1
|
Duchon A, Hu WS. HIV-1 RNA genome packaging: it's G-rated. mBio 2024; 15:e0086123. [PMID: 38411060 PMCID: PMC11005445 DOI: 10.1128/mbio.00861-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.
Collapse
Affiliation(s)
- Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
2
|
Adaptation of HIV-1/HIV-2 Chimeras with Defects in Genome Packaging and Viral Replication. mBio 2022; 13:e0222022. [PMID: 36036631 PMCID: PMC9600866 DOI: 10.1128/mbio.02220-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Frequent recombination is a hallmark of retrovirus replication. In rare cases, recombination occurs between distantly related retroviruses, generating novel viruses that may significantly impact viral evolution and public health. These recombinants may initially have substantial replication defects due to impaired interactions between proteins and/or nucleic acids from the two parental viruses. However, given the high mutation rates of retroviruses, these recombinants may be able to evolve improved compatibility of these viral elements. To test this hypothesis, we examined the adaptation of chimeras between two distantly related human pathogens: HIV-1 and HIV-2. We constructed HIV-1-based chimeras containing the HIV-2 nucleocapsid (NC) domain of Gag or the two zinc fingers of HIV-2 NC, which are critical for specific recognition of viral RNA. These chimeras exhibited significant defects in RNA genome packaging and replication kinetics in T cells. However, in some experiments, the chimeric viruses replicated with faster kinetics when repassaged, indicating that viral adaptation had occurred. Sequence analysis revealed the acquisition of a single amino acid substitution, S18L, in the first zinc finger of HIV-2 NC. This substitution, which represents a switch from a conserved HIV-2 residue to a conserved HIV-1 residue at this position, partially rescued RNA packaging and replication kinetics. Further analysis revealed that the combination of two substitutions in HIV-2 NC, W10F and S18L, almost completely restored RNA packaging and replication kinetics. Our study demonstrates that chimeras of distantly related retroviruses can adapt and significantly enhance their replication by acquiring a single substitution. IMPORTANCE Novel retroviruses can emerge from recombination between distantly related retroviruses. Most notably, HIV-1 originated from zoonotic transmission of a novel recombinant (SIVcpz) into humans. Newly generated recombinants may initially have significant replication defects due to impaired interactions between viral proteins and/or nucleic acids, such as between cis- and trans-acting elements from the two parental viruses. However, provided that the recombinants retain some ability to replicate, they may be able to adapt and repair the defective interactions. Here, we used HIV-1 and HIV-2 Gag chimeras as a model system for studying the adaptation of recombinant viruses. We found that only two substitutions in the HIV-2 NC domain, W10F and S18L, were required to almost fully restore RNA genome packaging and replication kinetics. These results illustrate the extremely flexible nature of retroviruses and highlight the possible emergence of novel recombinants in the future that could pose a significant threat to public health.
Collapse
|
3
|
Hanson HM, Willkomm NA, Yang H, Mansky LM. Human Retrovirus Genomic RNA Packaging. Viruses 2022; 14:1094. [PMID: 35632835 PMCID: PMC9142903 DOI: 10.3390/v14051094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023] Open
Abstract
Two non-covalently linked copies of the retrovirus genome are specifically recruited to the site of virus particle assembly and packaged into released particles. Retroviral RNA packaging requires RNA export of the unspliced genomic RNA from the nucleus, translocation of the genome to virus assembly sites, and specific interaction with Gag, the main viral structural protein. While some aspects of the RNA packaging process are understood, many others remain poorly understood. In this review, we provide an update on recent advancements in understanding the mechanism of RNA packaging for retroviruses that cause disease in humans, i.e., HIV-1, HIV-2, and HTLV-1, as well as advances in the understanding of the details of genomic RNA nuclear export, genome translocation to virus assembly sites, and genomic RNA dimerization.
