humans. Because of accumulation at primary levels resulting from exposure to trace amounts of toxin, a sensitive analytical technique with proven aquatic applications is required. In the present study, a hydrophilic interaction liquid chromatographic-tandem mass spectrometric method with a lower limit of detection of 200 fg on column (signal-to-noise ratio = 3, n = 9) and a lower limit of quantification of 1 pg on column (signal-to-noise ratio = 11, n = 9) with demonstrated application in 4 aquatic organisms is described. The analytical method was optimized and validated with a linear range (r(2) = 0.999) from 0.1 ng mL(-1) to 100 ng mL(-1) CYN. Mean recovery of the extraction method was 98 ± 2%. Application of the method was demonstrated by quantifying CYN uptake in Scenedesmus subspicatus (green algae), Egeria densa (Brazilian waterweed), Daphnia magna (water flea), and Lumbriculus variegatus (blackworm) after 24 h of static exposure to 50 μg L(-1) CYN. Uptake ranged from 0.05% to 0.11% of the nominal CYN exposure amount. This constitutes a sensitive and reproducible method for extraction and quantification of unconjugated CYN with demonstrated application in 4 aquatic organisms, which can be used in further aquatic toxicological investigations.
Collapse
Affiliation(s)
| | - Sandra Kühn
- Institute of Ecology, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
31
|
Guzmán-Guillén R, Prieto AI, Moreno I, Vasconcelos VM, Moyano R, Blanco A, Cameán Fernandez AM. Cyanobacterium producing cylindrospermopsin cause histopathological changes at environmentally relevant concentrations in subchronically exposed tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY 2015; 30:261-277. [PMID: 24000190 DOI: 10.1002/tox.21904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
The acute toxicity of cylindrospermopsin (CYN) has been established in rodents, based on diverse intraperitoneal an oral exposure studies and more recently in fish. But no data have been reported in fish after subchronic exposure to cyanobacterial cells containing this cyanotoxin, so far. In this work, tilapia (Oreochromis niloticus) were exposed by immersion to lyophilized Aphanizomenon ovalisporum cells added to the aquaria using two concentration levels of CYN (10 or 100 μg CYN L(-1)) and deoxy-cylindrospermopsin (deoxy-CYN) (0.46 or 4.6 μg deoxy-CYN L(-1)), during two different exposure times: 7 or 14 d. This is the first study showing damage in the liver, kidney, hearth, intestines, and gills of tilapia after subchronic exposure to cyanobacterial cells at environmental relevant concentrations. The major histological changes observed were degenerative processes and steatosis in the liver, membranous glomerulopathy in the kidney, myofibrolysis and edema in the heart, necrotic enteritis in the gastrointestinal tract, and hyperemic processes in gill lamellae and microhemorrhages. Moreover, these histopathological findings confirm that the extent of damage is related to the CYN concentration and length of exposure. Results from the morphometric study indicated that the average of nuclear diameter of hepatocytes and cross-sections of proximal and distal convoluted tubules are useful to evaluate the damage induced by CYN in the main targets of toxicity.
Collapse
|
32
|
Barón-Sola Á, Sanz-Alférez S, Del Campo FF. First evidence of accumulation in cyanobacteria of guanidinoacetate, a precursor of the toxin cylindrospermopsin. CHEMOSPHERE 2015; 119:1099-1104. [PMID: 25460748 DOI: 10.1016/j.chemosphere.2014.08.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/17/2014] [Accepted: 08/19/2014] [Indexed: 06/04/2023]
Abstract
Guanidinoacetate (GAA) is one of the most extensively studied toxic guanidine compounds. Changes in GAA can affect the nervous system and induce hyperhomocysteinemia, representing a risk factor for cardiovascular diseases. In cyanobacteria, GAA is thought to be an intermediate in the synthesis of the toxin cylindrospermopsin (CYN), one of the most common known cyanotoxins that affects multiple organs and functions in animals and plants. In spite of the evidence supporting GAA toxicity and its role in CYN synthesis, no data have been reported on the accumulation of GAA in any cyanobacterium. We have analyzed and compared the content of GAA in cultures of diverse cyanobacteria types, both cylindrospermopsin producing (CYN(+)) and not producing (CYN(-)). The results obtained show that GAA accumulates in the majority of the strains tested, although the highest content was found in one of the CYN(+) strain, Aphanizomenon ovalisporum UAM-MAO. In this strain, both GAA and CYN can be located within and out the cells. In conclusion, GAA appears to be a general cyanobacterial metabolite that due to its proven toxic should be considered when studying and managing cyanobacteria toxicity.
