1
|
Tasima LJ, Lima EOVD, Hatakeyama DM, Vidueiros JP, Stuginski DR, Grego KF, Tanaka-Azevedo AM. Seasonality in Crotalus durissus venom. Toxicon 2024; 244:107748. [PMID: 38710309 DOI: 10.1016/j.toxicon.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Rattlesnakes belonging to the genus Crotalus are widely distributed throughout the Americas. In Brazil, symptoms commonly associated with envenomation by Crotalus durissus collilineatus include myalgia, rhabdomyolysis, renal failure, neurotoxicity, and progressive paralysis, which are related to the protein composition of this venom. Snake venom composition exhibits compositional variability that may reflect geographic distribution, age, captivity, diet, sex, and even individual genetics. Although seasonality is also considered a possible source of variation, there are few reports of such variability in snake venom. In this work, venoms of the same eight C. durissus collilineatus were extracted every three months for two years, to analyze seasonal changes in composition and activities. To this end, venom composition was analyzed by protein quantification, SDS-PAGE, and HPLC, and the LAAO, PLA2 and coagulant activities were measured. Venoms of these C. d. collilineatus showed minor seasonal differences in venom activities and no composition differences were found. LAAO and coagulant activities displayed a pattern of seasonal change, while PLA2 activity seemed to have no seasonality tendency. Also, there are sexual differences, in which males seem to be more stable than females in regard to some activities. Individual variability occurs even in seasonal variation of activities, highlighting the importance of controlling circumstances of venom extraction before comparing results between groups of snakes.
Collapse
Affiliation(s)
- Lidia Jorge Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Eduardo Oliveira Venâncio de Lima
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Daniela Miki Hatakeyama
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | | | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
2
|
Yamamoto-Suzuki Y, Sakurai Y, Fujimura Y, Matsumoto M, Hamako J, Kokubo T, Kitagawa H, Kawsar SMA, Fujii Y, Ozeki Y, Matsushita F, Matsui T. Identification and Recombinant Analysis of Botrocetin-2, a Snake Venom Cofactor for von Willebrand Factor-Induced Platelet Agglutination. Biochemistry 2012; 51:5329-38. [DOI: 10.1021/bi300442c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukiyo Yamamoto-Suzuki
- Department
of Biology, Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Aichi
470-1192, Japan
| | - Yoshihiko Sakurai
- Department
of Pediatrics, Nara Medical University,
Kashihara, Nara 634-8522, Japan
| | - Yoshihiro Fujimura
- Department of Transfusion Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Masanori Matsumoto
- Department of Transfusion Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Jiharu Hamako
- Department of Physiology, Faculty of Medical Management and Information
Science, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Tetsuro Kokubo
- Division of Molecular and Cellular Biology, Science of Supramolecular
Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa 230-0045,
Japan
| | - Hitoshi Kitagawa
- Department of Veterinary
Internal Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Protein
Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong-4331, Bangladesh
| | - Yuki Fujii
- Section of Functional Morphology,
Faculty of Pharmaceutical and Sciences, Nagasaki International University, Sasebo, Nagasaki, 859-3298, Japan
| | - Yasuhiro Ozeki
- Laboratory of Marine Biochemistry,
Department of Environmental Biosciences, International Graduate School
of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Fumio Matsushita
- Department
of Biology, Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Aichi
470-1192, Japan
| | - Taei Matsui
- Department
of Biology, Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Aichi
470-1192, Japan
| |
Collapse
|
3
|
Ciscotto PHC, Rates B, Silva DAF, Richardson M, Silva LP, Andrade H, Donato MF, Cotta GA, Maria WS, Rodrigues RJ, Sanchez E, De Lima ME, Pimenta AMC. Venomic analysis and evaluation of antivenom cross-reactivity of South American Micrurus species. J Proteomics 2011; 74:1810-25. [PMID: 21803179 DOI: 10.1016/j.jprot.2011.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 11/28/2022]
Abstract
Coral snakes from Micrurus genus are the main representatives of the Elapidae family in South America. However, biochemical and pharmacological features regarding their venom constituents remain poorly investigated. Here, venomic analyses were carried out aiming at a deeper understanding on the composition of M. frontalis, M. ibiboboca, and M. lemniscatus venoms. In the three venoms investigated, proteins ranging from 6 to 8 kDa (3FTx) and 12 to 14 kDa (PLA(2)) were found to be the most abundant. Also, the N-terminal sequences of four new proteins, purified from the M. lemniscatus venom, similar to 3FTx, PLA(2) and Kunitz-type protease inhibitor from other Micrurus and elapid venoms are reported. Cross-reactivity among different Micrurus venoms and homologous or heterologous antivenoms was carried out by means of 2D-electrophoresis and immunoblotting. As, expected, the heterologous anti-Elapid venom displayed the highest degree of cross-reactivity. Conversely, anti-M. corallinus reacted weakly against the tested venoms. In gel digestions, followed by mass spectrometry sequencing and similarity searching, revealed the most immunogenic protein families as similar to short and long neurotoxins, weak neurotoxins, PLA(2), β-bungarotoxin, venom protein E2, frontoxin III, LAO and C-type lectin. The implications of our results for the production of Micrurus antivenoms are discussed.
