1
|
Lambert GS, Rice BL, Maldonado RJK, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. Retrovirology 2024; 21:13. [PMID: 38898526 PMCID: PMC11186191 DOI: 10.1186/s12977-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Breanna L Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Rebecca J Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
2
|
Lambert GS, Rice BL, Kaddis Maldonado RJ, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575255. [PMID: 38293010 PMCID: PMC10827203 DOI: 10.1101/2024.01.18.575255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Breanna L. Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Bussienne C, Marquet R, Paillart JC, Bernacchi S. Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. Int J Mol Sci 2021; 22:ijms22062871. [PMID: 33799890 PMCID: PMC8000049 DOI: 10.3390/ijms22062871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.
Collapse
|
4
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|
5
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
6
|
Maldonado RJK, Rice B, Chen EC, Tuffy KM, Chiari EF, Fahrbach KM, Hope TJ, Parent LJ. Visualizing Association of the Retroviral Gag Protein with Unspliced Viral RNA in the Nucleus. mBio 2020; 11:e00524-20. [PMID: 32265329 PMCID: PMC7157774 DOI: 10.1128/mbio.00524-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944-3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790-6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome.IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.
Collapse
Affiliation(s)
| | - Breanna Rice
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Eunice C Chen
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kevin M Tuffy
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Estelle F Chiari
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kelly M Fahrbach
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
Chen L, Li S, Li Y, Duan X, Liu B, McGilvray I. Ubiquitin-like protein modifiers and their potential for antiviral and anti-HCV therapy. Expert Rev Proteomics 2014; 10:275-87. [PMID: 23777217 DOI: 10.1586/epr.13.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
All viral infections subvert the host immune response. Targeting the host mechanisms that are modulated by viral infection offers new avenues for antiviral drug development. Host ubiquitin and multiple ubiquitin-like modifiers (Ubls) are commonly altered by, or important for, viral infection. Protein modification by ubiquitin or Ubls contributes to numerous cellular processes, such as protein degradation, signal transduction, protein relocalization and pathogen-host interactions. This post-translational modification plays an essential role for viral life cycles and host antiviral mechanisms. Some Ubls, such as ISG15 and SUMO, have been shown to modulate virus infections and are potential targets for therapeutic manipulation. Hepatitis C virus (HCV) is a positive-stranded RNA virus that predominantly infects hepatocytes. Recent data suggest that ISG15 might be a potential drug target for anti-HCV therapy. Inhibition of ISG15 expression and/or ISG15 conjugation (ISGylation) provides a rationale for the design of new anti-HCV drugs.
Collapse
Affiliation(s)
- Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China.
| | | | | | | | | | | |
Collapse
|
8
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
9
|
Mattoscio D, Segré CV, Chiocca S. Viral manipulation of cellular protein conjugation pathways: The SUMO lesson. World J Virol 2013; 2:79-90. [PMID: 24175232 PMCID: PMC3785051 DOI: 10.5501/wjv.v2.i2.79] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 02/05/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a key post-translational modification mechanism that controls the function of a plethora of proteins and biological processes. Given its central regulatory role, it is not surprising that it is widely exploited by viruses. A number of viral proteins are known to modify and/or be modified by the SUMOylation system to exert their function, to create a cellular environment more favorable for virus survival and propagation, and to prevent host antiviral responses. Since the SUMO pathway is a multi-step cascade, viral proteins engage with it at many levels, to advance and favor each stage of a typical infection cycle: replication, viral assembly and immune evasion. Here we review the current knowledge on the interplay between the host SUMO system and viral lifecycle.
