1
|
Bansal S, Joiner WM. Transsaccadic visual perception of foveal compared to peripheral environmental changes. J Vis 2021; 21:12. [PMID: 34160578 PMCID: PMC8237106 DOI: 10.1167/jov.21.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The maintenance of stable visual perception across eye movements is hypothesized to be aided by extraretinal information (e.g., corollary discharge [CD]). Previous studies have focused on the benefits of this information for perception at the fovea. However, there is little information on the extent that CD benefits peripheral visual perception. Here we systematically examined the extent that CD supports the ability to perceive transsaccadic changes at the fovea compared to peripheral changes. Human subjects made saccades to targets positioned at different amplitudes (4° or 8°) and directions (rightward or upward). On each trial there was a reference point located either at (fovea) or 4° away (periphery) from the target. During the saccade the target and reference disappeared and, after a blank period, the reference reappeared at a shifted location. Subjects reported the perceived shift direction, and we determined the perceptual threshold for detection and estimate of the reference location. We also simulated the detection and location if subjects solely relied on the visual error of the shifted reference experienced after the saccade. The comparison of the reference location under these two conditions showed that overall the perceptual estimate was approximately 53% more accurate and 30% less variable than estimates based solely on visual information at the fovea. These values for peripheral shifts were consistently lower than that at the fovea: 34% more accurate and 9% less variable. Overall, the results suggest that CD information does support stable visual perception in the periphery, but is consistently less beneficial compared to the fovea.
Collapse
Affiliation(s)
- Sonia Bansal
- Department of Neuroscience, George Mason University, Fairfax, VA, USA.,Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,
| | - Wilsaan M Joiner
- Department of Bioengineering, George Mason University, Fairfax, VA, USA.,Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Neurology, University of California Davis, Davis, CA, USA.,
| |
Collapse
|
2
|
Stewart EEM, Hübner C, Schütz AC. Stronger saccadic suppression of displacement and blanking effect in children. J Vis 2020; 20:13. [PMID: 33052408 PMCID: PMC7571331 DOI: 10.1167/jov.20.10.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 11/24/2022] Open
Abstract
Humans do not notice small displacements to objects that occur during saccades, termed saccadic suppression of displacement (SSD), and this effect is reduced when a blank is introduced between the pre- and postsaccadic stimulus (Bridgeman, Hendry, & Stark, 1975; Deubel, Schneider, & Bridgeman, 1996). While these effects have been studied extensively in adults, it is unclear how these phenomena are characterized in children. A potentially related mechanism, saccadic suppression of contrast sensitivity-a prerequisite to achieve a stable percept-is stronger for children (Bruno, Brambati, Perani, & Morrone, 2006). However, the evidence for how transsaccadic stimulus displacements may be suppressed or integrated is mixed. While they can integrate basic visual feature information from an early age, they cannot integrate multisensory information (Gori, Viva, Sandini, & Burr, 2008; Nardini, Jones, Bedford, & Braddick, 2008), suggesting a failure in the ability to integrate more complex sensory information. We tested children 7 to 12 years old and adults 19 to 23 years old on their ability to perceive intrasaccadic stimulus displacements, with and without a postsaccadic blank. Results showed that children had stronger SSD than adults and a larger blanking effect. Children also had larger undershoots and more variability in their initial saccade endpoints, indicating greater intrinsic uncertainty, and they were faster in executing corrective saccades to account for these errors. Together, these results suggest that children may have a greater internal expectation or prediction of saccade error than adults; thus, the stronger SSD in children may be due to higher intrinsic uncertainty in target localization or saccade execution.
