1
|
Saggiomo SL, Peigneur S, Tytgat J, Daly NL, Wilson DT. Interrogating stonefish venom: small molecules present in envenomation caused by Synanceia spp. FEBS Open Bio 2024. [PMID: 39563477 DOI: 10.1002/2211-5463.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
The stonefish Synanceia verrucosa and Synanceia horrida are arguably the most venomous fish species on earth and the culprits of severe stings in humans globally. Investigation into the venoms of these two species has mainly focused on protein composition, in an attempt to identify the most medically relevant proteins, such as the lethal verrucotoxin and stonustoxin components. This study, however, focused on medically relevant small molecules, and through nuclear magnetic resonance, mass spectroscopy, and fractionation techniques, we discovered and identified the presence of three molecules new to stonefish venom, namely γ-aminobutyric acid (GABA), choline and 0-acetylcholine, and provide the first report of GABA identified in a fish venom. Analysis of the crude venoms on human nicotinic acetylcholine receptors (nAChRs) and a GABAA receptor (GABAAR) showed S. horrida venom could activate neuronal (α7) and adult muscle-type (α1β1δε) nAChRs, while both crude S. horrida and S. verrucosa venoms activated the GABAAR (α1β2γ2). Cytotoxicity studies in immunologically relevant cells (human PBMCs) indicated the venoms possess cell-specific cytotoxicity and analysis of the venom fractions on Na+ channel subtypes involved in pain showed no activity. This work highlights the need to further investigate the small molecules found in venoms to help understand the mechanistic pathways of clinical symptoms for improved treatment of sting victims, in addition to the discovery of potential drug leads.
Collapse
Affiliation(s)
- Silvia Luiza Saggiomo
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Steve Peigneur
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Belgium
| | - Norelle L Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - David Thomas Wilson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
2
|
Geng XY, Wang MK, Chen JH, Xiao L, Yang JS. Marine biological injuries and their medical management: A narrative review. World J Biol Chem 2023; 14:1-12. [PMID: 36741876 PMCID: PMC9896478 DOI: 10.4331/wjbc.v14.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The marine environment can be extremely dangerous, and the harm caused by marine organisms when they contact the human body can be especially harmful, even deadly. Contact includes stings, bites, wounds, and consumption as food. In this article, the characteristics of the common marine biological injuries are summarized, the major marine organisms causing damage in China’s marine waters are described, and injury prevention and treatment methods are discussed.
Collapse
Affiliation(s)
- Xiao-Yu Geng
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ming-Ke Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Jin-Hong Chen
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Ji-Shun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
3
|
Saggiomo SL, Firth C, Wilson DT, Seymour J, Miles JJ, Wong Y. The Geographic Distribution, Venom Components, Pathology and Treatments of Stonefish ( Synanceia spp.) Venom. Mar Drugs 2021; 19:md19060302. [PMID: 34073964 PMCID: PMC8225006 DOI: 10.3390/md19060302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022] Open
Abstract
Stonefish are regarded as one of the most venomous fish in the world. Research on stonefish venom has chiefly focused on the in vitro and in vivo neurological, cardiovascular, cytotoxic and nociceptive effects of the venom. The last literature review on stonefish venom was published over a decade ago, and much has changed in the field since. In this review, we have generated a global map of the current distribution of all stonefish (Synanceia) species, presented a table of clinical case reports and provided up-to-date information about the development of polyspecific stonefish antivenom. We have also presented an overview of recent advancements in the biomolecular composition of stonefish venom, including the analysis of transcriptomic and proteomic data from Synanceia horrida venom gland. Moreover, this review highlights the need for further research on the composition and properties of stonefish venom, which may reveal novel molecules for drug discovery, development or other novel physiological uses.
Collapse
Affiliation(s)
- Silvia L. Saggiomo
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Correspondence:
| | - Cadhla Firth
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - David T. Wilson
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns 4878, Australia; (C.F.); (D.T.W.); (J.S.); (J.J.M.); (Y.W.)