Collapse
|
10
|
Parent LJ. New insights into the nuclear localization of retroviral Gag proteins. Nucleus 2012; 2:92-7. [PMID: 21738831 DOI: 10.4161/nucl.2.2.15018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 11/19/2022] Open
Abstract
Retroviruses assemble new virus particles that are released by budding from the plasma membranes of infected cells. Gag proteins, encoded by retroviruses, orchestrate the assembly of virus particles in close collaboration with host cell machinery. The earliest steps in retrovirus assembly-those immediately following synthesis of Gag on cytosolic ribosomes-are poorly understood. Rous sarcoma virus (RSV) offers a unique model system for dissecting these early steps because the RSV Gag protein undergoes transient nuclear trafficking prior to plasma membrane transport. Other Gag proteins, including those of human immunodeficiency virus (HIV), murine leukemia virus (MLV), foamy virus and retrotransposons in Schizosaccharomyces pombe and Drosophila, have also been detected in the nucleus, suggesting that nuclear trafficking of Gag proteins is a common property of retroviruses and retrotransposons. In addition to retroviruses, many structural proteins of unrelated viruses, including influenza M1, NEP and NP proteins,38 Borna disease virus N and P proteins28,56 and coronavirus N protein,23,57 undergo nuclear localization and bind viral RNAs to form viral ribonuclear protein (RNP) complexes that are exported from the nucleus for packaging into virus particles. Similarly, nuclear trafficking of the RSV Gag protein is required for efficient encapsidation of the viral genomic RNA (gRNA) into assembling virus particles.19 Recently, we reported that the viral RNA itself appears to be a key factor in controlling the nucleus/cytosol distribution of RSV Gag.22 Our data demonstrate that binding of RSV RNA to the Gag protein promotes Gag-CRM1-RanGTP binding, resulting in export of the retroviral RNP from the nucleus. We propose that association of the viral RNA induces a conformational change in Gag that reveals its nuclear export signal (NES) and prepares that complex for its journey to the plasma membrane for budding. This work challenges existing dogmas regarding the molecular basis of Gag-mediated selection of gRNA for packaging and may lead to novel paradigms for the mechanism of retroviral genome encapsidation.
Collapse
Affiliation(s)
- Leslie J Parent
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
11
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
12
|
Zamborlini A, Coiffic A, Beauclair G, Delelis O, Paris J, Koh Y, Magne F, Giron ML, Tobaly-Tapiero J, Deprez E, Emiliani S, Engelman A, de Thé H, Saïb A. Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. J Biol Chem 2011; 286:21013-22. [PMID: 21454548 PMCID: PMC3121452 DOI: 10.1074/jbc.m110.189274] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/23/2011] [Indexed: 11/06/2022] Open
Abstract
HIV-1 integrase (IN) orchestrates the integration of the reverse transcribed viral cDNA into the host cell genome and participates also in other steps of HIV-1 replication. Cellular and viral factors assist IN in performing its multiple functions, and post-translational modifications contribute to modulate its activities. Here, we show that HIV-1 IN is modified by SUMO proteins and that phylogenetically conserved SUMOylation consensus motifs represent major SUMO acceptor sites. Viruses harboring SUMOylation site IN mutants displayed a replication defect that was mapped during the early stages of infection, before integration but after reverse transcription. Because SUMOylation-defective IN mutants retained WT catalytic activity, we hypothesize that SUMOylation might regulate the affinity of IN for co-factors, contributing to efficient HIV-1 replication.
Collapse
Affiliation(s)
- Alessia Zamborlini
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
- the Conservatoire des Arts et Métiers, Paris, France
| | - Audrey Coiffic
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Guillaume Beauclair
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Olivier Delelis
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée, CNRS UMR8113, Ecole Normale Supérieure, 94235 Cachan, France
| | - Joris Paris
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Yashuiro Koh
- the Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Fabian Magne
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
- the Conservatoire des Arts et Métiers, Paris, France
| | - Marie-Lou Giron
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Joelle Tobaly-Tapiero
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Eric Deprez
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée, CNRS UMR8113, Ecole Normale Supérieure, 94235 Cachan, France
| | - Stephane Emiliani
- INSERM U1016, CNRS UMR8104, Université Paris Descartes, Institut Cochin, 75014 Paris, France, and
| | - Alan Engelman
- the Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Hugues de Thé
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
| | - Ali Saïb
- From the CNRS UMR7212, INSERM U944, Institut Universitaire d'Hématologie-Université Paris7 Diderot, 75475 Paris, France
- the Conservatoire des Arts et Métiers, Paris, France
| |
Collapse
|
13
|
Arriagada G, Muntean LN, Goff SP. SUMO-interacting motifs of human TRIM5α are important for antiviral activity. PLoS Pathog 2011; 7:e1002019. [PMID: 21490953 PMCID: PMC3072370 DOI: 10.1371/journal.ppat.1002019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/18/2011] [Indexed: 12/31/2022] Open
Abstract
Human TRIM5α potently restricts particular strains of murine leukemia viruses (the so-called N-tropic strains) but not others (the B- or NB-tropic strains) during early stages of infection. We show that overexpression of SUMO-1 in human 293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor the mutant R110E of N-MLV CA (a B-tropic switch) are affected by SUMO-1 overexpression. The block occurred prior to reverse transcription and could be abrogated by large amounts of restricted virus. Knockdown of TRIM5α in 293T SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral effects, and this loss of restriction could be restored by expression of a human TRIM5α shRNA-resistant plasmid. Amino acid sequence analysis of human TRIM5α revealed a consensus SUMO conjugation site at the N-terminus and three putative SUMO interacting motifs (SIMs) in the B30.2 domain. Mutations of the TRIM5α consensus SUMO conjugation site did not affect the antiviral activity of TRIM5α in any of the cell types tested. Mutation of the SIM consensus sequences, however, abolished TRIM5α antiviral activity against N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region of the Gag gene reduced the SUMO-1 block and the TRIM5α restriction of N-MLV. Our data suggest a novel aspect of TRIM5α-mediated restriction, in which the presence of intact SIMs in TRIM5α, and also the SUMO conjugation of CA, are required for restriction. We propose that at least a portion of the antiviral activity of TRIM5α is mediated through the binding of its SIMs to SUMO-conjugated CA.