Collapse
Affiliation(s)
- Emma E M Stewart
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| | - Carolin Hübner
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behaviour, Philipps-Universität Marburg, Marburg, Germany
- https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| |
Collapse
|
3
|
Bansal S, Bray LCJ, Schwartz BL, Joiner WM. Transsaccadic Perception Deficits in Schizophrenia Reflect the Improper Internal Monitoring of Eye Movement Rather Than Abnormal Sensory Processing. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017. [PMID: 29529412 DOI: 10.1016/j.bpsc.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Symptoms of psychosis in schizophrenia reflect disturbances in sense of agency-difficulty distinguishing internally from externally generated sensory and perceptual experiences. One theory attributes these anomalies to a disruption in corollary discharge (CD), an internal copy of generated motor commands used to distinguish self-movement-generated sensations from externally generated stimulation. METHODS We used a transsaccadic shift detection paradigm to examine possible deficits in CD and sense of agency based on the ability to perceive visual changes in 31 schizophrenia patients (SZPs) and 31 healthy control subjects. We derived perceptual measures based on manual responses indicating the transsaccadic target shift direction. We also developed a distance-from-unity-line measure to quantify use of CD versus purely sensory (visual) information in evaluating visual changes in the environment after an eye movement. RESULTS SZPs had higher perceptual thresholds in detecting shift of target location than healthy control subjects, regardless of movement direction or amplitude. Despite producing similar hypometric saccades, healthy control subjects overestimated target location, whereas SZPs relied more on the experienced visual error and consequently underestimated the target position. We show that in SZPs the postsaccadic judgment of the initial target location was largely aligned with the measure based only on visual error, suggesting a deficit in the use of CD. This CD deficit also correlated with positive schizophrenia symptoms and disturbances in sense of agency. CONCLUSIONS These results provide a novel approach in quantifying abnormal use of CD in SZPs and provide a framework to distinguish deficits in sensory processing versus defects in the internal CD-based monitoring of movement.
Collapse
Affiliation(s)
- Sonia Bansal
- Department of Neuroscience, George Mason University, Fairfax, Virginia; Mental Health Service Line, Washington DC Veterans Affairs Medical Center, Washington, DC
| | | | - Barbara L Schwartz
- Mental Health Service Line, Washington DC Veterans Affairs Medical Center, Washington, DC; Department of Psychiatry, Georgetown University School of Medicine, Washington, DC
| | - Wilsaan M Joiner
- Department of Neuroscience, George Mason University, Fairfax, Virginia; Department of Bioengineering, George Mason University, Fairfax, Virginia; Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia.
| |
Collapse
|
4
|
Jayet Bray LC, Bansal S, Joiner WM. Quantifying the spatial extent of the corollary discharge benefit to transsaccadic visual perception. J Neurophysiol 2015; 115:1132-45. [PMID: 26683070 DOI: 10.1152/jn.00657.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/16/2015] [Indexed: 01/20/2023] Open
Abstract
Extraretinal information, such as corollary discharge (CD), is hypothesized to help compensate for saccade-induced visual input disruptions. However, support for this hypothesis is largely for one-dimensional transsaccadic visual changes, with little comprehensive information on the spatial characteristics. Here we systematically mapped the two-dimensional extent of this compensation by quantifying the insensitivity to different displacement metrics. Human subjects made saccades to targets positioned at different amplitudes (4° or 8°) and directions (rightward, oblique, or upward). After the saccade the initial target disappeared and, after a blank period, reappeared at a shifted location-a collinear, diagonal, or orthogonal displacement. Subjects reported the perceived shift direction, and we determined the displacement detection based on the perceptual judgments. The two-dimensional insensitivity fields resulting from the perceptual thresholds had spatial features similar to the saccadic eye movement variability: 1) scaled with movement amplitude, 2) oriented (less sensitive to the change) along the saccade vector, and 3) approximately constant in shape when normalized by movement amplitude. In addition, comparing the postsaccadic perceptual estimate of the presaccadic target location to that based solely on the postsaccade visual error showed that overall the perceptual estimate was approximately 50% more accurate and 35% less variable than estimates based solely on this visual information. However, this relationship was not uniform: The benefit of extraretinal information was observed largely for displacements with a component parallel to the saccade vector. These results suggest a graded use of extraretinal information when forming the postsaccadic perceptual evaluation of transsaccadic environmental changes.