- Centre for Molecular Therapeutics, James Cook University, Cairns 4878, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns 4878, Australia
| |
Collapse
|
4
|
Harris RJ, Youngman NJ, Chan W, Bosmans F, Cheney KL, Fry BG. Getting stoned: Characterisation of the coagulotoxic and neurotoxic effects of reef stonefish (Synanceia verrucosa) venom. Toxicol Lett 2021; 346:16-22. [PMID: 33878385 DOI: 10.1016/j.toxlet.2021.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023]
Abstract
The reef stonefish (Synanceia verrucosa) is a venomous fish which causes excruciatingly painful envenomations. While some research on the pathophysiology and functions of the venom have been conducted, there are still some gaps in the understanding of the venom effects due to the extreme lability of fish venom toxins and the lack of available testing platforms. Here we set out to assess new functions of the venom whilst also attempting to address some unclear pathophysiological effects from previous literature. Utilising a biolayer interferometry assay, our results highlight that the venom binds to the orthosteric site of the α-1 nicotinic acetylcholine receptor as well as the domain IV of voltage-gated Ca2+ (CaV1.2) channel mimotopes. Both these results add some clarity to the previously ambiguous literature. We further assessed the coagulotoxic effects of the venom using thromboelastography and Stago STA-R Max coagulation analyser assays. We reveal that the venom produced anticoagulant activity and significantly delayed time until clot formation of recalcified human plasma which is likely through the degradation of phospholipids. There was a difference between fresh and lyophilised venom activity toward the nicotinic acetylcholine receptor mimotopes and coagulation assays, whilst no difference was observed in the activity toward the domain IV of CaV1.2 mimotopes. This research adds further insights into the neglected area of fish venom whilst also highlighting the extreme labile nature of fish venom toxins.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Nicholas J Youngman
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Weili Chan
- Visual Ecology Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Karen L Cheney
- Visual Ecology Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Bryan G Fry
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
5
|
Maillaud C, Hoang-Oppermann T, Hoang-Oppermann V, Rigot H, Girardot S, Nour M. Is stonefish Synanceia verrucosa envenomation potentially lethal? Toxicon 2020; 184:78-82. [PMID: 32473254 DOI: 10.1016/j.toxicon.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
Stonefish sting lethality in man has been scarcely documented since the middle of the 20th century. We report three clinical cases, including one fatality, emphasizing the cardiovascular toxicity of the Synanceia verrucosa venom, and its potentially lethal effects. All clinical data have been recently collected in New Caledonia and French Polynesia.
Collapse
Affiliation(s)
- C Maillaud
- ISEA EA 7484, University of New Caledonia, P.O. Box R4, 98851, Noumea Cedex, New Caledonia.
| | - T Hoang-Oppermann
- Hospital Centre French Polynesia, P. O. Box 1640, 98713, Papeete, Tahiti, French Polynesia
| | - V Hoang-Oppermann
- Hospital Centre French Polynesia, P. O. Box 1640, 98713, Papeete, Tahiti, French Polynesia
| | - H Rigot
- Vaitape Medical Centre, 98730, Bora Bora, French Polynesia
| | - S Girardot
- Hospital Centre French Polynesia, P. O. Box 1640, 98713, Papeete, Tahiti, French Polynesia
| | - M Nour
- ISEA EA 7484, University of New Caledonia, P.O. Box R4, 98851, Noumea Cedex, New Caledonia
| |
Collapse
|
6
|
Khalil AM, Wahsha MA, Abu Khadra KM, Khalaf MA, Al-Najjar TH. Biochemical and histopathological effects of the stonefish (Synanceia verrucosa) venom in rats. Toxicon 2017; 142:45-51. [PMID: 29294314 DOI: 10.1016/j.toxicon.2017.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/30/2017] [Indexed: 01/22/2023]
Abstract
The Reef Stonefish (Synanceia verrucosa) is one of the most dangerous venomous fish known, and has caused occasional human fatalities. The present study was designed to examine some of the pathological effects of the venom from this fish in Sprague Dawley rats. Crude venom was extracted from venom glands of the dorsal spines of stonefish specimens collected from coral reefs in the Gulf of Aqaba (in the northeastern branch of the Red Sea). The rats were given intramuscular injections of the venom and acute toxicity and effect on selected serum marker enzymes as well as normal architecture of vital organs were evaluated. The rat 24 h LD50 was 38 μg/kg body weight. The serum biochemical markers; alanine transaminase (ALT), lactate dehydrogenase (LDH) and creatine kinase (CK) increased after 6 h of administration of a sub lethal dose of the venom and remained significantly raised at 24 h. Amylase levels also significantly increased after venom injection. The venom caused histological damage manifested as an interstitial hemorrhage, inflammatory cell infiltration, and necrosis. The demonstrated rises in the levels of different critical biochemical parameters in the serum may have led to the observed abnormal morphological changes in these organs. These results may account for some of the clinical manifestations observed in victims of stonefish envenomation. Thus, the presented data provide further in vivo evidence of the stonefish toxic effects that may threaten human life and call for the need for special measures to be considered.
Collapse
Affiliation(s)
- Ahmad M Khalil
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan.