Collapse
Affiliation(s)
- Gloria Arriagada
- Department of Biochemistry and Molecular Biophysics, Columbia University,
New York, New York, United States of America
- Howard Hughes Medical Institute, College of Physicians and Surgeons,
Columbia University, New York, New York, United States of America
| | - Lucia N. Muntean
- Department of Microbiology and Immunology, Columbia University, New York,
New York, United States of America
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University,
New York, New York, United States of America
- Howard Hughes Medical Institute, College of Physicians and Surgeons,
Columbia University, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University, New York,
New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Human Ubc9 contributes to production of fully infectious human immunodeficiency virus type 1 virions. J Virol 2009; 83:10448-59. [PMID: 19640976 DOI: 10.1128/jvi.00237-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubc9 was identified as a cellular protein that interacts with the Gag protein of Mason-Pfizer monkey virus. We show here that Ubc9 also interacts with the human immunodeficiency virus type 1 (HIV-1) Gag protein and that their interaction is important for virus replication. Gag was found to colocalize with Ubc9 predominantly at perinuclear puncta. While cells in which Ubc9 expression was suppressed with RNA interference produced normal numbers of virions, these particles were 8- to 10-fold less infectious than those produced in the presence of Ubc9. The nature of this defect was assayed for dependence on Ubc9 during viral assembly, trafficking, and Env incorporation. The Gag-mediated assembly of virus particles and protease-mediated processing of Gag and Gag-Pol were unchanged in the absence of Ubc9. However, the stability of the cell-associated Env glycoprotein was decreased and Env incorporation into released virions was altered. Interestingly, overexpression of the Ubc9 trans-dominant-negative mutant C93A, which is a defective E2-SUMO-1 conjugase, suggests that this activity may not be required for interaction with Gag, virion assembly, or infectivity. This finding demonstrates that Ubc9 plays an important role in the production of infectious HIV-1 virions.
Collapse
|
15
|
Isaacson MK, Ploegh HL. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 2009; 5:559-70. [PMID: 19527883 PMCID: PMC7103382 DOI: 10.1016/j.chom.2009.05.012] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/27/2009] [Indexed: 11/26/2022]
Abstract
Ubiquitin is important for nearly every aspect of cellular physiology. All viruses rely extensively on host machinery for replication; therefore, it is not surprising that viruses connect to the ubiquitin pathway at many levels. Viral involvement with ubiquitin occurs either adventitiously because of the unavoidable usurpation of cellular processes, or for some specific purpose selected for by the virus to enhance viral replication. Here, we review current knowledge of how the ubiquitin pathway alters viral replication and how viruses influence the ubiquitin pathway to enhance their own replication.
Collapse
Affiliation(s)
- Marisa K Isaacson
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
16
|
Martinez NW, Xue X, Berro RG, Kreitzer G, Resh MD. Kinesin KIF4 regulates intracellular trafficking and stability of the human immunodeficiency virus type 1 Gag polyprotein. J Virol 2008; 82:9937-50. [PMID: 18684836 PMCID: PMC2566262 DOI: 10.1128/jvi.00819-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retroviral Gag proteins are synthesized as soluble, myristoylated precursors that traffic to the plasma membrane and promote viral particle production. The intracellular transport of human immunodeficiency virus type 1 (HIV-1) Gag to the plasma membrane remains poorly understood, and cellular motor proteins responsible for Gag movement are not known. Here we show that disrupting the function of KIF4, a kinesin family member, slowed temporal progression of Gag through its trafficking intermediates and inhibited virus-like particle production. Knockdown of KIF4 also led to increased Gag degradation, resulting in reduced intracellular Gag protein levels; this phenotype was rescued by reintroduction of KIF4. When KIF4 function was blocked, Gag transiently accumulated in discrete, perinuclear, nonendocytic clusters that colocalized with endogenous KIF4, with Ubc9, an E2 SUMO-1 conjugating enzyme, and with SUMO. These studies identify a novel transit station through which Gag traffics en route to particle assembly and highlight the importance of KIF4 in regulating HIV-1 Gag trafficking and stability.