Collapse
Affiliation(s)
- Paula H C Ciscotto
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Luna MSA, Hortencio TMA, Ferreira ZS, Yamanouye N. Sympathetic outflow activates the venom gland of the snakeBothrops jararacaby regulating the activation of transcription factors and the synthesis of venom gland proteins. J Exp Biol 2009; 212:1535-43. [DOI: 10.1242/jeb.030197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland,the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on bothα 1- and β-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NFκB and AP-1 in the venom gland. In dispersed secretory cells,noradrenaline activated both NFκB and AP-1. Activation of NFκB and AP-1 depended on phospholipase C and protein kinase A. Activation of NFκB also depended on protein kinase C. Isoprenaline activated both NFκB and AP-1, and phenylephrine activated NFκB and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change,and the administration of α1- and β-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with α1- or β-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.
Collapse
Affiliation(s)
- Milene S. A. Luna
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil 1500,05503-900, São Paulo, Brazil
| | - Thiago M. A. Hortencio
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil 1500,05503-900, São Paulo, Brazil
| | - Zulma S. Ferreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 05508-900, São Paulo, Brazil
| | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil 1500,05503-900, São Paulo, Brazil
| |
Collapse
|
5
|
Abdel-Rahman MA, Omran MAA, Abdel-Nabi IM, Ueda H, McVean A. Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes. Toxicon 2008; 53:349-59. [PMID: 19103215 DOI: 10.1016/j.toxicon.2008.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/26/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
The present study was conducted to explore the following hypotheses: (i) do scorpions (Scorpio maurus palmatus) from different biotopes exhibit intraspecific diversity in their venom? (ii) if so, is this variation associated with ecological or genetic factors, geographical distance, and/or multiple interrelated parameters? To address these questions, scorpions were collected from four geographically isolated localities in Egypt. Three of these locations are from mutually isolated pockets in the arid biotope of Southern Sinai (Wadi Sahab, El-Agramia and Rahaba plains). The fourth population was sampled from the semiarid biotope of Western Mediterranean Costal Desert (WMCD). Using reducing gel electrophoresis (SDS-PAGE), we have shown biotope-specific variation in the expression of peptides from scorpions collected from these distinct areas. WMCD sourced venom samples contain higher molecular weight protein components (219, 200, 170, 139, 116 kDa) than Southern Sinai scorpion venom samples. The Southern Sinai venom is characterized by the presence of 11 protein bands (93-0.58 kDa) that are not mirrored in the individual venom samples of WMCD. Bands of 33 and 3.4 kDa were characteristics of all individual venom samples of the scorpion populations. Even within Southern Sinai area, Sahab venom contains five fractions that are not detected in both El-Agramia and Rahaba venom samples. Moreover, male and female venom analysis revealed some sex-related proteomic similarities and differences between scorpion populations. Female venom appears to be more complicated than the male venom. Female venom samples showed bands of 219, 200, 77.5, 55.5, 45, 39, 37, 24 and 16 kDa which were absent in the male venom. The random amplified polymorphic DNA (RAPD) technique was used to estimate the genetic distance between the four scorpion populations. The RAPD data confirmed the genetic diversity at molecular level among the sampled populations. More than 77 RAPD bands (ranging in size from 125 to 15,000 bp) were defined from the four scorpion populations. Of the 77 bands, 57 (76.2%) were polymorphic and 20 were monomorphic among the populations. The similarity coefficient data of venom and DNA were used to construct separate dendrograms, which grouped together the Southern Sinai populations and these were some distance away from the WMCD population. Taken together, we suspect that a combination of local environmental conditions, geographical separation and genetic separation may play a major role in the intraspecific variation of venom of S. m. palmatus.