| | - Mohammad A Wahsha
- Marine Science Station, The University of Jordan and Yarmouk University, Jordan; Department of Marine Biology, The University of Jordan, Aqaba branch, Jordan
| | | | - Maroof A Khalaf
- Marine Science Station, The University of Jordan and Yarmouk University, Jordan; Department of Marine Biology, The University of Jordan, Aqaba branch, Jordan
| | - Tariq H Al-Najjar
- Marine Science Station, The University of Jordan and Yarmouk University, Jordan; Department of Marine Biology, The University of Jordan, Aqaba branch, Jordan
| |
Collapse
|
7
|
Persian Gulf Stonefish (Pseudosynanceia melanostigma) Venom Fractions Selectively Induce Apoptosis on Cancerous Hepatocytes from Hepatocellular Carcinoma Through ROS-Mediated Mitochondrial Pathway. HEPATITIS MONTHLY 2017. [DOI: 10.5812/hepatmon.11842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
8
|
The Cardiovascular and Neurotoxic Effects of the Venoms of Six Bony and Cartilaginous Fish Species. Toxins (Basel) 2017; 9:toxins9020067. [PMID: 28212333 PMCID: PMC5331446 DOI: 10.3390/toxins9020067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/03/2017] [Indexed: 01/22/2023] Open
Abstract
Fish venoms are often poorly studied, in part due to the difficulty in obtaining, extracting, and storing them. In this study, we characterize the cardiovascular and neurotoxic effects of the venoms from the following six species of fish: the cartilaginous stingrays Neotrygon kuhlii and Himantura toshi, and the bony fish Platycephalus fucus, Girella tricuspidata, Mugil cephalus, and Dentex tumifrons. All venoms (10–100 µg/kg, i.v.), except G. tricuspidata and P. fuscus, induced a biphasic response on mean arterial pressure (MAP) in the anesthetised rat. P. fucus venom exhibited a hypotensive response, while venom from G. tricuspidata displayed a single depressor response. All venoms induced cardiovascular collapse at 200 µg/kg, i.v. The in vitro neurotoxic effects of venom were examined using the chick biventer cervicis nerve-muscle (CBCNM) preparation. N. kuhlii, H. toshi, and P. fucus venoms caused concentration-dependent inhibition of indirect twitches in the CBCNM preparation. These three venoms also inhibited responses to exogenous acetylcholine (ACh) and carbachol (CCh), but not potassium chloride (KCl), indicating a post-synaptic mode of action. Venom from G. tricuspidata, M. cephalus, and D. tumifrons had no significant effect on indirect twitches or agonist responses in the CBCNM. Our results demonstrate that envenoming by these species of fish may result in moderate cardiovascular and/or neurotoxic effects. Future studies aimed at identifying the molecules responsible for these effects could uncover potentially novel lead compounds for future pharmaceuticals, in addition to generating new knowledge about the evolutionary relationships between venomous animals.
Collapse
|
9
|
Campos FV, Menezes TN, Malacarne PF, Costa FLS, Naumann GB, Gomes HL, Figueiredo SG. A review on the Scorpaena plumieri fish venom and its bioactive compounds. J Venom Anim Toxins Incl Trop Dis 2016; 22:35. [PMID: 28031733 PMCID: PMC5175314 DOI: 10.1186/s40409-016-0090-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/30/2016] [Indexed: 01/22/2023] Open
Abstract
The most poisonous fish species found along the Brazilian coast is the spotted scorpionfish Scorpaena plumieri. Though hardly ever life-threatening to humans, envenomation by S. plumieri can be quite hazardous, provoking extreme pain and imposing significant socioeconomic costs, as the victims may require days to weeks to recover from their injuries. In this review we will walk the reader through the biological features that distinguish this species as well as the current epidemiological knowledge related to the envenomation and its consequences. But above all, we will discuss the challenges involved in the biochemical characterization of the S. plumieri venom and its compounds, focusing then on the successful isolation and pharmacological analysis of some of the bioactive molecules responsible for the effects observed upon envenomation as well as on experimental models. Despite the achievement of considerable progress, much remains to be done, particularly in relation to the non-proteinaceous components of the venom. Therefore, further studies are necessary in order to provide a more complete picture of the venom’s chemical composition and physiological effects. Given that fish venoms remain considerably less studied when compared to terrestrial venoms, the exploration of their full potential opens a myriad of possibilities for the development of new drug leads and tools for elucidating the complex physiological processes.
Collapse
Affiliation(s)
- Fabiana V Campos
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| | - Thiago N Menezes
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| | - Pedro F Malacarne
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| | - Fábio L S Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Fisiológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Gustavo B Naumann
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil ; Diretoria do Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG Brazil
| | - Helena L Gomes
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| | - Suely G Figueiredo
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, 29040-090 Vitória, ES Brazil
| |
Collapse
|
10
|
Gomes HL, Menezes TN, Malacarne PF, Roman-Campos D, Gondim AN, Cruz JS, Vassallo DV, Figueiredo SG. Cardiovascular effects of Sp-CTx, a cytolysin from the scorpionfish (Scorpaena plumieri) venom. Toxicon 2016; 118:141-8. [PMID: 27155562 DOI: 10.1016/j.toxicon.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
Fish venom cytolysins are multifunctional proteins that in addition to their cytolytic/hemolytic effects display neurotoxic, cardiotoxic and inflammatory activities, being described as "protein lethal factors". A pore-forming cytolysin called Sp-CTx (Scorpaena plumieriCytolytic Toxin) has been recently purified from the venom of the scorpionfish Scorpaena plumieri. It is a glycoprotein with dimeric constitution, comprising subunits of approximately 65 kDa. Previous studies have revealed that this toxin has a vasorelaxant activity that appears to involve the L-arginine-nitric oxide synthase pathway; however its cardiovascular effects have not been fully comprehended. The present study examined the cardiovascular effects of Sp-CTx in vivo and in vitro. In anesthetized rats Sp-CTx (70 μg/kg i.v) produced a biphasic response which consisted of an initial systolic and diastolic pressure increase followed by a sustained decrease of these parameters and the heart rate. In isolated rats hearts Sp-CTx (10(-9) to 5 × 10(-6) M) produced concentration-dependent and transient ventricular positive inotropic effect and vasoconstriction response on coronary bed. In papillary muscle, Sp-CTx (10(-7) M) also produced an increase in contractile isometric force, which was attenuated by the catecholamine releasing agent tyramine (100 μM) and the β-adrenergic antagonist propranolol (10 μM). On isolated ventricular cardiomyocytes Sp-CTx (1 nM) increased the L-type Ca(2+) current density. The results show that Sp-CTx induces disorders in the cardiovascular system through increase of sarcolemmal calcium influx, which in turn is partially caused by the release of endogenous noradrenaline.