Collapse
Affiliation(s)
- Nathaniel W Martinez
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
17
|
Beckham CJ, Parker R. P bodies, stress granules, and viral life cycles. Cell Host Microbe 2008; 3:206-12. [PMID: 18407064 PMCID: PMC2396818 DOI: 10.1016/j.chom.2008.03.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/03/2008] [Accepted: 03/14/2008] [Indexed: 12/11/2022]
Abstract
Eukaryotic mRNAs are in a dynamic equilibrium between different subcellular locations. Translating mRNAs can be found in polysomes, mRNAs stalled in translation initiation accumulate in stress granules and mRNAs targeted for degradation or translation repression can accumulate in P bodies. Partitioning of mRNAs between polysomes, stress granules, and P bodies affects rates of translation and mRNA degradation. Host proteins within P bodies and stress granules can enhance or limit viral infection, and some viral RNAs and proteins accumulate in P bodies and/or stress granules. Thus, an important interplay among P bodies, stress granules, and viral life cycles is beginning to emerge.
Collapse
Affiliation(s)
- Carla J. Beckham
- Department of Cell Biology and Anatomy, The University of Arizona, Tucson, Arizona, 85721-0206, USA
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, The University of Arizona, Tucson, Arizona, 85721-0206, USA
| |
Collapse
|
18
|
Spidel JL, Wilson CB, Craven RC, Wills JW. Genetic Studies of the beta-hairpin loop of Rous sarcoma virus capsid protein. J Virol 2007; 81:1288-96. [PMID: 17093186 PMCID: PMC1797520 DOI: 10.1128/jvi.01551-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/31/2006] [Indexed: 12/14/2022] Open
Abstract
The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a beta-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental beta-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.
Collapse
Affiliation(s)
- Jared L Spidel
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
19
|
Chiu MW, Shih HM, Yang TH, Yang YL. The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). J Biomed Sci 2007; 14:429-44. [PMID: 17265167 DOI: 10.1007/s11373-007-9151-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/06/2007] [Indexed: 11/29/2022] Open
Abstract
Dengue viruses are mosquito-borne flaviviruses and may cause the life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its envelope protein is responsible mainly for the virus attachment and entry to host cells. To identify the human cellular proteins interacting with the envelope protein of dengue virus serotype 2 inside host cells, we have performed a screening with the yeast-two-hybrid-based "Functional Yeast Array". Interestingly, the small ubiquitin-like modifier-1 conjugating enzyme 9 protein, modulating cellular processes such as those regulating signal transduction and cell growth, was one of the candidates interacting with the dengue virus envelope protein. With co-precipitation assay, we have demonstrated that it indeed could interact directly with the Ubc9 protein. Site-directed mutagenesis has demonstrated that Ubc9 might interact with the E protein via amino acid residues K51 and K241. Furthermore, immunofluorescence microscopy has shown that the DV2E-EGFP proteins tended to progress toward the nuclear membrane and co-localized with Flag-Ubc9 proteins around the nuclear membrane in the cytoplasmic side, and DV2E-EGFP also shifted the distribution of Flag-Ubc9 from evenly in the nucleus toward concentrating around the nuclear membrane in the nucleic side. In addition, over-expression of Ubc9 could reduce the plaque formation of the dengue virus in mammalian cells. This is the first report that DV envelope proteins can interact with the protein of sumoylation system and Ubc9 may involve in the host defense system to prevent virus propagation.
Collapse
Affiliation(s)
- Mei-Wui Chiu
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu, Taiwan, ROC
| | | | | | | |
Collapse
|
20
|
Yueh A, Leung J, Bhattacharyya S, Perrone LA, de los Santos K, Pu SY, Goff SP. Interaction of moloney murine leukemia virus capsid with Ubc9 and PIASy mediates SUMO-1 addition required early in infection. J Virol 2007; 80:342-52. [PMID: 16352559 PMCID: PMC1317516 DOI: 10.1128/jvi.80.1.342-352.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast two-hybrid screens led to the identification of Ubc9 and PIASy, the E2 and E3 small ubiquitin-like modifier (SUMO)-conjugating enzymes, as proteins interacting with the capsid (CA) protein of the Moloney murine leukemia virus. The binding site in CA for Ubc9 was mapped by deletion and alanine-scanning mutagenesis to a consensus motif for SUMOylation at residues 202 to 220, and the binding site for PIASy was mapped to residues 114 to 176, directly centered on the major homology region. Expression of CA and a tagged SUMO-1 protein resulted in covalent transfer of SUMO-1 to CA in vivo. Mutations of lysine residues to arginines near the Ubc9 binding site and mutations at the PIASy binding site reduced or eliminated CA SUMOylation. Introduction of these mutations into the complete viral genome blocked virus replication. The mutants exhibited no defects in the late stages of viral gene expression or virion assembly. Upon infection, the mutant viruses were able to carry out reverse transcription to synthesize normal levels of linear viral DNA but were unable to produce the circular viral DNAs or integrated provirus normally found in the nucleus. The results suggest that the SUMOylation of CA mediated by an interaction with Ubc9 and PIASy is required for early events of infection, after reverse transcription and before nuclear entry and viral DNA integration.