Collapse
Affiliation(s)
| | - Sonia Bansal
- Department of Neuroscience, George Mason University, Fairfax, Virginia; and
| | - Wilsaan M Joiner
- Department of Bioengineering, George Mason University, Fairfax, Virginia; Department of Neuroscience, George Mason University, Fairfax, Virginia; and Krasnow Institute for Advanced Study, Sensorimotor Integration Laboratory, George Mason University, Fairfax, Virginia
| |
Collapse
|
5
|
Bansal S, Jayet Bray LC, Peterson MS, Joiner WM. The effect of saccade metrics on the corollary discharge contribution to perceived eye location. J Neurophysiol 2015; 113:3312-22. [PMID: 25761955 DOI: 10.1152/jn.00771.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/10/2015] [Indexed: 11/22/2022] Open
Abstract
Corollary discharge (CD) is hypothesized to provide the movement information (direction and amplitude) required to compensate for the saccade-induced disruptions to visual input. Here, we investigated to what extent these conveyed metrics influence perceptual stability in human subjects with a target-displacement detection task. Subjects made saccades to targets located at different amplitudes (4°, 6°, or 8°) and directions (horizontal or vertical). During the saccade, the target disappeared and then reappeared at a shifted location either in the same direction or opposite to the movement vector. Subjects reported the target displacement direction, and from these reports we determined the perceptual threshold for shift detection and estimate of target location. Our results indicate that the thresholds for all amplitudes and directions generally scaled with saccade amplitude. Additionally, subjects on average produced hypometric saccades with an estimated CD gain <1. Finally, we examined the contribution of different error signals to perceptual performance, the saccade error (movement-to-movement variability in saccade amplitude) and visual error (distance between the fovea and the shifted target location). Perceptual judgment was not influenced by the fluctuations in movement amplitude, and performance was largely the same across movement directions for different magnitudes of visual error. Importantly, subjects reported the correct direction of target displacement above chance level for very small visual errors (<0.75°), even when these errors were opposite the target-shift direction. Collectively, these results suggest that the CD-based compensatory mechanisms for visual disruptions are highly accurate and comparable for saccades with different metrics.
Collapse
Affiliation(s)
- Sonia Bansal
- Department of Neuroscience, George Mason University, Fairfax, Virginia
| | | | - Matthew S Peterson
- Department of Neuroscience, George Mason University, Fairfax, Virginia; Department of Psychology, George Mason University, Fairfax, Virginia
| | - Wilsaan M Joiner
- Department of Neuroscience, George Mason University, Fairfax, Virginia; Department of Bioengineering, George Mason University, Fairfax, Virginia;
| |
Collapse
|
6
|
Gaveau V, Pisella L, Priot AE, Fukui T, Rossetti Y, Pélisson D, Prablanc C. Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia 2013; 55:25-40. [PMID: 24334110 DOI: 10.1016/j.neuropsychologia.2013.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/16/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
Abstract
Following the princeps investigations of Marc Jeannerod on action-perception, specifically, goal-directed movement, this review article addresses visual and non-visual processes involved in guiding the hand in reaching or grasping tasks. The contributions of different sources of correction of ongoing movements are considered; these include visual feedback of the hand, as well as the often-neglected but important spatial updating and sharpening of goal localization following gaze-saccade orientation. The existence of an automatic online process guiding limb trajectory toward its goal is highlighted by a series of princeps experiments of goal-directed pointing movements. We then review psychophysical, electrophysiological, neuroimaging and clinical studies that have explored the properties of these automatic corrective mechanisms and their neural bases, and established their generality. Finally, the functional significance of automatic corrective mechanisms-referred to as motor flexibility-and their potential use in rehabilitation are discussed.
Collapse
Affiliation(s)
- Valérie Gaveau
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Laure Pisella
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Anne-Emmanuelle Priot
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Institut de recherche biomédicale des armées (IRBA), BP 73, 91223 Brétigny-sur-Orge cedex, France
| | - Takao Fukui
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France
| | - Yves Rossetti
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Denis Pélisson
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Claude Prablanc
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France.
