1
|
Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69:101808. [PMID: 37473558 DOI: 10.1016/j.smim.2023.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sandra Delgado-Pulido
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
2
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
3
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
4
|
Merani S, Pawelec G, Kuchel GA, McElhaney JE. Impact of Aging and Cytomegalovirus on Immunological Response to Influenza Vaccination and Infection. Front Immunol 2017; 8:784. [PMID: 28769922 PMCID: PMC5512344 DOI: 10.3389/fimmu.2017.00784] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
The number of people over the age of 60 is expected to double by 2050 according to the WHO. This emphasizes the need to ensure optimized resilience to health stressors in late life. In older adults, influenza is one of the leading causes of catastrophic disability (defined as the loss of independence in daily living and self-care activities). Influenza vaccination is generally perceived to be less protective in older adults, with some studies suggesting that the humoral immune response to the vaccine is further impaired in cytomegalovirus (CMV)-seropositive older people. CMV is a β-herpes virus infection that is generally asymptomatic in healthy individuals. The majority of older adults possess serum antibodies against the virus indicating latent infection. Age-related changes in T-cell-mediated immunity are augmented by CMV infection and may be associated with more serious complications of influenza infection. This review focuses on the impact of aging and CMV on immune cell function, the response to influenza infection and vaccination, and how the current understanding of aging and CMV can be used to design a more effective influenza vaccine for older adults. It is anticipated that efforts in this field will address the public health need for improved protection against influenza in older adults, particularly with regard to the serious complications leading to loss of independence.
Collapse
Affiliation(s)
- Shahzma Merani
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Second Department of Internal Medicine, University of Tübingen Medical Center, Tübingen, Germany
| | - George A Kuchel
- UConn Center on Aging, UConn Health, Farmington, CT, United States
| | | |
Collapse
|
5
|
|
6
|
Mocchegiani E, Romeo J, Malavolta M, Costarelli L, Giacconi R, Diaz LE, Marcos A. Zinc: dietary intake and impact of supplementation on immune function in elderly. AGE (DORDRECHT, NETHERLANDS) 2013; 35:839-60. [PMID: 22222917 PMCID: PMC3636409 DOI: 10.1007/s11357-011-9377-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 12/21/2011] [Indexed: 05/07/2023]
Abstract
The diet in the elderly does not provide a sufficient level of nutrients needed to maintain an adequate healthy status leading to micronutrient deficiencies and impaired immune response with subsequent development of degenerative diseases. Nutrient "zinc" is a relevant micronutrient involved in maintaining a good integrity of many body homeostatic mechanisms, including immune efficiency, owing to its requirement for the biological activity of many enzymes, proteins and for cellular proliferation and genomic stability. Old people aged 60-65 years and older have zinc intakes below 50% of the recommended daily allowance on a given day. Many causes can be involved: among them, altered intestinal absorption, inadequate mastication, psychosocial factors, drugs interactions, altered subcellular processes (zinc transporters (Zip and ZnT family), metallothioneins, divalent metal transporter-1). Zinc supplementation may remodel the immune alterations in elderly leading to healthy ageing. Several zinc trials have been carried out with contradictory data, perhaps due to incorrect choice of an effective zinc supplementation in old subjects showing subsequent zinc toxic effects on immunity. Old subjects with specific IL-6 polymorphism (GG allele carriers; named C-) are more prone for zinc supplementation than the entire old population, in whom correct dietary habits with foods containing zinc (Mediterranean diet) may be sufficient in restoring zinc deficiency and impaired immune response. We summarise the main causes of low zinc dietary intake in elderly reporting an update on the impact of zinc supplementation upon the immune response also on the basis of individual IL-6 polymorphism.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Ctr. Nutrition and Ageing, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
During the last few decades, scientific evidence has confirmed a wide range of health benefits related to regular physical activity. How physical activity affects the immune function and infection risk is, however, still under debate. Commonly, intensive exercise suppresses the activity and levels of several immune cells, while other immune functions may be stimulated by moderate physical activity. With this knowledge, the understanding of the relationship between different levels of physical activity on the immune function has been raised as a potential tool to protect health not only in athletes but also in the general population; the mechanisms that translate a physically active lifestyle into good health continue to be investigated. Reviewing the literature, although several outcomes (i.e. the mechanisms by which different levels and duration of physical activity programmes affect numerous cell types and responses) remain unclear, given that the additional benefits encompass healthy habits including exercise, the use of physical activity programmes may result in improved health of elderly populations. Moderate physical activity or moderate-regulated training may enhance the immune function mainly in less fit subjects or sedentary population and the pre-event fitness status also seems to be an important individual factor regarding this relationship. Although adequate nutrition and regular physical activity habits may synergistically improve health, clinical trials in athletes using nutritional supplements to counteract the immune suppression have been inconclusive so far.Further research is necessary to find out to what extent physical activity training can exert an effect on the immune function.