Collapse
Affiliation(s)
- Ángel Barón-Sola
- Departamento de Biología, C/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Soledad Sanz-Alférez
- Departamento de Biología, C/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Francisca F Del Campo
- Departamento de Biología, C/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
33
|
Wu CC, Huang WJ, Ji BH. Degradation of cyanotoxin cylindrospermopsin by TiO2-assisted ozonation in water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:1116-1126. [PMID: 26191986 DOI: 10.1080/10934529.2015.1047664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The stable tricyclic structure of the cylindrospermopsin (CYN), a cynotoxin, has presented several challenges to water treatment facilities, as conventional treatment methods have a limited ability to remove it from water. This study examines the effectiveness of titanium dioxide (TiO2) in catalytic ozonation for degrading CYN. The chemical kinetics of the reactions of ozone (O3) and hydroxyl radicals (OH(•)) with CYN were determined. The results reveal that TiO2 significantly increases the rate of degradation of CYN by increasing the rate of production of hydroxyl radicals (OH(•)) by initiating the decomposition of O3 on the surface of the catalyst. At a pH of 7 with 1.0 mg L(-1) O3 and 500 mg L(-1) TiO2; the pseudo-first-order ozone decomposition rate constant (k(D)) increased from 3.04 × 10(-3) to 16.53 × 10(-3) s(-1) and the ratio of OH(•) to O3 concentrations (R(ct)) increased from 1.87 × 10(-8) to 126.4 × 10(-8). The calculated second-order rate constant (k(overall)) of the reaction of CYN with O3 and OH(•) was 3.22 M(-1)s(-1) without TiO2. However, the greatest improvement in k(overall) in this study was observed using 500 mg TiO2 L(-1), which increased koverall by a factor of five. TiO2-catalyzed ozonation is an efficient method of oxidation that reduces the toxic activity of CYN. The results of a Microtox test concerning the toxic activity of CYN during oxidation reveal that catalytic ozonation may either increase or reduce the toxicity of CYN toward test samples. The toxic effects of CYN on the samples are greatly influenced by the TiO2 dosage and reaction time, possibly yielding by-products that may change the mutagenic properties of CYN. Three water samples from a eutrophic lake in Taiwan were examined to evaluate the effect of dissolved organic carbon (DOC) and alkalinity on the oxidation of CYN. DOC had the greatest effect on the oxidation of CYN in the ozonation of eutrophic water. Overall, the degree of CYN oxidation depended on the rate constant of the reaction with ozone and the consumption of ozone by the natural water matrix.
Collapse
Affiliation(s)
- Chih-Chao Wu
- a Department of Environmental Engineering and Science, Feng Chia University , Taichung City , Taiwan
| | | | | |
Collapse
|
34
|
Rzymski P, Poniedziałek B. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. WATER RESEARCH 2014; 66:320-337. [PMID: 25222334 DOI: 10.1016/j.watres.2014.08.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Despite a significant interest in cyanotoxins over recent decades, their biological role is still poorly elucidated. Cylindrospermopsin (CYN) is a cyanobacterial metabolite that is globally identified in surface fresh- and brackish waters and whose producers are observed to spread throughout different climate zones. This paper provides a comprehensive review of the characteristics and global distribution of CYN-producing species, the variety of their chemotypes and the occurrence of strains which, while incapable of toxin synthesis, are able to produce other bioactive compounds including those that are hitherto unknown and yet to be identified. Environmental conditions that can trigger CYN production and promote growth of CYN-producers in aquatic ecosystems are also discussed. Finally, on the basis of existing experimental evidence, potential ecological role(s) of CYN are indicated. It is eventually concluded that CYN can be at least partially responsible for the ecological success of certain cyanobacteria species.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | - Barbara Poniedziałek
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
35
|
Weirich CA, Miller TR. Freshwater harmful algal blooms: toxins and children's health. Curr Probl Pediatr Adolesc Health Care 2014; 44:2-24. [PMID: 24439026 DOI: 10.1016/j.cppeds.2013.10.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/04/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022]
Abstract
Massive accumulations of cyanobacteria (a.k.a. "blue-green algae"), known as freshwater harmful algal blooms (FHABs), are a common global occurrence in water bodies used for recreational purposes and drinking water purification. Bloom prevalence is increased due to anthropogenic changes in land use, agricultural activity, and climate change. These photosynthetic bacteria produce a range of toxic secondary metabolites that affect animals and humans at both chronic and acute dosages. Children are especially at risk because of their lower body weight, behavior, and toxic effects on development. Here we review common FHAB toxins, related clinical symptoms, acceptable concentrations in drinking water, case studies of children's and young adults' exposures to FHAB toxins through drinking water and food, methods of environmental and clinical detection in potential cases of intoxication, and best practices for FHAB prevention.