| |
Collapse
|
7
|
Apparent motion during saccadic suppression periods. Exp Brain Res 2009; 202:155-69. [PMID: 20024650 DOI: 10.1007/s00221-009-2120-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
Sensitivity to many visual stimuli, and, in particular, image displacement, is reduced during a change in fixation (saccade) compared to when the eye is still. In these experiments, we studied the sensitivity of observers to ecologically relevant image translations of large, complex, real world scenes either during horizontal saccades or during fixation. In the first experiment, we found that such displacements were much less detectable during saccades than during fixation. Qualitatively, even when trans-saccadic scene changes were detectable, they were less salient and appeared slower than equivalent changes in the absence of a saccade. Two further experiments followed up on this observation and estimated the perceived magnitude of trans-saccadic apparent motion using a two-interval forced-choice procedure (Experiment 2) and a magnitude estimation procedure (Experiment 3). Both experiments suggest that trans-saccadic displacements were perceived as smaller than equivalent inter-saccadic displacements. We conclude that during saccades, the magnitude of the apparent motion signal is attenuated as well as its detectability.
Collapse
|
8
|
Prime SL, Tsotsos L, Keith GP, Crawford JD. Visual memory capacity in transsaccadic integration. Exp Brain Res 2007; 180:609-28. [PMID: 17588185 DOI: 10.1007/s00221-007-0885-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 01/09/2007] [Indexed: 11/30/2022]
Abstract
How we perceive the visual world as stable and unified suggests the existence of transsaccadic integration that retains and integrates visual information from one eye fixation to another eye fixation across saccadic eye movements. However, the capacity of transsaccadic integration is still a subject of controversy. We tested our subjects' memory capacity of two basic visual features, i.e. luminance (Experiment 1) and orientation (Experiment 2), both within a single fixation (i.e. visual working memory) and between separate fixations (i.e. transsaccadic memory). Experiment 2 was repeated, but attention allocation was manipulated using attentional cues at either the target or distracter (Experiment 3). Subjects were able to retain 3-4 objects in transsaccadic memory for luminance and orientation; errors generally increased as saccade size increased; and, subjects were more accurate when attention was allocated to the same location as the impending target. These results were modelled by inputting a noisy extra-retinal signal into an eye-centered feature map. Our results suggest that transsaccadic memory has a similar capacity for storing simple visual features as basic visual memory, but this capacity is dependent both on the metrics of the saccade and allocation of attention.
Collapse
Affiliation(s)
- Steven L Prime
- Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3
| | | | | | | |
Collapse
|
9
|
|
10
|
Salman MS, Sharpe JA, Eizenman M, Lillakas L, To T, Westall C, Dennis M, Steinbach MJ. Saccadic adaptation in children. J Child Neurol 2006; 21:1025-31. [PMID: 17156692 DOI: 10.1177/7010.2006.00238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Saccades are fast-orienting eye movements. Saccadic adaptation, a form of motor learning, is a corrective change in the amplitude of saccades in response to error. The aim of the study was to ascertain whether saccadic adaptation occurs in typically developing children. We recorded saccades with an infrared eye tracker in 39 children, aged 8 to 19 years, at baseline to 12-degree horizontal target steps and after an adaptive task. During the adaptive task, a saccadic hypometric error was induced. This task consisted of 200 12-degree target steps that stepped backward 3 degrees during the initial saccade and without the participants' awareness. The initial saccade triggered the back-step. This paradigm required a corrective reduction of the amplitude of the initial saccades in response to the induced error. Saccadic adaptation was achieved in 26 participants, whose mean saccadic amplitudes decreased by 13% (P < .05). Saccadic adaptation was not influenced by age. We conclude that children as young as 8 years old have established functions of the neural circuits responsible for the motor learning required for saccadic adaptation.
Collapse
Affiliation(s)
- Michael S Salman
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
MacAskill MR, Jones RD, Anderson TJ. Saccadic suppression of displacement: effects of illumination and background manipulation. Perception 2003; 32:463-74. [PMID: 12785484 DOI: 10.1068/p3474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In contrast to other functions which are suppressed during saccades, saccadic suppression of displacement (SSD--a decrease in sensitivity to visual displacements during saccades) has often been considered to be due to efferent processes rather than to visual masking. The aim of this study was to explicitly assess the importance of visual conditions in SSD. In two experiments, a small computer-generated target made random horizontal jumps. An infrared eye tracker was used to detect the saccade toward the new position, triggering a smaller centripetal displacement of the target. Subjects reported awareness of these intrasaccadic displacements by pressing a key. In the first experiment, the task was performed in both a well-lit environment and in darkness. In the second experiment these conditions were replicated and additional factors such as the contrast of the background and the effect of moving the target spot alone or the target plus the entire background were investigated. Unlike other forms of saccadic suppression, SSD was stronger in the dark, although subjects also had a greater bias to report detections in that condition. Other background manipulations had no effect. The effect of ambient lighting on SSD is small and subtle. Effects of other background manipulations may be overridden by the focusing of attention on a small moving target.
