1
|
Serebryannyy L, Misteli T. Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging. J Cell Biol 2017; 217:21-37. [PMID: 29051264 PMCID: PMC5748986 DOI: 10.1083/jcb.201706061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Serebryannyy and Misteli provide a perspective on how protein sequestration at the inner nuclear membrane and nuclear lamina might influence aging. Despite the extensive description of numerous molecular changes associated with aging, insights into the driver mechanisms of this fundamental biological process are limited. Based on observations in the premature aging syndrome Hutchinson–Gilford progeria, we explore the possibility that protein regulation at the inner nuclear membrane and the nuclear lamina contributes to the aging process. In support, sequestration of nucleoplasmic proteins to the periphery impacts cell stemness, the response to cytotoxicity, proliferation, changes in chromatin state, and telomere stability. These observations point to the nuclear periphery as a central regulator of the aging phenotype.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Maxwell PH. Growth conditions that increase or decrease lifespan in Saccharomyces cerevisiae lead to corresponding decreases or increases in rates of interstitial deletions and non-reciprocal translocations. BMC Genet 2016; 17:140. [PMID: 27769161 PMCID: PMC5073950 DOI: 10.1186/s12863-016-0447-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulation of DNA damage, mutations, and chromosomal abnormalities is associated with aging in many organisms. How directly various forms of genomic instability contribute to lifespan in different aging contexts is still under active investigation. Testing whether treatments that alter lifespan change mutation rates early during lifespan could provide support for genomic instability being at least partly responsible for changes in the rates of aging. RESULTS Rates of mutations, direct repeat recombination, or retrotransposition were measured in young cell populations from two strain backgrounds of Saccharomyces cerevisiae exposed to several growth conditions that shortened or extended yeast chronological lifespan. In most cases, rates of genomic instability did not consistently increase in young cells exposed to lifespan-shortening conditions or decrease in young cells exposed to lifespan-extending conditions. The mutation rate for a copy of the CAN1 gene integrated onto the right arm of chromosome VIII did show expected increases or decreases in young cells in the lifespan-altering growth conditions. These mutations were determined to frequently result from non-allelic recombination events, including non-reciprocal translocations, and were more strongly stimulated by using hydroxyurea to induce DNA replication stress than by the general DNA-damaging agent methyl methanesulfonate. CONCLUSIONS The results are not consistent with changes in mutation rates in general mediating the influence of alternative growth conditions on yeast lifespan. The strong correlation between non-allelic recombination events and the effects of the alternative growth conditions on lifespan indicates that genomic instability due to changes in recombination rates may directly contribute to the rate of aging or that lifespan-altering treatments may consistently increase or decrease DNA replication stress. These results further support the connection between DNA replication stress and aging observed in multiple organisms. Chromosomal abnormalities that likely arise from recombination events are more prevalent in multiple human tissues with increasing age, and further work in yeast could help to define mechanisms responsible for this observation and the impact of chromosomal abnormalities on aging.
Collapse
Affiliation(s)
- Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, CBIS Room 2123, 110 8th Street, Troy, 12180, NY, USA.
| |
Collapse
|
3
|
Marthandan S, Menzel U, Priebe S, Groth M, Guthke R, Platzer M, Hemmerich P, Kaether C, Diekmann S. Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence. Biol Res 2016; 49:34. [PMID: 27464526 PMCID: PMC4963952 DOI: 10.1186/s40659-016-0095-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023] Open
Abstract
Background Cellular senescence is induced either internally, for example by replication exhaustion and cell division, or externally, for example by irradiation. In both cases, cellular damages accumulate which, if not successfully repaired, can result in senescence induction. Recently, we determined the transcriptional changes combined with the transition into replicative senescence in primary human fibroblast strains. Here, by γ-irradiation we induced premature cellular senescence in the fibroblast cell strains (HFF and MRC-5) and determined the corresponding transcriptional changes by high-throughput RNA sequencing. Results Comparing the transcriptomes, we found a high degree of similarity in differential gene expression in replicative as well as in irradiation induced senescence for both cell strains suggesting, in each cell strain, a common cellular response to error accumulation. On the functional pathway level, “Cell cycle” was the only pathway commonly down-regulated in replicative and irradiation-induced senescence in both fibroblast strains, confirming the tight link between DNA repair and cell cycle regulation. However, “DNA repair” and “replication” pathways were down-regulated more strongly in fibroblasts undergoing replicative exhaustion. We also retrieved genes and pathways in each of the cell strains specific for irradiation induced senescence. Conclusion We found the pathways associated with “DNA repair” and “replication” less stringently regulated in irradiation induced compared to replicative senescence. The strong regulation of these pathways in replicative senescence highlights the importance of replication errors for its induction. Electronic supplementary material The online version of this article (doi:10.1186/s40659-016-0095-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiva Marthandan
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.