Collapse
|
6
|
Dossey AT, Walse SS, Rocca JR, Edison AS. Single insect NMR: A new tool to probe chemical biodiversity. ACS Chem Biol 2006; 1:511-4. [PMID: 17168538 DOI: 10.1021/cb600318u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of analytical limitations, multiple animals or plants are typically required to identify natural products. Using a unique 1-mm high-temperature superconducting NMR probe, we directly examined the chemical composition of defensive secretions from walking stick insects. Individual milkings were dissolved in D2O without purification and examined by NMR within 10 min of secretion. We found that Anisomorpha buprestoides secretes similar quantities of glucose and mixtures of monoterpene dialdehydes that are stereoisomers of dolichodial. Different individual animals produce different stereoisomeric mixtures, the ratio of which varies between individual animals raised in the same container and fed the same food. Another walking stick, Peruphasma schultei, also secretes glucose and a single, unique stereoisomer that we are naming "peruphasmal". These observations suggest a previously unrecognized significance of aqueous components in walking stick defensive sprays. Single-insect variability of venom demonstrates the potential importance of chemical biodiversity at the level of individual animals.
Collapse
|
7
|
Abstract
Over the last several decades, research on snake venom toxins has provided not only new tools to decipher molecular details of various physiological processes, but also inspiration to design and develop a number of therapeutic agents. Blood circulation, particularly thrombosis and haemostasis, is one of the major targets of several snake venom proteins. Among them, anticoagulant proteins have contributed to our understanding of molecular mechanisms of blood coagulation and have provided potential new leads for the development of drugs to treat or to prevent unwanted clot formation. Some of these anticoagulants exhibit various enzymatic activities whereas others do not. They interfere in normal blood coagulation by different mechanisms. Although significant progress has been made in understanding the structure-function relationships and the mechanisms of some of these anticoagulants, there are still a number of questions to be answered as more new anticoagulants are being discovered. Such studies contribute to our fight against unwanted clot formation, which leads to death and debilitation in cardiac arrest and stroke in patients with cardiovascular and cerebrovascular diseases, arteriosclerosis and hypertension. This review describes the details of the structure, mechanism and structure-function relationships of anticoagulant proteins from snake venoms.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore.
| |
Collapse
|
8
|
Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR. Intraspecific variation of venom injected by fish-hunting Conus snails. ACTA ACUST UNITED AC 2006; 208:2873-83. [PMID: 16043592 DOI: 10.1242/jeb.01713] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Venom peptides from two species of fish-hunting cone snails (Conus striatus and Conus catus) were characterized using microbore liquid chromatography coupled with matrix-assisted laser desorption/ionization-time of flight-mass spectrometry and electrospray ionization-ion trap-mass spectrometry. Both crude venom isolated from the venom duct and injected venom obtained by milking were studied. Based on analysis of injected venom samples from individual snails, significant intraspecific variation (i.e. between individuals) in the peptide complement is observed. The mixture of peptides in injected venom is simpler than that in the crude duct venom from the same snail, and the composition of crude venom is more consistent from snail to snail. While there is animal-to-animal variation in the peptides present in the injected venom, the composition of any individual's injected venom remains relatively constant over time in captivity. Most of the Conus striatus individuals tested injected predominantly a combination of two neuroexcitatory peptides (s4a and s4b), while a few individuals had unique injected-venom profiles consisting of a combination of peptides, including several previously characterized from the venom duct of this species. Seven novel peptides were also putatively identified based on matches of their empirically derived masses to those predicted by published cDNA sequences. Profiling injected venom of Conus catus individuals using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry demonstrates that intraspecific variation in the mixture of peptides extends to other species of piscivorous cone snails. The results of this study imply that novel regulatory mechanisms exist to select specific venom peptides for injection into prey.
