Saj A, Cojan Y, Musel B, Honoré J, Borel L, Vuilleumier P. Functional neuro-anatomy of egocentric versus allocentric space representation.
Neurophysiol Clin 2013;
44:33-40. [PMID:
24502903 DOI:
10.1016/j.neucli.2013.10.135]
[Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022] Open
Abstract
INTRODUCTION
The functional neuroanatomy of the egocentric and allocentric representations of space remains poorly studied with neuroimaging. Here we aim to determine brain structures subserving two different kinds of spatial representations centred on the main axis of either the body or the external scene.
METHOD
Sixteen healthy participants evaluated the alignment of a bar relative to the middle of their body (Ego) or relative to another stimulus (Allo) during functional MRI. In a control task (Ctrl), they had to judge the colour of the bar.
RESULTS
Correct response rates and response times were similar in the three tasks. fMRI data revealed a predominant role of the right hemisphere in the egocentric task (Ego vs. Allo): selective activity was found in the occipital, superior parietal, and inferior frontal cortices, as well as in the precuneus and supplementary motor area. On the left side, the insula, thalamus, and cerebellum were also activated. Conversely, the allocentric task (Allo vs. Ctrl) showed selective activity centred on the left temporal gyrus.
DISCUSSION
This study demonstrates a right hemisphere dominance for representations centred on the longitudinal body axis, but more left-sided activity for scene/object-centred representations of space. These new data shed light on the unique role of several regions involved in spatial perception and help better understand spatial deficits in patients with right hemispheric lesions.
Collapse