Collapse
Affiliation(s)
- Heather M. Hanson
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
| | - Nora A. Willkomm
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- DDS-PhD Dual Degree Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- Comparative Molecular Biosciences Graduate Program, University of Minnesota—Twin Cities, St. Paul, MN 55455, USA
| | - Louis M. Mansky
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- DDS-PhD Dual Degree Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Comparative Molecular Biosciences Graduate Program, University of Minnesota—Twin Cities, St. Paul, MN 55455, USA
- Masonic Cancer Center, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
5
|
Guo C, Yao X, Wang K, Wang J, Wang Y. Comparison of HIV-1 Gag and NCp7 in their selectivity for package signal, affinity for stem-loop 3, and Zn 2+ content. Biochimie 2020; 179:135-145. [PMID: 32987107 DOI: 10.1016/j.biochi.2020.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag recognizes viral packaging signal (Psi) specifically via its nucleocapsid (NC) domain, resulting in the encapsidation of two copies of genomic RNA (gRNA) into the viral particle. The NCp7, which is cleaved from Gag during viral maturation, is a nucleic acid chaperone, coating and protecting the gRNA. In this study, an RT-qPCR-based approach was developed to quantitatively compare the Psi-selectivity of Gag and NCp7 in the presence of bacterial or 293T total RNAs. The binding affinity of Gag and NCp7 to the stem-loop (SL) 3 of Psi was also compared using surface plasmon resonance. We found that Gag selected more Psi-RNA than NCp7 from both E. coli BL21 (DE3) and in vitro binding reactions, and Gag bound to SL3-RNA with a higher affinity than NCp7. Moreover, Gag contained two Zn2+ whereas NCp7 contained one. The N-terminal zinc-finger motif of NCp7 lost most of its Zn2+-binding activity. Deletion of N-terminal amino acids 1-11 of NCp7 resulted in increased Psi-selectivity, SL3-affinity and Zn2+ content. These results indicated that Zn2+ coordination of Gag is critical for Psi-binding and selection. Removal of Zn2+ from the first zinc-finger motif during or after Gag cleavage to generate mature NCp7 might serve as a switch to regulate the functions of Gag NC domain and mature NCp7. Our study will be helpful to elucidate the important roles that Zn2+ plays in the viral life cycle, and may benefit further investigations of the function of HIV-1 Gag and NCp7.
Collapse
Affiliation(s)
- Chao Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Xiaohong Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Kangkang Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| |
Collapse
|
6
|
Dykes C, Demeter LM. Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin Microbiol Rev 2007; 20:550-78. [PMID: 17934074 PMCID: PMC2176046 DOI: 10.1128/cmr.00017-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The relative fitness of a variant, according to population genetics theory, is that variant's relative contribution to successive generations. Most drug-resistant human immunodeficiency virus type 1 (HIV-1) variants have reduced replication fitness, but at least some of these deficits can be compensated for by the accumulation of second-site mutations. HIV-1 replication fitness also appears to influence the likelihood of a drug-resistant mutant emerging during treatment failure and is postulated to influence clinical outcomes. A variety of assays are available to measure HIV-1 replication fitness in cell culture; however, there is no agreement regarding which assays best correlate with clinical outcomes. A major limitation is that there is no high-throughput assay that incorporates an internal reference strain as a control and utilizes intact virus isolates. Some retrospective studies have demonstrated statistically significant correlations between HIV-1 replication fitness and clinical outcomes in some patient populations. However, different studies disagree as to which clinical outcomes are most closely associated with fitness. This may be in part due to assay design, sample size limitations, and differences in patient populations. In addition, the strength of the correlations between fitness and clinical outcomes is modest, suggesting that, at present, it would be difficult to utilize these assays for clinical management.
Collapse
Affiliation(s)
- Carrie Dykes
- Infectious Diseases Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
7
|
Laham-Karam N, Bacharach E. Transduction of human immunodeficiency virus type 1 vectors lacking encapsidation and dimerization signals. J Virol 2007; 81:10687-98. [PMID: 17652403 PMCID: PMC2045463 DOI: 10.1128/jvi.00653-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The encapsidation signal (Psi) and the nested dimerization initiation site are important for efficient packaging of human immunodeficiency virus type 1 (HIV-1) genomic RNA dimers. Consequently, these signals are included in all HIV-1 vectors. Here, we provide evidence demonstrating that these elements in such vectors are not absolutely required for vector transduction. In single-cycle infection assays, vectors with Psi deleted (DeltaPsi) were transduced with only a two- to fivefold reduction compared to the wild type. The transduction of DeltaPsi showed typical products of reverse transcription and vector integration; however, in vitro and in vivo dimerization assays demonstrated the lack of normal dimerization of the DeltaPsi vector. The reduction in transduction reflected a similar reduction in packaging. Nevertheless, a relatively high specificity of packaging was retained, as the DeltaPsi vector was encapsidated at a level 4 orders of magnitude higher than that for overexpressed, nonretroviral cellular mRNA and 15 orders of magnitude higher than that for a murine leukemia virus (MLV)-based vector, all containing the same reporter gene, suggesting a Psi-independent mechanism of packaging. The fact that HIV-1 and MLV vectors were encapsidated with a much higher level of efficiency than the cellular RNA suggests that the genomic RNAs of different retroviruses share common features and/or pathways that target them to encapsidation. Overall, these results formally demonstrate that packaging and dimerization signals are not required for the early stages of infection and can be deleted without risking a total loss of vector transduction. Deletion of these signals should enhance the safety of these vectors.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