Collapse
Affiliation(s)
- Jennifer A Jakubowski
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
9
|
de Lima DC, Alvarez Abreu P, de Freitas CC, Santos DO, Borges RO, dos Santos TC, Mendes Cabral L, Rodrigues CR, Castro HC. Snake Venom: Any Clue for Antibiotics and CAM? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2005; 2:39-47. [PMID: 15841277 PMCID: PMC1062156 DOI: 10.1093/ecam/neh063] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/30/2004] [Accepted: 01/10/2005] [Indexed: 12/03/2022]
Abstract
Lately several naturally occurring peptides presenting antimicrobial activity have been described in the literature. However, snake venoms, which are an enormous source of peptides, have not been fully explored for searching such molecules. The aim of this work is to review the basis of antimicrobial mechanisms revealing snake venom as a feasible source for searching an antibiotic prototype. Therefore, it includes (i) a description of the constituents of the snake venoms involved in their main biological effects during the envenomation process; (ii) examples of snake venom molecules of commercial use; (iii) mechanisms of action of known antibiotics; and (iv) how the microorganisms can be resistant to antibiotics. This review also shows that snake venoms are not totally unexplored sources for antibiotics and complementary and alternative medicine (CAM).
Collapse
Affiliation(s)
- Deivy Clementino de Lima
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | - Cícero Carlos de Freitas
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | - Dilvani Oliveira Santos
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | - Rodrigo Oliveira Borges
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| | | | - Lúcio Mendes Cabral
- Instituto Nacional de Controle de Qualidade em SaúdeFundação Oswaldo Cruz, RJ, Brazil
| | - Carlos R. Rodrigues
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de JaneiroCEP 21941-590, Rio de Janeiro, RJ, Brazil
| | - Helena Carla Castro
- Laboratório de Bioquímica e Modelagem Molecular (LaBioMol), Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal FluminenseCEP 24001-970, Niterói, RJ, Brazil
| |
Collapse
|
10
|
Escoubas P, Corzo G, Whiteley BJ, Célérier ML, Nakajima T. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high-performance liquid chromatography study of quantitative and qualitative variation in tarantula spider venoms. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:403-413. [PMID: 11857724 DOI: 10.1002/rcm.595] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Animal venoms are important sources of novel pharmacological tools, useful in biochemical characterization of their receptors. Venom quality control, batch-to-batch homogeneity and high reproducibility of venom fractionation and toxin purification are crucial issues for biochemical and pharmacological studies. To address these issues, a study of the variability of tarantula spider venom samples was undertaken. Venom profiles of samples collected from individuals of different age and sex, and from sibling spiders of the same species, were generated by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and analyzed to assess venom variability and method accuracy. Sex-linked venom variation was studied on eight species. Clear qualitative differences were observed for six out of eight species, as well as quantitative differences. Age-related variation studied in Poecilotheria rufilata showed essentially age-related quantitative differences between adults of both sexes and immature juveniles. The venoms of nine siblings and three wild-collected Pterinochilus murinus were studied for individual variation, showing only very minor quantitative differences. On the same samples, the quality of MALDI-TOFMS venom fingerprinting was demonstrated to be highly reproducible. Our results show that tarantula venom peptide fingerprinting is a highly reliable identification method, that pooled batches of venom from several animals can be used for venom purification, that venom composition does not appear to be qualitatively related to ontogenesis in the spiders studied, and that qualitative sex-linked variation occurs across most species and may be important in activity studies.
Collapse
Affiliation(s)
- Pierre Escoubas
- Suntory Institute for Bioorganic Research, Mishima-Gun, Shimamoto-Cho, Wakayamadai 1-1-1, Osaka 618-8503, Japan.
| | | | | | | | | |
Collapse
|
11
|
Ribeiro LA, Jorge MT, Lebrão ML. Prognostic factors for local necrosis in Bothrops jararaca (Brazilian pit viper) bites. Trans R Soc Trop Med Hyg 2001; 95:630-4. [PMID: 11816436 DOI: 10.1016/s0035-9203(01)90101-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prognostic factors related to envenoming are not very well known. This study aims to identify prognostic factors for necrosis in envenoming by Bothrops jararaca. We analysed 779 medical records of patients bitten by B. jararaca and treated at the Hospital Vital Brazil, Butantan Institute, São Paulo, Brazil, between 1982 and 1990: 111 cases with necrosis were compared with the remaining cases. The length of the snake, the bite site, the month of the accident, pain, oedema, ecchymosis, blisters, systemic bleeding, shock, and the use of tourniquet were statistically associated with the presence of necrosis (P < 0.05) in the univariate analysis. The size of the snake, the bite site (leg and finger), the sex of the patient, the month of the accident, systemic bleeding, and the use of tourniquet were independent prognostic factors within the variables tested in the multivariate analysis. The size of the snake was the most important independent prognostic factor related to the presence of necrosis.