Collapse
|
8
|
Malaguarnera L, Cristaldi E, Malaguarnera M. The role of immunity in elderly cancer. Crit Rev Oncol Hematol 2009; 74:40-60. [PMID: 19577481 DOI: 10.1016/j.critrevonc.2009.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 02/08/2023] Open
Abstract
The increased incidence of malignancies in elderly patients living in industrialized countries has led to both identify the causes that alter the normal homeostatic balance in elderly and designate the specific treatments. The progressive decline of the immune system (immunosenescence) involving cellular and molecular alterations impact both innate and adaptive immunity. The immunosenescence leads to increased incidence of infectious diseases morbidity and mortality as well as heightened rates of other immune disorders such as autoimmunity, cancer, and inflammatory conditions. Here, we summarize the knowledge on the major changes in the immune system associated with aging in primary lymphoid organs as well as a description of molecular mechanisms, and the impact on cancer development.
Collapse
|
9
|
Haase H, Rink L. The immune system and the impact of zinc during aging. IMMUNITY & AGEING 2009; 6:9. [PMID: 19523191 PMCID: PMC2702361 DOI: 10.1186/1742-4933-6-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/12/2009] [Indexed: 01/10/2023]
Abstract
The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.
Collapse
Affiliation(s)
- Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | |
Collapse
|
10
|
Paredes SD, Barriga C, Reiter RJ, Rodríguez AB. Assessment of the Potential Role of Tryptophan as the Precursor of Serotonin and Melatonin for the Aged Sleep-wake Cycle and Immune Function: Streptopelia Risoria as a Model. Int J Tryptophan Res 2009; 2:23-36. [PMID: 22084580 PMCID: PMC3195230 DOI: 10.4137/ijtr.s1129] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the present review we summarize the relationship between the amino acid, tryptophan, the neurotransmitter, serotonin, and the indole, melatonin, with the rhythms of sleep/wake and the immune response along with the possible connections between the alterations in these rhythms due to aging and the so-called “serotonin and melatonin deficiency state.” The decrease associated with aging of the brain and circulating levels of serotonin and melatonin seemingly contributes to the alterations of both the sleep/wake cycle and the immune response that typically accompany old age. The supplemental administration of tryptophan, e.g. the inclusion of tryptophan-enriched food in the diet, might help to remediate these age-related alterations due to its capacity of raise the serotonin and melatonin levels in the brain and blood. Herein, we also summarize a set of studies related to the potential role that tryptophan, and its derived product melatonin, may play in the restoration of the aged circadian rhythms of sleep/wake and immune response, taking the ringdove (Streptopeliarisoria) as a suitable model.