Collapse
Affiliation(s)
- Helena L Gomes
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Thiago N Menezes
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Pedro F Malacarne
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Danilo Roman-Campos
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Antonio N Gondim
- Departamento de Educação, Universidade do Estado da Bahia, Guanambi, BA, Brazil
| | - Jader S Cruz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Dalton V Vassallo
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Suely G Figueiredo
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
11
|
Memar B, Jamili S, Shahbazzadeh D, Bagheri KP. The first report on coagulation and phospholipase A2 activities of Persian Gulf lionfish, Pterois russelli, an Iranian venomous fish. Toxicon 2016; 113:25-31. [PMID: 26853495 DOI: 10.1016/j.toxicon.2016.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 11/29/2022]
Abstract
Pterois russelli is a venomous fish belonging to scorpionidae family. Regarding to high significance value for tracing potential therapeutic molecules and special agents from venomous marine creatures, the present study was aimed to characterization of the Persian Gulf lionfish venom. Proteolytic, phospholipase, hemolytic, coagulation, edematogenic and dermonecrotic activities were determined for extracted venom. The LD50 of P. russelli venom was determined by intravenous injection in white Balb/c mice. Phospholipase A2 activity was recorded at 20 μg of total venom. Coagulation activity on human plasma was shown by Prothrombin Time (PT) and activated Partial Thromboplastin Time (APTT) assays and coagulation visualized after 7 and 14 s respectively for 60 μg of crude venom. LD50 was calculated as 10.5 mg/kg. SDS-PAGE revealed the presence of major and minor protein bands between 6 and 205 kDa. Different amounts of crude venom ranged from 1.87 to 30 μg showed proteolytic activity on casein. The highest edematic activity was detected at 20 μg. Our findings showed that the edematic activity was dose dependent and persisted for 48 h after injection. The crude venom did not induce dermonecrotic activity on rabbit skin and showed no hemolytic activity on human, mouse and rabbit erythrocytes. This is the first report for phospholipase A2 and coagulation activity in venomous fish and venomous marine animals respectively. Proteolytic activity of P. russelli venom is in accordance with the other genara of scorpionidae family. According to venom activity on intrinsic and extrinsic coagulation pathways, lionfish venom would be contained an interesting pharmaceutical agent. This study is pending to further characterization of phospholipase A2, coagulation, and protease activities and also in vivo activity on animal model of surface and internal bleeding.
Collapse
Affiliation(s)
- Bahareh Memar
- Department of Marine Biology, Faculty of Marine Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahla Jamili
- Department of Marine Biology, Faculty of Marine Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran; Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran.
| | - Delavar Shahbazzadeh
- Biotechnology Research Center, Medical Biotechnology Dept., Venom and Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran.
| | - Kamran Pooshang Bagheri
- Biotechnology Research Center, Medical Biotechnology Dept., Venom and Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Ziegman R, Alewood P. Bioactive components in fish venoms. Toxins (Basel) 2015; 7:1497-531. [PMID: 25941767 PMCID: PMC4448160 DOI: 10.3390/toxins7051497] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/12/2023] Open
Abstract
Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules.