Collapse
Affiliation(s)
- Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI
| | - Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI
| |
Collapse
|
36
|
de la Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He X, Loftin K, O'Shea K, Zhao C, Pelaez M, Han C, Lynch TJ, Dionysiou DD. A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1979-2003. [PMID: 24056894 DOI: 10.1039/c3em00353a] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cylindrospermopsin is an important cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria poses a potential threat to both human and ecosystem health. Its toxicity is associated with metabolic activation and may involve mechanisms that adversely affect a wide variety of targets in an organism. Cylindrospermopsin has been shown to be cytotoxic, dermatotoxic, genotoxic, hepatotoxic in vivo, developmentally toxic, and may be carcinogenic. Human exposure may occur through drinking water, during recreational activities and by consuming foods in which the toxin may have bioaccumulated. Drinking water shortages of sufficient quality coupled with growing human pressures and climate variability and change necessitate an integrated and sustainable water management program. This review presents an overview of the importance of cylindrospermopsin, its detection, toxicity, worldwide distribution, and lastly, its chemical and biological degradation and removal by natural processes and drinking water treatment processes.
Collapse
Affiliation(s)
- Armah A de la Cruz
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater. PLoS One 2013; 8:e74238. [PMID: 24015317 PMCID: PMC3756036 DOI: 10.1371/journal.pone.0074238] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX), while cylindrospermopsin (CYN), which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins.
Collapse
|
38
|
Kokociński M, Mankiewicz-Boczek J, Jurczak T, Spoof L, Meriluoto J, Rejmonczyk E, Hautala H, Vehniäinen M, Pawełczyk J, Soininen J. Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:5243-64. [PMID: 23378259 PMCID: PMC3713259 DOI: 10.1007/s11356-012-1426-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/11/2012] [Indexed: 05/06/2023]
Abstract
The cyanobacterial cytotoxin cylindrospermopsin (CYN) has become increasingly common in fresh waters worldwide. It was originally isolated from Cylindrospermopsis raciborskii in Australia; however, in European waters, its occurrence is associated with other cyanobacterial species belonging to the genera Aphanizomenon and Anabaena. Moreover, cylindrospermopsin-producing strains of widely distributed C. raciborskii have not yet been observed in European waters. The aims of this work were to assess the occurrence of CYN in lakes of western Poland and to identify the CYN producers. The ELISA tests, high-performance liquid chromatography (HPLC)-DAD, and HPLC-mass spectrometry (MS)/MS were conducted to assess the occurrence of CYN in 36 lakes. The cyrJ, cyrA, and pks genes were amplified to identify toxigenic genotypes of cyanobacteria that are capable of producing CYN. The toxicity and toxigenicity of the C. raciborskii and Aphanizomenon gracile strains isolated from the studied lakes were examined. Overall, CYN was detected in 13 lakes using HPLC-MS/MS, and its concentrations varied from trace levels to 3.0 μg L(-1). CYN was widely observed in lakes of western Poland during the whole summer under different environmental conditions. Mineral forms of nutrients and temperature were related to CYN production. The molecular studies confirmed the presence of toxigenic cyanobacterial populations in all of the samples where CYN was detected. The toxicity and toxigenicity analyses of isolated cyanobacteria strains revealed that A. gracile was the major producer of CYN.