Collapse
Affiliation(s)
- Michael R MacAskill
- Christchurch Movement Disorders and Brain Research Group, and Department of Medicine, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand.
| | | | | |
Collapse
|
12
|
Prablanc C, Desmurget M, Gréa H. Neural control of on-line guidance of hand reaching movements. PROGRESS IN BRAIN RESEARCH 2003; 142:155-70. [PMID: 12693260 DOI: 10.1016/s0079-6123(03)42012-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Orienting one's gaze towards a peripheral target is usually composed of a hypometric primary saccade followed by a secondary 'corrective saccade' triggered automatically (without conscious perception) by the retinal error at the end of the primary saccade and characterised by a short latency. Due to visual suppression during the saccade, the artificial introduction of a random small target jump during that short period remains undetected and triggers after the end of the primary saccade a normal 'corrective saccade'. As a result this procedure simulates an error in the planning of the primary saccade. On the other hand optimum hand pointing (trade-off between movement time and accuracy) is considered classically to involve a natural parallel initiation of saccade and hand response based on a poor peripheral retinal location, and a further amendment of the hand motor response based on the retinal error provided by the simultaneous vision of target and hand during the movement home phase. To test the hypothesis that the retinal feedback at the end of the primary saccade is used to update the visual target position and amend the ongoing hand motor response, we developed a paradigm involving both an optimum hand pointing and an undetected random target perturbation during the orienting saccade. In order to show that the amendments were controlled by a loop comparing the perceived target location with the dynamic hand position signal, vision of the limb was removed at movement onset. Results showed that the movement was smoothly monitored on-line without additional time processing demands. This functional property of flexibility of the ongoing hand motor response, was generalized from movement extent to movement direction. The undetectability of the perturbation at a conscious level was not a prerequisite for motor flexibility, which was further shown to depend on a critical phase of the limb movement beyond which the latter was no longer amendable, even when the limb was visible. The hand pointing flexibility was further generalised from pointing to the more complex hand reaching and grasping process. It was shown that the flexibility of both the transport and the grasp components were closely coupled. A careful analysis of the data suggested the controlled variable to be the general posture of the upper limb, reaching Bernstein's intuitions about redundancy reduction in skeletomotor systems with degrees of freedom in excess. A kinematics study of the motor flexibility of reaching and grasping in a patient with a bilateral optic ataxia favoured the idea of a posterior parietal cortex involvement in the error processing underlying motor flexibility, reaching the same conclusions as other recent studies using either Positron Emission Tomography or Transcranial Magnetic Stimulation.
Collapse
Affiliation(s)
- Claude Prablanc
- INSERM Unité 534, 16 avenue Doyen Lépine, 69676 Bron, France.
| | | | | |
Collapse
|
13
|
Niemeier M, Crawford JD, Tweed DB. Optimal transsaccadic integration explains distorted spatial perception. Nature 2003; 422:76-80. [PMID: 12621435 DOI: 10.1038/nature01439] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 01/20/2003] [Indexed: 11/08/2022]
Abstract
We scan our surroundings with quick eye movements called saccades, and from the resulting sequence of images we build a unified percept by a process known as transsaccadic integration. This integration is often said to be flawed, because around the time of saccades, our perception is distorted and we show saccadic suppression of displacement (SSD): we fail to notice if objects change location during the eye movement. Here we show that transsaccadic integration works by optimal inference. We simulated a visuomotor system with realistic saccades, retinal acuity, motion detectors and eye-position sense, and programmed it to make optimal use of these imperfect data when interpreting scenes. This optimized model showed human-like SSD and distortions of spatial perception. It made new predictions, including tight correlations between perception and motor action (for example, more SSD in people with less-precise eye control) and a graded contraction of perceived jumps; we verified these predictions experimentally. Our results suggest that the brain constructs its evolving picture of the world by optimally integrating each new piece of sensory or motor information.