Collapse
Affiliation(s)
- Rebekah Ziegman
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Paul Alewood
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
13
|
|
14
|
Andrich F, Carnielli JBT, Cassoli JS, Lautner RQ, Santos RAS, Pimenta AMC, de Lima ME, Figueiredo SG. A potent vasoactive cytolysin isolated from Scorpaena plumieri scorpionfish venom. Toxicon 2010; 56:487-96. [PMID: 20493199 DOI: 10.1016/j.toxicon.2010.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 04/27/2010] [Accepted: 05/06/2010] [Indexed: 01/22/2023]
Abstract
A new vasoactive cytolytic toxin, referred to as Sp-CTx, has been purified from the venom of the scorpionfish Scorpaena plumieri by a combination of gel filtration and anion exchange chromatographies. An estimation of Sp-CTx native molecular mass, performed by size exclusion chromatography, demonstrated that it is a 121 kDa protein. Further physicochemical studies revealed its glycoproteic nature and dimeric constitution, comprising subunits of approximately 65 kDa (MALDI-TOF-MS). Such protein has proved to possess a potent hemolytic activity on washed rabbit erythrocytes (EC(50) 0.46 nM), whose effect was strongly reduced after treatment with antivenom raised against stonefish venom -Synanceja trachynis (SFAV). This cross-reactivity has been confirmed by western blotting. Like S. plumieri whole venom (100 microg/mL), Sp-CTx (1-50 nM) caused a biphasic response on phenylephrine pre-contracted rat aortic rings, characterized by an endothelium- and dose-dependent relaxation phase followed by a contractile phase. The vasorelaxant activity has been abolished by l-NAME, demonstrating the involvement of nitric oxide on the response. We report here the first isolation of a cytolytic/vasoactive protein from scorpionfish venom and the data provided suggest structural and functional similarities between Sp-CTx and previously published stonefish hemolytic toxins.
Collapse
Affiliation(s)
- F Andrich
- Departamento de Fisiologia e Biofísica, Departamento de Bioquímica e Imunologia, Laboratório de Venenos e Toxinas Animais (LVTA), ICB/UFMG, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte-MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Conceição K, Santos JM, Bruni FM, Klitzke CF, Marques EE, Borges MH, Melo RL, Fernandez JH, Lopes-Ferreira M. Characterization of a new bioactive peptide from Potamotrygon gr. orbignyi freshwater stingray venom. Peptides 2009; 30:2191-9. [PMID: 19682520 DOI: 10.1016/j.peptides.2009.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 01/13/2023]
Abstract
Brazilian freshwater stingrays, Potamotrygon gr. orbigyni, are relatively common in the middle-western regions of Brazil, where they are considered an important public health threat. In order to identify some of their naturally occurring toxin peptides available in very low amounts, we combine analytical protocols such as reversed-phase high-performance liquid chromatography (RP-HPLC), followed by a biological microcirculatory screening and mass spectrometry analysis. Using this approach, one bioactive peptide was identified and characterized, and two analogues were synthesized. The natural peptide named Porflan has the primary structure ESIVRPPPVEAKVEETPE (MW 2006.09 Da) and has no similarity with any bioactive peptide or protein found in public data banks. Bioassay protocols characterized peptides as presenting potent activity in a microcirculatory environment. The primary sequences and bioassay results, including interactions with the membrane phospholipids, suggest that these toxins are a new class of fish toxins, directly involved in the inflammatory processes of a stingray sting.
Collapse
Affiliation(s)
- Katia Conceição
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cardiovascular effects of scorpionfish (Scorpaena plumieri) venom. Toxicon 2009; 55:580-9. [PMID: 19879286 DOI: 10.1016/j.toxicon.2009.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to investigate the cardiovascular activity of Scorpaena plumieri venom in both in vivo and in vitro models. In anesthetized rats, doses of the venom (14-216 microg protein/kg) induced a transient increase in the mean arterial pressure. However at higher dose (338 microg protein/kg) this effect was followed by a sudden hypotension and the animal evolved to death. The heart rate was temporarily increased and followed by bradycardia using doses > or =108 microg/kg. In isolated rat hearts the crude venom (5-80 microg protein) produced dose-dependent positive ventricular chronotropic, inotropic, lusitropic and coronary vasoconstriction responses. Partial purification of an active fraction (CF, cardiovascular fraction) which reproduced the cardiovascular effects induced by crude venom on isolated hearts was achieved by conventional gel filtration chromatography. Adrenergic blockades, prazosin and propranolol, significantly attenuated these responses. The coronary vasoconstriction response to CF was also attenuated by chemical endothelium denudation. In conclusion, the data showed that S. plumieri fish venom induces disorders in the cardiovascular system. It also suggests that alpha(1) and beta-adrenergic receptors, and the vascular endothelium, are involved at least partially, in these cardiac effects.