Collapse
Affiliation(s)
- Mikołaj Kokociński
- Collegium Polonicum, Adam Mickiewicz University, Kościuszki 1, 69-100, Słubice, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The extraction and analysis of cylindrospermopsin from human serum and urine. Toxicon 2013; 70:54-61. [PMID: 23624385 DOI: 10.1016/j.toxicon.2013.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/06/2013] [Accepted: 04/11/2013] [Indexed: 11/22/2022]
|
40
|
Guzmán-Guillén R, Prieto AI, Vázquez CM, Vasconcelos V, Cameán AM. The protective role of l-carnitine against cylindrospermopsin-induced oxidative stress in tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:141-150. [PMID: 23501490 DOI: 10.1016/j.aquatox.2013.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 06/01/2023]
Abstract
Cylindrospermopsin (CYN) is one of the most important cyanotoxins in terms of both human health and environmental quality and is produced by several different species of cyanobacteria, including Aphanizomenon ovalisporum. The principal mechanisms of action of CYN involve inhibition of protein and glutathione synthesis. In addition, CYN-mediated genotoxicity results from DNA fragmentation. The results of both in vivo and in vitro studies suggest that oxidative stress also plays a significant role in CYN pathogenesis in fish. We investigated the protective effects of l-carnitine (LC) pre-treatment on A. ovalisporum-induced oxidative stress in cells containing CYN and deoxy-CYN, or pure standard CYN, in tilapia (Oreochromis niloticus) that had been acutely exposed via oral administration. Various oxidative stress markers, including lipid peroxidation (LPO), protein oxidation, DNA oxidation, and the ratio of reduced glutathione to oxidised glutathione (GSH/GSSG), and the activities of NADPH oxidase, superoxide dismutase (SOD), catalase (CAT), and gamma-glutamyl-cysteine synthetase (γ-GCS), were evaluated in the livers and kidneys of fish in the absence and presence of 400 or 880mgLC/kgfish/day during a 21 day period prior to CYN-intoxication. The results of our study demonstrated for the first time the beneficial antioxidant effects of LC dietary supplementation on oxidative stress status in fish. No pro-oxidant effects were detected at any of the LC doses assayed, suggesting that LC is a chemoprotectant that reduces hepatic and renal oxidative stress and may be effective when used for the prophylaxis and treatment of CYN-related intoxication in fish.
Collapse
Affiliation(s)
- R Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Professor García González n°2, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
41
|
Pantelić D, Svirčev Z, Simeunović J, Vidović M, Trajković I. Cyanotoxins: characteristics, production and degradation routes in drinking water treatment with reference to the situation in Serbia. CHEMOSPHERE 2013; 91:421-441. [PMID: 23391374 DOI: 10.1016/j.chemosphere.2013.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 12/26/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
Cyanobacteria are members of phytoplankton of the surface freshwaters. The accelerated eutrophication of freshwaters, especially reservoirs for drinking water, by human activity has increased the occurrence and intensity of cyanobacterial blooms. They are of concern due to their ability to produce taste and odors compounds, a wide range of toxins, which have a hepatotoxic, neurotoxic, cytotoxic and dermatotoxic behavior, being dangerous to animal and human health. Therefore, the removal of cyanobacteria, without cell lysis, and releasing of intracellular metabolites, would significantly reduce the concentration of these metabolites in the finished drinking water, as a specific aim of the water treatment processes. This review summarizes the existing data on characteristics of the cyanotoxins, their productions in environment and effective treatment processes to remove these toxins from drinking water.
Collapse
Affiliation(s)
- Dijana Pantelić
- University of Novi Sad, Department of Biology and Ecology, Faculty of Sciences, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia.