Collapse
Affiliation(s)
- Sergio D Paredes
- Department of Physiology (Neuroimmunophysiology Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
11
|
Premature senescence of T lymphocytes from patients with beta-thalassemia major. Immunol Lett 2008; 122:84-8. [PMID: 19118576 DOI: 10.1016/j.imlet.2008.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 11/20/2022]
Abstract
Several researches have demonstrated a suppressed cell mediated immunity in patients with beta-thalassemia major. To know whether the premature aging of T cells is involved in abnormalities of cell mediated immunity, the biomarkers of immunosenescence including telomerase activity, apoptosis, and the expression of CD28 and CD95 were evaluated in T lymphocytes from beta-thalassemia major patients. The ex vivo spontaneous apoptosis in CD4(+) or CD8(+) T cells from patients and healthy subjects was assessed by an in situ TdT mediated dUTP-biotin nick end labelling (TUNEL) assay after 24h incubation in medium. Flow cytometric data revealed that lymphocytes from beta-thalassemia patients were resistant to spontaneous apoptosis compared to the normal lymphocytes. Moreover, the percentages of TUNEL(+)CD4(+) or TUNEL(+)CD8(+) T cells from patients were significantly lower than those control cells. Quantitative determination of telomerase activity in resting and activated T cells was performed using the Telomeric Repeat Amplification Protocol (TRAP). The results showed a decreased telomerase activity of activated T cells in patients with thalassemia major compared to that in healthy controls. However, the percentages of CD8(+)CD28(-) and CD3(+)CD95(+) T lymphocytes were significantly higher in thalassemia patients, indicating the phenotypes associated with senescent T lymphocytes. These data provide evidences for the occurrence of accelerated aging of T cells in beta-thalassemia major; possibly result in abnormal T cell function leading to suppressed cell mediated immunity.
Collapse
|
12
|
Yuan LG, Deng HB, Chen LH, Li DD, He QY. Reversal of apoptotic resistance by Lycium barbarum glycopeptide 3 in aged T cells. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:212-217. [PMID: 18714818 DOI: 10.1016/s0895-3988(08)60031-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To study whether Lycium barbarum glycopeptide 3 (LBGP3) affects T cell apoptosis in aged mice. METHODS LBGP3 was purified with DEAE cellulose and Sephadex columns. Apoptotic "sub-G1 peak" was detected by flow cytometry and DNA ladder was resolved by agarose gel electrophoresis. Levels of IFN-gamma and IL-10 were measured with specific kits and mRNA expression was detected by RT-PCR. Apoptosis-related proteins of FLIP, FasL, and Bcl-2 were determined by Western blotting. RESULTS LBGP3 was purified from Fructus Lycii water extracts and identified as a 41 kD glycopeptide. Treatment with 200 microg/mL LBGP3 increased the apoptotic rate of T cells from aged mice and showed a similar DNA ladder pattern to that in young T cells. The reversal of apoptotic resistance was involved in down-regulating the expression of Bcl-2 and FLIP, and up-regulating the expression of FasL. CONCLUSION Lycium barbarum glycopeptide 3 reverses apoptotic resistance of aged T cells by modulating the expression of apoptosis-related molecules.
Collapse
Affiliation(s)
- Long-Guo Yuan
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | | | | | | | | |
Collapse
|
13
|
Abstract
Aging is associated with a dysregulation of the immune system known as immunosenescence. Immunosenescence involves cellular and molecular alterations that impact both innate and adaptive immunity, leading to increased incidences of infectious disease morbidity and mortality as well as heightened rates of other immune disorders such as autoimmunity, cancer, and inflammatory conditions. While current data suggests physical activity may be an effective and logistically easy strategy for counteracting immunosenescence, it is currently underutilized in clinical settings. Long-term, moderate physical activity interventions in geriatric populations appear to be associated with several benefits including reduction in infectious disease risk, increased rates of vaccine efficacy, and improvements in both physical and psychosocial aspects of daily living. Exercise may also represent a viable therapy in patients for whom pharmacological treatment is unavailable, ineffective, or inappropriate. The effects of exercise impact multiple aspects of immune response including T cell phenotype and proliferation, antibody response to vaccination, and cytokine production. However, an underlying mechanism by which exercise affects numerous cell types and responses remains to be identified. Given this evidence, an increase in the use of physical activity programs by the healthcare community may result in improved health of geriatric populations.