Collapse
|
17
|
Balasubashini MS, Karthigayan S, Somasundaram ST, Balasubramanian T, Viswanathan P, Menon VP. In Vivo and In Vitro Characterization of the Biochemical and Pathological Changes Induced By Lionfish (Pterios Volitans) Venom in Mice. Toxicol Mech Methods 2008; 16:525-31. [DOI: 10.1080/15376510600803573] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Cheikh A, Benkhalifa R, Bescond J, El Ayeb M, Raymond G, Cognard C, Potreau D. Depression of cardiac L-type calcium current by a scorpion venom fraction M1 following muscarinic receptors interaction involving adenylate cyclase pathway. Toxicon 2006; 48:373-87. [PMID: 16904145 DOI: 10.1016/j.toxicon.2006.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/20/2006] [Accepted: 06/22/2006] [Indexed: 11/21/2022]
Abstract
The effects of a non-toxic fraction, called M1, from Buthus occitanus tunetanus (Bot) scorpion were studied on rat cardiac contraction and calcium transient and current. A decrease in both rate and tension on isolated intact hearts as well as in calcium transient induced by depolarizing 100 K(+) solution on isolated ventricular cardiomyocytes was firstly observed. Studies with the whole cell patch clamp method showed that M1 decreased the L-type calcium current (ICa(L)) in a dose-dependent manner with an IC50 of 0.36 microg/mL and a Hill coefficient of 0.95. This effect was blocked and reversed by the specific muscarinic receptors antagonist atropine, 1 microM, and was completely prevented when cardiomyocytes were pretreated with Pertussis toxin, 1 microg/mL, to block the alpha subunit of the PTX-sensitive G proteins. These results show that M1 fraction of Bot inhibits basal calcium current by interacting with muscarinic receptors and suggest that this inhibition could be attributed to inhibition of adenylate cyclase activity by a mechanism involving PTX-sensitive G proteins.
Collapse
Affiliation(s)
- Amani Cheikh
- Laboratoire Venins et Toxines, Institut Pasteur de Tunis, BP 74-1002, Tunis, Tunisia
| | | | | | | | | | | | | |
Collapse
|
19
|
Carrijo LC, Andrich F, de Lima ME, Cordeiro MN, Richardson M, Figueiredo SG. Biological properties of the venom from the scorpionfish (Scorpaena plumieri) and purification of a gelatinolytic protease. Toxicon 2005; 45:843-50. [PMID: 15904679 DOI: 10.1016/j.toxicon.2005.01.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 01/18/2005] [Accepted: 01/21/2005] [Indexed: 01/22/2023]
Abstract
In this work we describe some biological properties and a partial biochemical characterization of the Scorpanea plumieri crude venom. The fresh venom induced a decrease in blood pressure, cardiac and respiratory frequency, and exhibited hemorrhagic, hemolytic and proteolytic activities. The LD(50) (i.v. mouse) was 0.28 mg/kg. The pharmacological activities were found to be very unstable and this fact could be associated with proteolytic activity. Enzymes which hydrolyze casein and gelatin were found in this venom. A gelatinolytic protease (Sp-GP) was purified to homogeneity from S. plumieri venom through a combination of three chromatographic steps: gel filtration on Sephacryl S-200; ion exchange on DEAE-cellulose and reverse-phase/HPLC on a Vydac C4 column. The purified protease was approximately 2% of the whole protein in the soluble crude venom. The molecular mass of the Sp-GP scorpionfish gelatinase estimated by SDS-PAGE was around 80,000 Da under reducing conditions and 72,000 Da under non-reducing conditions. Attempts to determine the N-terminal sequence by automatic Edman degradation were unsuccessful, probably due to blockage of the N-terminal group. Gelatinolytic activity was optimal at pH 7-8. This is the first report of the isolation and characterization of a scorpionfish venom protease.
Collapse
Affiliation(s)
- Linda Christian Carrijo
- Departamento de Ciências Fisiológicas, Centro Biomédico, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Weisel-Eichler A, Libersat F. Venom effects on monoaminergic systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:683-90. [PMID: 15160282 DOI: 10.1007/s00359-004-0526-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 03/16/2004] [Accepted: 04/07/2004] [Indexed: 01/22/2023]
Abstract
The monoamines, dopamine, epinephrine, histamine, norepinephrine, octopamine, serotonin and tyramine serve many functions in animals. Many different venoms have evolved to manipulate monoaminergic systems via a variety of cellular mechanisms, for both offensive and defensive purposes. One common function of monoamines present in venoms is to produce pain. Some monoamines in venoms cause immobilizing hyperexcitation which precedes venom-induced paralysis or hypokinesia. A common function of venom components that affect monoaminergic systems is to facilitate distribution of other venom components by causing vasodilation at the site of injection or by increasing heart rate. Venoms of some scorpions, spiders, fish and jellyfish contain adrenergic agonists or cause massive release of catecholamines with serious effects on the cardiovascular system, including increased heart rate. Other venom components act as agonists, antagonists or modulators at monoaminergic receptors, or affect release, reuptake or synthesis of monoamines. Most arthropod venoms have insect targets, yet, little attention has been paid to possible effects of these venoms on monoaminergic systems in insects. Further research into this area may reveal novel effects of venom components on monoaminergic systems at the cellular, systems and behavioral levels.