| | | | | | | | | |
Collapse
|
42
|
Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J Microbiol 2013; 51:1-10. [DOI: 10.1007/s12275-013-2549-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
|
43
|
Mohamed ZA, Al-Shehri AM. Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:2157-2166. [PMID: 22628106 DOI: 10.1007/s10661-012-2696-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 05/10/2012] [Indexed: 06/01/2023]
Abstract
This study reports the presence of the cyanobacterial toxin cylindrospermopisn (CYN) and its producer Cylindrospermopsis raciborskii for the first time in Saudi freshwater sources. C. raciborskii was found in Gazan Dam Lake water with two morphotypes (coiled and straight). The appearance and cell density of this species was significantly positively related to high temperature and high ammonium concentrations, and negatively with nitrate and phosphate concentrations in the lake. Intracellular concentrations of CYN (4-173 μg L(-1)) were associated with C. raciborskii rather than other cyanobacteria with a maximal value obtained in June 2011, coinciding with the highest bloom of this species (19 × 10(7) trichome L(-1)). CYN cell quotas (0.6-14.6 pg cell(-1)) varied significantly along the study period and correlated with most environmental factors. The results of ELISA and liquid chromatography-mass spectrometry proved that the CYN production by strains of this species was isolated from this lake during the present study, with an amount reaching 568 μg g(-1). Extracellular CYN was also detected in cell-free lake water at concentrations 0.03-23.3 μg L(-1), exceeding the drinking water guideline value of 1 μg L(-1) during the Apr-Jul period. As this lake is an important source for drinking and irrigation waters, CYN monitoring should be included in the environmental and health risk assessment plans of these water bodies.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | | |
Collapse
|
44
|
Piccini C, Aubriot L, D’Alessandro B, Martigani F, Bonilla S. Revealing Toxin Signatures in Cyanobacteria: Report of Genes Involved in Cylindrospermopsin Synthesis from Saxitoxin-Producing <i>Cylindrospermopsis raciborskii</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.33041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Vasas G, Surányi G, Bácsi I, M-Hamvas M, Máthé C, Gonda S, Borbely G. Alteration of Cylindrospermopsin Content of <i>Aphanizomenon ovalisporum</i> (Cyanobacteria, Nostocales) due to Step-Down from Combined Nitrogen to Dinitrogen. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.38075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Guzmán-Guillén R, Prieto AI, Vasconcelos VM, Cameán AM. Cyanobacterium producing cylindrospermopsin cause oxidative stress at environmentally relevant concentrations in sub-chronically exposed tilapia (Oreochromis niloticus). CHEMOSPHERE 2013; 90:1184-1194. [PMID: 23072785 DOI: 10.1016/j.chemosphere.2012.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/09/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
Cylindrospermopsin (CYN) is a potent cyanobacterial cytotoxin produced by certain freshwater cyanobacteria. Structurally, it is an alkaloid with a tricyclic guanidine moiety combined with hydroxymethyluracil. It has proved to be a potent inhibitor of protein synthesis, and to deplete hepatic glutathione. Recently, some studies have shown that CYN produces changes in some oxidative stress biomarkers in fish acutely exposed to pure CYN by oral and intraperitoneal (i.p.) routes. In the present study tilapia (Oreochromis niloticus) were exposed by immersion to lyophilized Aphanizomenon ovalisporum cells added to the aquaria using two concentration levels, 10 or 100 μg CYN L(-1), during two different exposure times: 7 and 14 d. Fish were sacrificed and liver and kidney were extracted. The oxidative status of fish was evaluated by analyzing in both organs the following biomarkers: lipid peroxidation (LPO), protein oxidation, DNA oxidation, reduced-oxidized glutathione ratio (GSH/GSSG), and changes in the activity of Glutathione-S-transferase (GST), Glutathione Peroxidase (GPx), Superoxide dismutase (SOD), Catalase (CAT), and γ-Glutamyl-cysteine synthetase (GCS). In general, major changes were observed in tilapia treated with 100 μg CYN L(-1) after 14 d of exposure. However, some endpoints were altered at the lowest concentration assayed only after 7d of exposure, such as DNA oxidation and γ-GCS in kidney, and CAT and GSH/GSSG decrease in the liver and kidney. The kidney was the most affected organ. These findings confirm that the oxidative stress play a role in the pathogenicity induced by CYN in this fish species, and the results obtained could be useful for future ecotoxicological risks assessment studies, for the protection of fish and aquatic ecosystems. To our knowledge this is the first study dealing with the oxidative stress changes induced by cyanobacterial cells containing CYN and its derivative deoxy-CYN on fish exposed sub-chronically under laboratory conditions.