Collapse
|
14
|
Zhao L, Sun L, Wang H, Ma H, Liu G, Zhao Y. Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J Leukoc Biol 2007; 81:1386-94. [PMID: 17369496 DOI: 10.1189/jlb.0506364] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A progressive decline in the integrity of the immune system is one of the physiologic changes during aging. The frequency of autoimmune diseases or immune disorders increases in the aging population, but the state of regulatory T (Treg) cells in aged individuals has not been well determined. In the present study, we investigated the levels, phenotypes, and function of CD4(+)CD25(+) Treg cells in Balb/c mice, which were older than 20 months. Significantly enhanced percentages of CD4(+)CD25(+) Treg cells in the periphery (blood, spleen, and lymph nodes) of the aged mice were observed. These Treg cells showed modified Vbeta family distribution, reduced levels of CD45 receptor B and CD62 ligand molecules, as well as normal levels of forkhead box p3. However, when the inhibiting function of Treg cells was assayed in the in vitro assays and in a delayed-type hypersensitivity (DTH) model, CD4(+)CD25(+) Treg cells of aged mice displayed significantly lower inhibiting ability on alloantigen-induced DTH reaction or cytokine productions (IL-2 and IFN-gamma) but not cell proliferation of effector T cells, as compared with CD4(+)CD25(+) Treg cells of young mice. In addition, the percentages of CD4(+)CD8(-)CD25(+) Treg cells in the thymi of aged mice increased significantly, but their total cell numbers decreased markedly in these mice. Our present studies indicated collectively that the percentages, phenotypes, the size of TCR repertoire, and function of CD4(+)CD25(+) Treg cells were altered significantly with aging in mice. The functional defects of CD4(+)CD25(+) Treg cells may shed light on the role of CD4(+)CD25(+) Treg cells in the increased sensitivity to autoimmune diseases of aged populations.
Collapse
Affiliation(s)
- Liang Zhao
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beisihuan Xi Road 25, Beijing, China 100080
| | | | | | | | | | | |
Collapse
|
15
|
Colonna-Romano G, Aquino A, Bulati M, Lio D, Candore G, Oddo G, Scialabba G, Vitello S, Caruso C. Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence. Exp Gerontol 2005; 39:1439-46. [PMID: 15501013 DOI: 10.1016/j.exger.2004.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 06/24/2004] [Accepted: 07/15/2004] [Indexed: 11/22/2022]
Abstract
Gamma/delta T lymphocytes cells recognize the antigen in a non-classical way and are considered the third branch of the immune system devoted to defend the integrity of the body. Ageing is characterized by an impairment of the main way of protection (the adaptive branch) but, successfully aged people show compensatory mechanisms of defense such as proneness to inflammation. Moreover, very old subjects show an increased number of NK cells. We have previously demonstrated that gamma delta T lymphocytes are reduced in elderly. In the present paper we have studied some characteristics of these cells to evaluate the possibility that these cells might balance the decreased action of the adaptive branch in successfully aged people. Cytofluorimetric analysis of cells collected from young, old and centenarian subjects has been used to evaluate the ability of these cells to expand in vitro. Here we demonstrate that gamma delta T cells are impaired in the ability to proliferate to different stimuli such as isopentenyl pyrophoshate, that select gamma delta T lymphocytes bearing delta 2 chain, other than to phytohemagglutinin and anti-CD3 that are polyclonal activators. Moreover, we demonstrate that gamma delta T cells in aged and centenarians show an enhanced sensitivity to undergo apoptosis induced both by alpha-Fas and TNF-alpha. All together these data suggest that gamma delta T lymphocytes are impaired in elderly and suggest that the reduced ability to proliferate and the reduced number of circulating gamma delta T lymphocytes is due to the proneness to apoptosis. Finally on the basis of these data, we conclude that gamma delta T lymphocytes, do not participate in the remodeling of the immune system due to the reduction of classical T cell response and replacement by NK cells in elderly.
Collapse
Affiliation(s)
- Giuseppina Colonna-Romano
- Gruppo di Studio sull'Imunosenescenza, Dipartimento di Biopatologia e Metodologie Biomediche, Università degli Studi di Palermo, Corso Tukory, 211, 90134 Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Audisio RA, Bozzetti F, Gennari R, Jaklitsch MT, Koperna T, Longo WE, Wiggers T, Zbar AP. The surgical management of elderly cancer patients. Eur J Cancer 2004; 40:926-38. [PMID: 15093567 DOI: 10.1016/j.ejca.2004.01.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 01/19/2004] [Indexed: 12/13/2022]
Abstract
Although cancer in the elderly is extremely common, few health professionals in oncology are familiar with caring for series of oncogeriatric patients. Surgery is at present the first choice, but is frequently delivered suboptimally: under-treatment is justified by concerns about unsustainable toxicity, whilst over-treatment is explained by the lack of knowledge in optimising preoperative risk assessment. This article summarises the point of view of the Surgical Task Force @ SIOG (International Society for Geriatric Oncology), pointing out differences from, and similarities to, the younger cohorts of cancer patients, and highlighting the latest updates and trends specifically related to senior cancer patients.