| | - Uwe Menzel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Steffen Priebe
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Marco Groth
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Peter Hemmerich
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christoph Kaether
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Stephan Diekmann
- Leibniz Institute for Age Research-Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| |
Collapse
|
4
|
Vyjayanti VN, Swain U, Rao KS. Age-related decline in DNA polymerase β activity in rat brain and tissues. Neurochem Res 2012; 37:991-5. [PMID: 22219134 DOI: 10.1007/s11064-011-0694-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/18/2011] [Accepted: 12/29/2011] [Indexed: 11/29/2022]
Abstract
Fidelity of DNA polymerases is vital for maintaining genomic integrity. Deficient DNA repair leads to age related disorders or cancer. If the age at which the decline in activity of predominant DNA repair enzymes starts is identified, and the deficient proteins supplemented, then the manifestation of these diseases can be delayed promoting healthy aging. DNA polymerase β (pol β) is a predominant repair enzyme in brain. DNA pol β activity declines with age in rat brain/neurons but the exact age during the life time of rat when this decline begins is not known, and comparison of this activity was not made between post mitotic and proliferating tissues therefore the pattern of pol β with age was studied in rat brain and tissues. The decline in pol β activity started between 30 and 45 days postnatal in all the tissues. Post mitotic tissues showed pronounced decline than the proliferating tissues.
Collapse
Affiliation(s)
- V N Vyjayanti
- Department of Biochemistry, University of Hyderabad, Hyderabad, Andhra Pradesh 500046, India
| | | | | |
Collapse
|
5
|
Patterson D, Cabelof DC. Down syndrome as a model of DNA polymerase beta haploinsufficiency and accelerated aging. Mech Ageing Dev 2011; 133:133-7. [PMID: 22019846 DOI: 10.1016/j.mad.2011.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 02/07/2023]
Abstract
Down syndrome is a condition of intellectual disability characterized by accelerated aging. As with other aging syndromes, evidence accumulated over the past several decades points to a DNA repair defect inherent in Down syndrome. This evidence has led us to suggest that Down syndrome results in reduced DNA base excision repair (BER) capacity, and that this contributes to the genomic instability and the aging phenotype of Down syndrome. We propose important roles for microRNA and/or folate metabolism and oxidative stress in the dysregulation of BER in Down syndrome. Further, we suggest these pathways are involved in the leukemogenesis of Down syndrome. We have reviewed the role of BER in the processing of oxidative stress, and the impact of folate depletion on BER capacity. Further, we have reviewed the role that loss of BER, specifically DNA polymerase beta, plays in accelerating the rate of aging. Like that seen in the DNA polymerase beta heterozygous mouse, the aging phenotype of Down syndrome is subtle, unlike the aging phenotypes seen in the classical progeroid syndromes and mouse models of aging. As such, Down syndrome may provide a model for elucidating some of the basic mechanisms of aging.
Collapse
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, University of Denver, Denver, CO, USA
| | | |
Collapse
|
6
|
Freitas AA, de Magalhães JP. A review and appraisal of the DNA damage theory of ageing. Mutat Res 2011; 728:12-22. [PMID: 21600302 DOI: 10.1016/j.mrrev.2011.05.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/25/2023]
Abstract
Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster depletion of stem cells, which in turn contributes to accelerated ageing. Genetic manipulations of DNA repair pathways in mice further strengthen this view and also indicate that disruption of specific pathways, such as nucleotide excision repair and non-homologous end joining, is more strongly associated with premature ageing phenotypes. Delaying ageing in mice by decreasing levels of DNA damage, however, has not been achieved yet, perhaps due to the complexity inherent to DNA repair and DNA damage response pathways. Another open question is whether DNA repair optimization is involved in the evolution of species longevity, and we suggest that the way cells from different organisms respond to DNA damage may be crucial in species differences in ageing. Taken together, the data suggest a major role of DNA damage in the modulation of longevity, possibly through effects on cell dysfunction and loss, although understanding how to modify DNA damage repair and response systems to delay ageing remains a crucial challenge.