Collapse
Affiliation(s)
- L A Ribeiro
- Departamento de Clínica Médica da Faculdade de Medicina da Universidade Federal de Uberlândia, Av. Pará 1720 Uberlândia, Minas Gerais, CEP 38400-902, Brazil.
| | | | | |
Collapse
|
12
|
Singh SB, Armugam A, Kini RM, Jeyaseelan K. Phospholipase A(2) with platelet aggregation inhibitor activity from Austrelaps superbus venom: protein purification and cDNA cloning. Arch Biochem Biophys 2000; 375:289-303. [PMID: 10700385 DOI: 10.1006/abbi.1999.1672] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four phospholipase A(2) (PLA(2)) enzymes (Superbins a, b, c, and d) with varying platelet aggregation inhibitor activities have been purified from Austrelaps superbus by a combination of gel filtration, ion-exchange, and reversed-phase high-pressure liquid chromatography. Purity and homogeneity of the superbins have been confirmed by high-performance capillary zone electrophoresis and mass spectrometry. The electron spray ionization mass spectrometry data showed that their molecular masses range from 13,140 to 13,236 Da. Each of the proteins has been found to be basic and exhibit varying degrees of PLA(2) activity. They also displayed different platelet aggregation inhibitory activities. Superbin a was found to possess the most potent inhibitory activity with an IC(50) of 9.0 nM, whereas Superbin d was found to be least effective with an IC(50) of 3.0 microM. Superbins b and c were moderately effective with IC(50) values of 0.05 and 0.5 microM, respectively. The amino-terminal sequencing confirmed the identity of these superbins. cDNA cloning resulted in the identification of 17 more PLA(2) isoforms in A. superbus venom. It has also provided complete information on the precursor PLA(2). The precursor PLA(2) contained a 27-amino-acid signal peptide and 117- to 125-amino-acid PLA(2) (molecular mass ranging from 13,000 to 14,000 Da). Two of these PLA(2) enzymes resembled more closely (87%) Superbin a in structure. Two unique PLA(2) enzymes containing an extra pancreatic loop also have been identified among the isoforms.
Collapse
Affiliation(s)
- S B Singh
- Department of Biochemistry, National University of Singapore, 10 Medical Drive, Singapore, 119260
| | | | | | | |
Collapse
|
13
|
Monteiro RQ, Dutra DL, Machado OL, Carlini CR, Guimarães JA, Bon C, Zingali RB. Bothrops jararaca snakes produce several bothrojaracin isoforms following an individual pattern. Comp Biochem Physiol B Biochem Mol Biol 1998; 120:791-8. [PMID: 9854824 DOI: 10.1016/s0305-0491(98)10070-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
More than one isoform of bothrojaracin (BJC), a potent and specific thrombin inhibitor isolated from Bothrops jararaca venom, has been found in individual venoms collected from adult snakes. Variations in snake venom composition have previously been associated with factors such as age, sex, geographic origin, season of the year and diet. In order to obtain further information concerning individual patterns of expression of BJC isoforms, we have analyzed five individual Bothrops jararaca snake venoms collected at the same time from adult female snakes from the same geographic region. As expected, crude venoms showed a similar migration pattern on SDS-PAGE. BJC was purified using a procedure which includes an affinity chromatography step (PPACK-thrombin Sepharose). A slight variation in the amount of BJC obtained from individual venom samples was noticed. Inhibition of thrombin-induced platelet aggregation as well as migration pattern on SDS-PAGE (under reducing and non-reducing conditions) and isoelectric focusing varied considerably among BJC samples from the five snakes. The amino-terminal sequences (residues 1-34) of individual BJC samples were compared with the sequence deduced from isolated cDNAs encoding alpha and beta chains of BJC. A high degree of homology was detected, although some residues differed from one sample to other. Altogether, data confirmed the heterogeneity found for BJC purified from individual snakes. Thus, the results indicate that: (1) individual specimens of Bothrops jararaca have different patterns of BJC isoform expression; and (2) it seems that genetic factors, at least in part, determine the variability found in BJC production.
Collapse
Affiliation(s)
- R Q Monteiro
- Departamento de Bioquímica Médica, ICB-CCS-UFRJ, Cidade Universitária, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|