Collapse
Affiliation(s)
- R A Audisio
- University of Liverpool, Whiston Hospital, Prescot, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Brzezińska A, Magalska A, Szybińska A, Sikora E. Proliferation and apoptosis of human CD8+CD28+ and CD8+CD28− lymphocytes during aging. Exp Gerontol 2004; 39:539-44. [PMID: 15050288 DOI: 10.1016/j.exger.2003.09.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 08/04/2003] [Accepted: 09/16/2003] [Indexed: 11/19/2022]
Abstract
It is commonly believed that the age-related decrease in the ratio CD28(+)/CD28(-) among CD8(+) T cells reflects replicative senescence of the lymphocytes. To verify this claim we measured the proliferation of CD8(+)CD28(+) and CD8(+)CD28(-) subsets by flow cytometry after PHA treatment of mononuclear lymphocytes from donors of different age, including centenarians. The fraction of CD28(+) cells decreases from ca. 80 to 40% (young to centenarians, respectively) with increasing age of the donors. Stimulation by PHA results in an increase in the ratio of CD28(+) relative to CD28(-) in all age groups. We found that not only CD8(+)CD28(+) but also CD8(+)CD28(-) cells were capable of proliferation. Moreover, the fraction of proliferation-competent CD28(-) cells was higher in the older donors compared with the younger ones. While PHA treatment led to apoptosis (as measured by DNA content and caspase-3 activation) of more than 20% of all lymphocytes, in the CD8(+) subset only ca. 10% died, irrespective of their CD28 status. Altogether, we showed over-representation of proliferating CD8(+)CD28(-) cells in aged people, which might not be particularly prone to undergo apoptosis.
Collapse
Affiliation(s)
- Agnieszka Brzezińska
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
18
|
Itzhaki O, Skutelsky E, Kaptzan T, Sinai J, Michowitz M, Huszar M, Leibovici J. Ageing–apoptosis relation in murine spleen. Mech Ageing Dev 2003; 124:999-1012. [PMID: 14659589 DOI: 10.1016/s0047-6374(03)00171-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Relatively few studies have been published with regard to modification of apoptosis in normal tissues as a function of ageing. The majority of these studies demonstrated an increase in programmed cell death (PCD) with age. However, opposite results, namely loss of apoptotic control with age, have also been reported. In the present study, we examined proliferation and apoptotic cell death in spleens of C57/BL mice of different ages. A tendency towards decrease in cell proliferative capacity was seen with age. By contrast, apoptosis was increased in spleens from aged animals. Moreover, the proliferative cell/apoptotic cell ratio decreased in function of age. Ladder type DNA degradation was much more pronounced in DNA derived from splenocytes of old mice. These results were supported by a decrease of Bcl-2 and an increase in Fas receptor expression as well as by increased activation of caspases 8, 3 and 9 in splenocytes from aged animals. In addition, cell surface molecular markers recognizable by macrophages in apoptotic cells, namely decreased sialic acid concomitant with increased unmasking of galactose residues, were more pronounced on splenocytes from old mice than on those from young animals. In addition to the experimental evidence which supports a role of apoptotic cell death in ageing, a series of theoretical reasoning, which could also favor this possibility, are discussed.