Collapse
Affiliation(s)
- Matthias Niemeier
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto M5S 1A8, Canada
| | | | | |
Collapse
|
14
|
Simons DJ, Levin DT. What Makes Change Blindness Interesting? PSYCHOLOGY OF LEARNING AND MOTIVATION 2003. [DOI: 10.1016/s0079-7421(03)01009-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Matin L, Li W. Neural model for processing the influence of visual orientation on visually perceived eye level (VPEL). Vision Res 2001; 41:2845-72. [PMID: 11701180 DOI: 10.1016/s0042-6989(01)00150-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An individual line or a combination of lines viewed in darkness has a large influence on the elevation to which an observer sets a target so that it is perceived to lie at eye level (VPEL). These influences are systematically related to the orientation of pitched-from-vertical lines on pitched plane(s) and to the lengths of the lines, as well as to the orientations of lines of 'equivalent pitch' that lie on frontoparallel planes. A three-stage model processes the visual influence: The first stage parallel processes the orientations of the lines utilizing 2 classes of orientation-sensitive neural units in each hemisphere, with the two classes sensitive to opposing ranges of orientations; the signal delivered by each class is of opposite sign in the two hemispheres. The second stage generates the total visual influence from the parallel combination of inputs delivered by the 4 groups of the first stage, and a third stage combines the total visual influence from the second stage with signals from the body-referenced mechanism that contains information about the position and orientation of the eyes, head, and body. The circuit equation describing the combined influence of n separate inputs from stage 1 on the output of the stage 2 integrating neuron is derived for n stimulus lines which possess any combination of orientations and lengths; Each of the n lines is assumed to stimulate one of the groups of orientation-sensitive units in visual cortex (stage 1) whose signals converge on to a dendrite of the integrating neuron (stage 2), and to produce changes in postsynaptic membrane conductance (g(i)) and potential (V(i)) there. The net current from the n dendrites results in a voltage change (V(A)) at the initial segment of the axon of the integrating neuron. Nerve impulse frequency proportional to this voltage change signals the total visual influence on perceived elevation of the visual field. The circuit equation corresponding to the total visual influence for n equal length inducing lines is V(A)= sum V(i)/[n+(g(A)/g(S))], where the potential change due to line i, V(i), is proportional to line orientation, g(A) is the conductance at the axon's summing point, and g(S)=g(i) for each i for the equal length case; the net conductance change due to a line is proportional to the line's length. The circuit equation is interpreted as a basis for quantitative predictions from the model that can be compared to psychophysical measurements of the elevation of VPEL. The interpretation provides the predicted relation for the visual influence on VPEL, V, by n inducing lines each with length l: thus, V=a+[k(i) sum theta(i)/n+(k(2)/l)], where theta(i) is the orientation of line i, a is the effect of the body-referenced mechanism, and k(1) and k(2) are constants. The model's output is fitted to the results of five sets of experiments in which the elevation of VPEL measured with a small target in the median plane is systematically influenced by distantly located 1-line or 2-line inducing stimuli varying in orientation and length and viewed in otherwise total darkness with gaze restricted to the median plane; each line is located at either 25 degrees eccentricity to the left or right of the median plane. The model predicts the negatively accelerated growth of VPEL with line length for each orientation and the change of slope constant of the linear combination rule among lines from 1.00 (linear summation; short lines) to 0.61 (near-averaging; long lines). Fits to the data are obtained over a range of orientations from -30 degrees to +30 degrees of pitch for 1-line visual fields from lengths of 3 degrees to 64 degrees, for parallel 2-line visual fields over the same range of lengths and orientations, for short and long 2-line combinations in which each of the two members may have any orientation (parallel or nonparallel pairs), and for the well-illuminated and fully structured pitchroom. In addition, similar experiments with 2-line stimuli of equivalent pitch in the frontoparallel plane were also fitted to the model. The model accounts for more than 98% of the variance of the results in each case.