Collapse
|
47
|
Moreira C, Azevedo J, Antunes A, Vasconcelos V. Cylindrospermopsin: occurrence, methods of detection and toxicology. J Appl Microbiol 2012; 114:605-20. [DOI: 10.1111/jam.12048] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/27/2012] [Accepted: 10/17/2012] [Indexed: 11/27/2022]
Affiliation(s)
- C. Moreira
- CIMAR/CIIMAR/Laboratory of Ecotoxicology, Genomics and Evolution; Porto University; Porto Portugal
- Departamento de Biologia, Faculdade de Ciências; Universidade do Porto; Porto Portugal
| | - J. Azevedo
- CIMAR/CIIMAR/Laboratory of Ecotoxicology, Genomics and Evolution; Porto University; Porto Portugal
- Escola Superior de Tecnologia da Saúde do Porto; Vila Nova de Gaia Portugal
| | - A. Antunes
- CIMAR/CIIMAR/Laboratory of Ecotoxicology, Genomics and Evolution; Porto University; Porto Portugal
| | - V. Vasconcelos
- CIMAR/CIIMAR/Laboratory of Ecotoxicology, Genomics and Evolution; Porto University; Porto Portugal
- Departamento de Biologia, Faculdade de Ciências; Universidade do Porto; Porto Portugal
| |
Collapse
|
48
|
Poniedziałek B, Rzymski P, Kokociński M. Cylindrospermopsin: water-linked potential threat to human health in Europe. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:651-60. [PMID: 22986102 DOI: 10.1016/j.etap.2012.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 08/02/2012] [Accepted: 08/22/2012] [Indexed: 05/11/2023]
Abstract
Cylindrospermopsin (CYN) is a secondary metabolite produced by several cyanobacteria species. Its potential effect on human health includes liver, kidneys, lungs, spleen and intestine injuries. CYN can be cyto- and genotoxic to a variety of cell types. Occurrence and expansion of species able to synthesize CYN in European water bodies has been recently reported and raised awareness of potential harm to human health. Therefore, surface water of different human use should be monitored for the presence of toxic species of blue-green algae. This paper aims to describe the distribution of CYN producers in Europe and the potential effects of the toxin on human health according to the current state of knowledge.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | | | | |
Collapse
|
49
|
Biodegradation of cylindrospermopsin toxin by microcystin-degrading bacteria isolated from cyanobacterial blooms. Toxicon 2012; 60:1390-5. [PMID: 23085421 DOI: 10.1016/j.toxicon.2012.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/10/2012] [Accepted: 10/10/2012] [Indexed: 11/21/2022]
Abstract
Cylindrospermopsin (CYN) is highly water soluble and stable cyanotoxin which can persist in water sources and pose health hazards to human, animals and plants. Consequently, there is a need to fully understand the fate of CYN in the aquatic environment, in particular, its biodegradation by endemic organisms. Although there is evidence of CYN degradation by microbial population, bacterial strains responsible for the toxin degradation are not yet identified. This study reports for the first time CYN degradation by Bacillus strain (AMRI-03) isolated from cyanobacterial blooms. In degradation batch experiment, the strain grew well in the presence of CYN without showing any lag period, and this growth increased with the initial CYN concentration. CYN degradation occurred rapidly, and the complete degradation was dependent on the initial CYN concentration. It occurred after 6 days at the highest concentration (300 μg L(-1)) compared to 7 and 8 days at lower concentrations (10 & 100 μg L(-1)). Also, the degradation rate correlated positively with the initial CYN concentration with maximum value (50 μg L(-1) day(-1)) obtained at the highest CYN concentration. Furthermore, the biodegradation rate of CYN by this strain depended remarkably on temperature and pH. The highest biodegradation rates were obtained at 25 and 30 °C, and at pH 7 and pH 8. Taken that such microcystin-degrading strain can also degrade CYN, bacterial strains reported worldwide as microcystin degraders could be tested for their capability of CYN degradation.
Collapse
|
50
|
Development and optimization of a method for the determination of Cylindrospermopsin from strains of Aphanizomenon cultures: Intra-laboratory assessment of its accuracy by using validation standards. Talanta 2012; 100:356-63. [DOI: 10.1016/j.talanta.2012.07.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 11/18/2022]
|