Collapse
Affiliation(s)
- Aviva Weisel-Eichler
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer Sheva, Israel.
| | | |
Collapse
|
21
|
Abstract
There is an enormous diversity and complexity of venoms and poisons in marine animals. Fatalities have occurred from envenoming by sea snakes, jellyfish, venomous fish such as stonefish, cone snails, and blue-ringed octopus. Deaths have also followed ingestion of toxins in shellfish, puffer fish (Fugu), and ciguatoxin-containing fish. However antivenoms are generally only available for envenoming by certain sea snakes, the major Australian box jellyfish (Chironex fleckeri) and stonefish. There have been difficulties in characterizing the toxins of C. fleckeri venom, and there are conflicting animals studies on the efficacy of C. fleckeri antivenom. The vast majority of C. fleckeri stings are not life-threatening, with painful skin welts the major finding. However fatalities that do occur usually do so within 5 to 20 minutes of the sting. This unprecedented rapid onset of cardiotoxicity in clinical envenoming suggests that antivenom may need to be given very early (within minutes) and possibly in large doses if a life is to be saved. Forty years of anecdotal experience supports the beneficial effect of stonefish antivenom in relieving the excruciating pain after stonefish spine penetration. It remains uncertain whether stonefish antivenom is efficacious in stings from spines of other venomous fish, and the recommendation of giving the antivenom intramuscularly needs reassessment.
Collapse
Affiliation(s)
- Bart J Currie
- Tropical Medicine and International Health Unit, Menzies School of Health Research, Darwin, Northern Territory, Australia.
| |
Collapse
|
22
|
Church JE, Moldrich RX, Beart PM, Hodgson WC. Modulation of intracellular Ca2+ levels by Scorpaenidae venoms. Toxicon 2003; 41:679-89. [PMID: 12727272 DOI: 10.1016/s0041-0101(03)00038-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The crude venoms of the soldierfish (Gymnapistes marmoratus), the lionfish (Pterois volitans) and the stonefish (Synanceia trachynis) display pronounced neuromuscular activity. Since [Ca(2+)](i) is a key regulator in many aspects of neuromuscular function we sought to determine its involvement in the neuromuscular actions of the venoms. In the chick biventer cervicis muscle, all three venoms produced a sustained contraction (approx 20-30% of 1mM acetylcholine). Blockade of nicotinic receptors with tubocurarine (10 micro M) failed to attenuate the contractile response to either G. marmoratus venom or P. volitans venom, but produced slight inhibition of the response to S. trachynis venom. All three venoms produced a rise in intracellular Ca(2+) (approx. 200-300% of basal) in cultured murine cortical neurons. The Ca(2+)-channel blockers omega-conotoxin MVIIC, omega-conotoxin GVIA, omega-agatoxin IVa and nifedipine (each at 1 micro M) potentiated the increase in [Ca(2+)](i) in response to G. marmoratus venom and P. volitans venom, while attenuating the response to S. trachynis venom. Removal of extracellular Ca(2+), replacement of Ca(2+) with La(3+) (0.5mM), or addition of stonefish antivenom (3units/ml) inhibited both the venom-induced increase in [Ca(2+)](i) in cultured neurones and contraction in chick biventer cervicis muscle. Venom-induced increases in [Ca(2+)](i) correlated with an increased cell death of cultured neurones as measured using propidium iodide (1 micro g/ml). Morphological analysis revealed cellular swelling and neurite loss consistent with necrosis. These data indicate that the effects of all three venoms are due in part to an increase in intracellular Ca(2+), possibly via the formation of pores in the cellular membrane which, under certain conditions, can lead to necrosis.
Collapse
Affiliation(s)
- Jarrod E Church
- Monash Venom Group, Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
23
|
Abstract
1. Of all the venomous fish known, the stonefish is one of the most commonly encountered by man. Studies on its venom started in the 1950s, but little work was performed after that until several groups revived interest in the venom in the 1980s after easier accessibility to the fish. 2. Stonefish venom is a mixture of proteins, containing several enzymes, including hyaluronidase of high specific activity. A purified stonefish hyaluronidase has been characterized. 3. Several of the effects of the crude venom have been isolated to a protein lethal factor that has cytolytic, neurotoxic and hypotensive activity. This protein is stonustoxin from Synanceja horrida, trachynilysin from Synanceja trachynis and verrucotoxin from Synanceja verrucosa. 4. The biochemical properties and activities of these protein lethal factors are reviewed.
Collapse
Affiliation(s)
- Hoon Eng Khoo
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 10 Medical Drive, Singapore.
| |
Collapse
|
24
|
Abstract
Venomous creatures have been the source of much recent research in the effort to find novel physiological tools and pharmaceuticals. However, due to the technical difficulties with obtaining and storing venom extracts, the venoms of marine animals, particularly fish, remain a largely untapped source of novel compounds. The most potent effects of piscine venoms are on the cardiovascular system. All piscine venoms produce profound cardiovascular changes, both in vitro and in vivo, including the release of nitric oxide from endothelial cells, smooth muscle contraction, and differing effects on atria. Although there is a complex balance between different components of the venom response, similarities exist between the responses to the venoms of all species of fish. In addition to their cardiovascular effects, piscine venoms possess neuromuscular activity. Once again, the activities of most piscine venoms are very similar, usually consisting of a depolarising action on both nerve and muscle cells. Most piscine venoms have potent cytolytic activity, and it seems likely that this activity is the mechanism behind many of their cardiovascular and neuromuscular effects. Piscine venoms all seem to share similar activity, probably as a result of evolving for a common purpose, and cross-reactivity with stonefish antivenom, both functionally in experimental models and in Western immunoblotting analysis, suggesting that piscine venoms may also possess structural similarities in addition to their functional similarities.