Collapse
Affiliation(s)
- L Matin
- Clarence H. Graham Memorial Laboratory of Visual Science, Department of Psychology, Columbia University, New York, NY 1027, USA.
| | | |
Collapse
|
16
|
Pisella L, Gréa H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y. An 'automatic pilot' for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 2000; 3:729-36. [PMID: 10862707 DOI: 10.1038/76694] [Citation(s) in RCA: 448] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We designed a protocol distinguishing between automatic and intentional motor reactions to changes in target location triggered at movement onset. In response to target jumps, but not to a similar change cued by a color switch, normal subjects often could not avoid automatically correcting fast aiming movements. This suggests that an 'automatic pilot' relying on spatial vision drives fast corrective arm movements that can escape intentional control. In a patient with a bilateral posterior parietal cortex (PPC) lesion, motor corrections could only be slow and deliberate. We propose that 'on-line' control is the most specific function of the PPC and that optic ataxia could result from a disruption of automatic hand guidance.
Collapse
Affiliation(s)
- L Pisella
- Espace et Action, INSERM U534, 16 avenue Lépine, C.P. 13, 69676 Bron Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
During rapid eye movements, motion of the stationary world is generally not perceived despite displacement of the whole image on the retina. Here we report that during saccades, human observers sensed visual motion of patterns with low spatial frequency. The effect was greatest when the stimulus was spatiotemporally optimal for motion detection by the magnocellular pathway. Adaptation experiments demonstrated dependence of this intrasaccadic motion percept on activation of direction-selective mechanisms. Even two-dimensional complex motion percepts requiring spatial integration of early motion signals were observed during saccades. These results indicate that the magnocellular pathway functions during saccades, and that only spatiotemporal limitations of visual motion perception are important in suppressing awareness of intrasaccadic motion signals.
Collapse
Affiliation(s)
- E Castet
- Centre de Recherche en Neurosciences Cognitives (CRNC), UPR 9012 du CNRS31, chemin J. Aiguier 13402, Marseille cedex 20, France.
| | | |
Collapse
|
18
|
Gancarz G, Grossberg S. A neural model of saccadic eye movement control explains task-specific adaptation. Vision Res 1999; 39:3123-43. [PMID: 10664809 DOI: 10.1016/s0042-6989(99)00049-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multiple brain learning sites are needed to calibrate the accuracy of saccadic eye movements. This is true because saccades can be made reactively to visual cues, attentively to visual or auditory cues, or planned in response to memory cues using visual, parietal, and prefrontal cortex, as well as superior colliculus, cerebellum, and reticular formation. The organization of these sites can be probed by displacing a visual target during a saccade. The resulting adaptation typically shows incomplete and asymmetric transfer between different tasks. A neural model of saccadic system learning is developed to explain these data, as well as data about saccadic coordinate changes.
Collapse
Affiliation(s)
- G Gancarz
- Department of Cognitive and Neural Systems, Boston University, MA 02215, USA
| | | |
Collapse
|
19
|
Li WX, Matin L. The influence of saccade length on the saccadic suppression of displacement detection. PERCEPTION & PSYCHOPHYSICS 1990; 48:453-8. [PMID: 2247328 DOI: 10.3758/bf03211589] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The decrease in sensitivity to spatial displacement which accompanies a voluntary horizontal saccadic eye movement was measured as a function of the length of the saccade. Threshold for detecting the displacement increased linearly from about 0.3 degrees to 1.2 degrees as saccade length increased from 4 degrees to 12 degrees. The variability (standard deviation) of the discrimination increased linearly with saccade length as well, and hence also linearly with the displacement threshold. These results, along with our previous finding that the increase is not a consequence of the saccadically generated spatiotemporal smearing of the retinal image (Li & Matin, 1990), support the proposal that displacement detection is based on a constant internal signal/noise ratio whose denominator is a measure of the variability of the extraretinal signal regarding eye position, and that the reduction in sensitivity is a result of a transient increase of this variability in the temporal neighborhood of a saccade.
Collapse
Affiliation(s)
- W X Li
- Department of Psychology, Columbia University, New York, NY 10027
| | | |
Collapse
|