Collapse
Affiliation(s)
- Orit Itzhaki
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
19
|
Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, Dodi AI, Travers P, Pawelec G. Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 2003; 23:247-57. [PMID: 12959217 DOI: 10.1023/a:1024580531705] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Longitudinal studies suggest that a set of immune parameters including high percentages of peripheral CD8+, CD28-, CD57+ T lymphocytes, low CD4 and B cell counts, and poor T cell proliferative responses to mitogens is associated with decreased remaining longevity in the free-living very elderly (> 85 years). This combination of immune parameters was also significantly associated with an inverted CD4/CD8 ratio and cytomegalovirus seropositivity. Here, using tetramer technology, we show markedly increased numbers of CD8+ T cells bearing receptors for one single CMV epitope in the very elderly. Moreover, the fraction of these tetramer-reactive cells secreting interferon-gamma after specific antigenic stimulation was significantly lower in the old than in the young, as was the percentage of CD28-positive cells in this population. Therefore, we conclude that marked expansions of CMV-specific CD8+ T cells have occurred and that the obsession of a large fraction of the entire CD8+ T cell subset with one single viral epitope may contribute to the increased incidence of infectious disease in the elderly by shrinking the T cell repertoire available for responses to other antigens.
Collapse
Affiliation(s)
- Qin Ouyang
- Tuebingen Ageing and Tumour Immunology Group, Section for Transplantation-Immunology and Immunohematology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Apoptosis, or programmed cell death, is a phenomenon that is integral to development and cellular homeostasis. In the last decade, many of the essential molecules and pathways that control this phenomenon have been elucidated. Because apoptosis is involved in almost all physiologic and pathologic processes, the understanding of its regulation has significant clinical ramifications. This article reviews the basic understanding of programmed cell death in terms of the effector molecules and pathways. Areas of interest to plastic surgeons are reviewed as they pertain to apoptosis. These areas include allotransplantation, craniofacial and limb development, flap survival, wound healing, stem cell science, and physiologic aging. These topics have not yet been studied extensively in the context of cell death. In this review article, other related and more comprehensively studied scientific areas are used to extrapolate their relevance to apoptosis. Apoptosis is an increasingly better understood process. With the knowledge of how programmed cell death is controlled, combined with the improved ability to effectively perform genetic manipulation and to design specific chemical approaches, apoptosis is gaining clinical relevance. In the next few years, practical clinical breakthroughs will help the medical community to understand the phenomenon of apoptosis and how it relates to the needs of patients.
Collapse
Affiliation(s)
- Brian R Gastman
- Department of Otolaryngology, University of Pittsburgh Shool of Medicine, Pa, USA.
| | | | | |
Collapse
|
21
|
Aickelin U, Bentley P, Cayzer S, Kim J, McLeod J. Danger Theory: The Link between AIS and IDS? LECTURE NOTES IN COMPUTER SCIENCE 2003. [DOI: 10.1007/978-3-540-45192-1_15] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
di Carlo E, Iezzi M, Pannellini T, Zaccardi F, Modesti A, Forni G, Musiani P. Neutrophils in anti-cancer immunological strategies: old players in new games. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:739-48. [PMID: 11798500 DOI: 10.1089/152581601317210836] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review highlights the new "immunological identity" of neutrophils within the cytokine network and their role in biology of diseases, particularly in tumor biology. The latest preclinical evidence of their involvement in anti-cancer immunotherapeutic and prophylactic strategies will be discussed with particular reference to the real possibilities of transferring experimental results to a clinical setting.
Collapse
Affiliation(s)
- E di Carlo
- Department of Oncology and Neurosciences, G. d'Annunzio University of Chieti, 66100 Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
As humans age, their morbidity and mortality from infection increases, their response to vaccination declines and they have an increased incidence of inflammatory diseases and cancer. The reasons for these effects are clearly complex, but reduced efficiency of the innate and adaptive immune system is likely to be important in the pathology of old age. Age-related changes in the adaptive immune system are well-documented and include alterations in T cell phenotype and effector functions and a reduced ability of B cells to produce high affinity antibody. In contrast, the innate immune system has been less well researched and the perception amongst many immunogerontologists is that this branch of the immune system is only moderately affected by age. However, it is becoming increasingly clear that the adaptive and innate immune systems co-operate at several levels to ensure the optimal immune response and any decline in adaptive immunity will impact upon the function of the innate immune system and vice-versa. Here, we review the literature concerning intrinsic age-related changes in neutrophil responses and consider how changes in lymphocyte function with age might further compromise efficiency of neutrophil function.
Collapse
Affiliation(s)
- J M Lord
- MRC Centre for Immune Regulation, Birmingham University Medical School, B152TT, Birmingham, UK.
| | | | | | | | | |
Collapse
|