Collapse
Affiliation(s)
- Jarrod E Church
- Monash Venom Group, Department of Pharmacology, P.O. Box 13E, Monash University, Vic. 3800, Australia
| | | |
Collapse
|
25
|
Church JE, Hodgson WC. Adrenergic and cholinergic activity contributes to the cardiovascular effects of lionfish (Pterois volitans) venom. Toxicon 2002; 40:787-96. [PMID: 12175616 DOI: 10.1016/s0041-0101(01)00285-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to further investigate the cardiovascular activity of Pterois volitans crude venom. Venom (0.6-18 microg protein/ml) produced dose- and endothelium-dependent relaxation in porcine coronary arteries that was potentiated by atropine (10nM), but significantly attenuated by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine (NOLA; 0.1mM), by prior exposure of the tissue to stonefish antivenom (SFAV, 3 units/ml, 10 min), or by removal of extracellular Ca(2+). In rat paced left atria, venom (10 microg protein/ml) produced a decrease, followed by an increase, in contractile force. Atropine (0.5 microM) abolished the decrease in force and potentiated the increase. Propranolol (5 microM) did not affect the decrease in force but significantly attenuated the increase. In spontaneously beating right atria, venom (10 microg protein/ml) produced an increase in rate that was significantly attenuated by propranolol (5 microM). Prior incubation with SFAV (0.3 units/microg protein, 10 min) abolished both the inotropic and chronotropic responses to venom. In the anaesthetised rat, venom (100 micro protein/kg, i.v.) produced a pressor response, followed by a sustained depressor response. Atropine (1mg/kg, i.v.) potentiated the pressor response. The further addition of prazosin (50 microg/kg, i.v.) restored the original response to venom. Prior administration of SFAV (100 units/kg, i.v., 10 min) significantly attenuated the in vivo response to venom. It is concluded that P. volitans venom produces its cardiovascular effects primarily by acting on muscarinic cholinergic receptors and adrenoceptors. As SFAV neutralised many of the effects of P. volitans venom, we suggest that the two venoms share a similar component(s).
Collapse
Affiliation(s)
- Jarrod E Church
- Monash Venom Group, Department of Pharmacology, Monash University, P.O. Box 13E, Clayton, Vic. 3800, Australia
| | | |
Collapse
|
26
|
Church JE, Hodgson WC. Stonefish (Synanceia spp.) antivenom neutralises the in vitro and in vivo cardiovascular activity of soldierfish (Gymnapistes marmoratus) venom. Toxicon 2001; 39:319-24. [PMID: 10978750 DOI: 10.1016/s0041-0101(00)00131-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The soldierfish (Gymnapistes marmoratus), which is related to the stonefish (Synanceia spp.), inhabits the western, southern and lower eastern coastlines of Australia. We have previously found that G. marmoratus venom possesses pharmacological activity similar to Synanceia trachynis venom (Hopkins, B.J., Hodgson, W.C., 1998. Cardiovascular studies on venom from the soldierfish (Gymnapistes marmoratus). Toxicon 36, 973-872; Church, J.E., Hodgson, W.C., 2000. Dose-dependent cardiovascular and neuromuscular effects of stonefish (Synanceja trachynis) venom. Toxicon 38, 391-407), namely an action at muscarinic receptors and adrenoceptors. The aim of this study was to determine the effectiveness of Synanceia antivenom in neutralising the in vitro and in vivo cardiovascular activity of G. marmoratus venom. Venom extract (0.4-12 microg protein/ml) caused dose- and endothelium-dependent relaxation in porcine U46619-precontracted coronary arteries. This relaxation was abolished by 10 min prior exposure of the tissue to Synanceia antivenom (3 units/ml). In rat paced (5 ms, 2 Hz, 7-12 V) left atria, G. marmoratus venom extract (40 microg protein/ml) produced a transient negative, followed by a sustained positive inotropic response. In spontaneously beating right atria, venom extract (40 microg protein/ml) produced similar changes in rate. Prior incubation of venom extract with Synanceia antivenom (1 unit/4 microg venom extract protein, 10 min) significantly attenuated both components of the inotropic response, and abolished the positive chronotropic response. In the anaesthetised rat, venom extract (400 microg protein/kg, i.v.) produced a transient depressor response, followed by a more sustained pressor response. Prior incubation of venom extract with Synanceia antivenom (1 unit/4 microg venom extract protein, 10 min) significantly attenuated both components of the in vivo response. As Synanceia antivenom neutralised the cardiovascular activity of G. marmoratus venom both in vitro and in vivo, we suggest that the venoms of the two species may share a similar component(s).
Collapse
Affiliation(s)
- J E Church
- Monash Venom Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | | |
Collapse
|