Collapse
Affiliation(s)
- Andrew Yueh
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Fan Z, Zhuo Y, Tan X, Zhou Z, Yuan J, Qiang B, Yan J, Peng X, Gao GF. SARS-CoV nucleocapsid protein binds to hUbc9, a ubiquitin conjugating enzyme of the sumoylation system. J Med Virol 2006; 78:1365-73. [PMID: 16998888 PMCID: PMC7167196 DOI: 10.1002/jmv.20707] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SARS‐CoV is a newly identified coronavirus (CoV) that causes severe acute respiratory syndrome (SARS). The SARS‐CoV nucleocapsid (N) protein is an important structural and functional protein. To identify cellular proteins that interact with the SARS‐CoV N protein and to elucidate the possible involvement of N protein in SARS‐CoV pathogenesis, a human lymphocyte cDNA library was screened using a yeast two‐hybrid system assay. hUbc9, a ubiquitin conjugating enzyme of sumoylation system, was found to interact specifically with the N protein, implying the post‐translational sumoylation of the N protein. Mapping studies localized the critical N sequences for this interaction to amino acids 170–210, which includes the SR‐rich motif. However, the consensus motif of sumoylation GK62EE in the N protein is not responsible for binding to hUbc9. Mutations of hUbc9 at the enzyme active site C93A or C93S severely impair the interaction with the N protein. The two proteins were also shown to colocalize in the cytoplasm of the transfected 293T cells. This is the first report demonstrating the interaction of hUbc9 with a structural protein of plus‐strand RNA viruses, indicating a new drug target for SARS‐CoV. J. Med. Virol. 78:1365–1373, 2006. © 2006 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Zheng Fan
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Zhuo
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry, Anhui Agricultural University, Hefei, China
| | - Xinyu Tan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Zhou
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiangang Yuan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinghua Yan
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaozhong Peng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - George F. Gao
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Bohl CR, Brown SM, Weldon RA. The pp24 phosphoprotein of Mason-Pfizer monkey virus contributes to viral genome packaging. Retrovirology 2005; 2:68. [PMID: 16274484 PMCID: PMC1308863 DOI: 10.1186/1742-4690-2-68] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 11/07/2005] [Indexed: 12/31/2022] Open
Abstract
Background The Gag protein of Mason-Pfizer monkey virus, a betaretrovirus, contains a phosphoprotein that is cleaved into the Np24 protein and the phosphoprotein pp16/18 during virus maturation. Previous studies by Yasuda and Hunter (J. Virology. 1998. 72:4095–4103) have demonstrated that pp16/18 contains a viral late domain required for budding and that the Np24 protein plays a role during the virus life cycle since deletion of this N-terminal domain blocked virus replication. The function of the Np24 domain, however, is not known. Results Here we identify a region of basic residues (KKPKR) within the Np24 domain that is highly conserved among the phosphoproteins of various betaretroviruses. We show that this KKPKR motif is required for virus replication yet dispensable for procapsid assembly, membrane targeting, budding and release, particle maturation, or viral glycoprotein packaging. Additional experiments indicated that deletion of this motif reduced viral RNA packaging 6–8 fold and affected the transient association of Gag with nuclear pores. Conclusion These results demonstrate that the Np24 domain plays an important role in RNA packaging and is in agreement with evidence that suggests that correct intracellular targeting of Gag to the nuclear compartment is an fundamental step in the retroviral life cycle.
Collapse
Affiliation(s)
- Christopher R Bohl
- School of Biological Sciences and the Nebraska Center for Virology, University of Nebraska, Lincoln, 68588, USA
| | - Shanna M Brown
- School of Biological Sciences and the Nebraska Center for Virology, University of Nebraska, Lincoln, 68588, USA
| | - Robert A Weldon
- School of Biological Sciences and the Nebraska Center for Virology, University of Nebraska, Lincoln, 68588, USA
| |
Collapse
|