8
|
Affiliation(s)
- Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
9
|
Roy BB, Hu J, Guo X, Russell RS, Guo F, Kleiman L, Liang C. Association of RNA helicase a with human immunodeficiency virus type 1 particles. J Biol Chem 2006; 281:12625-35. [PMID: 16527808 DOI: 10.1074/jbc.m510596200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA helicase A (RHA) belongs to the DEAH family of proteins that are capable of unwinding double-stranded RNA structure. In addition to its involvement in the metabolism of cellular RNA, RHA has been shown to stimulate RNA transcription from the long terminal repeat promoter of human immunodeficiency virus type 1 (HIV-1) as well as to enhance Rev/Rev response element-mediated gene expression. In this study, we provide evidence that RHA associates with HIV-1 Gag in an RNA-dependent manner. This interaction results in specific incorporation of RHA into HIV-1 particles. Knockdown of endogenous RHA in virus producer cells leads to generation of HIV-1 particles that are less infectious in part as a result of restricted reverse transcription. Therefore, RHA represents the first example of cellular RNA helicases that participate in HIV-1 particle production and promote viral reverse transcription.
Collapse
Affiliation(s)
- Bibhuti Bhusan Roy
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
10
|
Roy BB, Russell RS, Turner D, Liang C. The T12I mutation within the SP1 region of Gag restricts packaging of spliced viral RNA into human immunodeficiency virus type 1 with mutated RNA packaging signals and mutated nucleocapsid sequence. Virology 2006; 344:304-14. [PMID: 16226779 DOI: 10.1016/j.virol.2005.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/10/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
Specific packaging of human immunodeficiency virus type 1 (HIV-1) RNA is attributable to the high affinity of nucleocapsid (NC) sequence of Gag for the cis-acting RNA packaging signals located within the 5' un-translated region (5' UTR). Interestingly, we have previously reported that the T12I mutation (named MP2) within SP1 of Gag prevented incorporation of spliced viral RNA into mutated viruses that lacked the stem-loop 1 (SL1) RNA element (also named dimerization initiation site, DIS), suggesting a role for the SP1 sequence in viral RNA packaging. In this study, we have further tested this activity of MP2 in the context of a variety of mutations that affect viral RNA incorporation. The results showed that MP2 was able to effectively restrict packaging of spliced viral RNA into viruses containing either NC mutations R10A and K11A or mutated 5' UTR sequence, such as DeltaGU3 that lacked the 112-GUCUGUUGUGUG-123 sequence of U5, D1 that was deleted of a 27 nt fragment immediately downstream of the primer binding site (PBS), Delta(306-325) that had the SL3 RNA element removed and MD2 that was missing the 328-GGAG-331 sequence. As a result, MP2 contributed increased infectivity to the related viruses. Therefore, the MP2 mutation demonstrates a distinct role in HIV-1 RNA packaging that is neither pertained to the specific viral RNA packaging signal nor to the NC sequence.
Collapse
Affiliation(s)
- Bibhuti Bhusan Roy
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | |
Collapse
|
11
|
Mark-Danieli M, Laham N, Kenan-Eichler M, Castiel A, Melamed D, Landau M, Bouvier NM, Evans MJ, Bacharach E. Single point mutations in the zinc finger motifs of the human immunodeficiency virus type 1 nucleocapsid alter RNA binding specificities of the gag protein and enhance packaging and infectivity. J Virol 2005; 79:7756-67. [PMID: 15919928 PMCID: PMC1143677 DOI: 10.1128/jvi.79.12.7756-7767.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A specific interaction between the nucleocapsid (NC) domain of the Gag polyprotein and the RNA encapsidation signal (Psi) is required for preferential incorporation of the retroviral genomic RNA into the assembled virion. Using the yeast three-hybrid system, we developed a genetic screen to detect human immunodeficiency virus type 1 (HIV-1) Gag mutants with altered RNA binding specificities. Specifically, we randomly mutated full-length HIV-1 Gag or its NC portion and screened the mutants for an increase in affinity for the Harvey murine sarcoma virus encapsidation signal. These screens identified several NC zinc finger mutants with altered RNA binding specificities. Furthermore, additional zinc finger mutants that also demonstrated this phenotype were made by site-directed mutagenesis. The majority of these mutants were able to produce normal virion-like particles; however, when tested in a single-cycle infection assay, some of the mutants demonstrated higher transduction efficiencies than that of wild-type Gag. In particular, the N17K mutant showed a seven- to ninefold increase in transduction, which correlated with enhanced vector RNA packaging. This mutant also packaged larger amounts of foreign RNA. Our results emphasize the importance of the NC zinc fingers, and not other Gag sequences, in achieving specificity in the genome encapsidation process. In addition, the described mutations may contribute to our understanding of HIV diversity resulting from recombination events between copackaged viral genomes and foreign RNA.
Collapse
Affiliation(s)
- Michal Mark-Danieli
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ooms M, Huthoff H, Russell R, Liang C, Berkhout B. A riboswitch regulates RNA dimerization and packaging in human immunodeficiency virus type 1 virions. J Virol 2004; 78:10814-9. [PMID: 15367648 PMCID: PMC516375 DOI: 10.1128/jvi.78.19.10814-10819.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of retroviruses, including human immunodeficiency virus type 1 (HIV-1), consists of two identical RNA strands that are packaged as noncovalently linked dimers. The core packaging and dimerization signals are located in the downstream part of the untranslated leader of HIV-1 RNA-the Psi and the dimerization initiation site (DIS) hairpins. The HIV-1 leader can adopt two alternative conformations that differ in the presentation of the DIS hairpin and consequently in their ability to dimerize in vitro. The branched multiple-hairpin (BMH) structure folds the poly(A) and DIS hairpins, but these domains are base paired in a long distance interaction (LDI) in the most stable LDI conformation. This LDI-BMH riboswitch regulates RNA dimerization in vitro. It was recently shown that the Psi hairpin structure is also presented differently in the LDI and BMH structures. Several detailed in vivo studies have indicated that sequences throughout the leader RNA contribute to RNA packaging, but how these diverse mutations affect the packaging mechanism is not known. We reasoned that these effects may be due to a change in the LDI-BMH equilibrium, and we therefore reanalyzed the structural effects of a large set of leader RNA mutations that were presented in three previous studies (J. L. Clever, D. Mirandar, Jr., and T. G. Parslow, J. Virol. 76:12381-12387, 2002; C. Helga-Maria, M. L. Hammarskjold, and D. Rekosh, J. Virol. 73:4127-4135, 1999; R. S. Russell, J. Hu, V. Beriault, A. J. Mouland, M. Laughrea, L. Kleiman, M. A. Wainberg, and C. Liang, J. Virol. 77:84-96, 2003). This analysis revealed a strict correlation between the status of the LDI-BMH equilibrium and RNA packaging. Furthermore, a correlation is apparent between RNA dimerization and RNA packaging, and these processes may be coordinated by the same LDI-BMH riboswitch mechanism.
Collapse
Affiliation(s)
- Marcel Ooms
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Russell RS, Liang C, Wainberg MA. Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably? Retrovirology 2004; 1:23. [PMID: 15345057 PMCID: PMC516451 DOI: 10.1186/1742-4690-1-23] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/02/2004] [Indexed: 01/14/2023] Open
Abstract
During virus assembly, all retroviruses specifically encapsidate two copies of full-length viral genomic RNA in the form of a non-covalently linked RNA dimer. The absolute conservation of this unique genome structure within the Retroviridae family is strong evidence that a dimerized genome is of critical importance to the viral life cycle. An obvious hypothesis is that retroviruses have evolved to preferentially package two copies of genomic RNA, and that dimerization ensures the proper packaging specificity for such a genome. However, this implies that dimerization must be a prerequisite for genome encapsidation, a notion that has been debated for many years. In this article, we review retroviral RNA dimerization and packaging, highlighting the research that has attempted to dissect the intricate relationship between these two processes in the context of HIV-1, and discuss the therapeutic potential of these putative antiretroviral targets.
Collapse
Affiliation(s)
- Rodney S Russell
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Cote Ste-Catherine Road Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology & Immunology Montreal, Quebec, Canada H3A 2B4
| | - Chen Liang
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Cote Ste-Catherine Road Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Cote Ste-Catherine Road Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology & Immunology Montreal, Quebec, Canada H3A 2B4
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
14
|
Paillart JC, Shehu-Xhilaga M, Marquet R, Mak J. Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol 2004; 2:461-72. [PMID: 15152202 DOI: 10.1038/nrmicro903] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jean-Christophe Paillart
- UPR 9002 du CNRS affiliée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|