Collapse
Affiliation(s)
- Alex A Freitas
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK; School of Computing and Centre for BioMedical Informatics, University of Kent, Canterbury, CT2 7NF, UK.
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
7
|
Simon K, Mukundan A, Dewundara S, Van Remmen H, Dombkowski AA, Cabelof DC. Transcriptional profiling of the age-related response to genotoxic stress points to differential DNA damage response with age. Mech Ageing Dev 2009; 130:637-47. [PMID: 19679149 PMCID: PMC3285901 DOI: 10.1016/j.mad.2009.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 07/16/2009] [Accepted: 07/24/2009] [Indexed: 11/30/2022]
Abstract
The p53 DNA damage response attenuated with age and we have evaluated downstream factors in the DNA damage response. In old animals p21 protein accumulates in the whole cell fraction but significantly declines in the nucleus, which may alter cell cycle and apoptotic programs in response to DNA damage. We evaluated the transcriptional response to DNA damage in young and old and find 2692 genes are differentially regulated in old compared to young in response to oxidative stress (p<0.005). As anticipated, the transcriptional profile of young mice is consistent with DNA damage induced cell cycle arrest while the profile of old mice is consistent with cell cycle progression in the presence of DNA damage, suggesting the potential for catastrophic accumulation of DNA damage at the replication fork. Unique sets of DNA repair genes are induced in response to damage in old and young, suggesting the types of damage accumulating differs between young and old. The DNA repair genes upregulated in old animals point to accumulation of replication-dependent DNA double strand breaks (DSB). Expression data is consistent with loss of apoptosis following DNA damage in old animals. These data suggest DNA damage responses differ greatly in young and old animals.
Collapse
Affiliation(s)
- Kirk Simon
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48084, United States
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Cabelof DC, Raffoul JJ, Ge Y, Van Remmen H, Matherly LH, Heydari AR. Age-related loss of the DNA repair response following exposure to oxidative stress. J Gerontol A Biol Sci Med Sci 2006; 61:427-34. [PMID: 16720738 DOI: 10.1093/gerona/61.5.427] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Young (4- to 6-month-old) and aged (24- to 28-month-old) mice were exposed to 2-nitropropane (2-NP), a DNA oxidizing agent, and the ability to induce DNA polymerase beta (beta-pol) and AP endonuclease (APE) was determined. In contrast to the inducibility of these gene products in response to oxidative damage in young mice, aged mice showed a lack of inducibility of beta-pol and APE. APE protein level and endonuclease activity were both reduced 40% (p<.01) in response to 2-NP. Accordingly, the accumulation of DNA repair intermediates in response to 2-NP differed with age. Young animals accumulated 3'OH-containing DNA strand breaks, whereas the aged animals did not. A role for p53 in the difference in DNA damage response with age is suggested by the observation that the accumulation of p53 protein in response to DNA damage in young animals was absent in the aged animals. Our results are consistent with a reduced ability to process DNA damage with age.
Collapse
Affiliation(s)
- Diane C Cabelof
- Developmental Therapeutics Program, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Stuart JA, Brown MF. Mitochondrial DNA maintenance and bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:79-89. [PMID: 16473322 DOI: 10.1016/j.bbabio.2006.01.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 01/03/2006] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
Oxidative phosphorylation requires assembly of the protein products of both mitochondrial and of nuclear genomes into functional respiratory complexes. Cellular respiration can be compromised when mitochondrial DNA (mtDNA) sequences are corrupted. Oxidative damage resulting from reactive oxygen species (ROS) produced during respiration is probably a major source of mitochondrial genomic instability leading to respiratory dysfunction. Here, we review mechanisms of mitochondrial ROS production, mtDNA damage and its relationship to mitochondrial dysfunction. We focus particular attention on the roles of mtDNA repair enzymes and processes by which the integrity of the mitochondrial genome is maintained and dysfunction prevented.
Collapse
Affiliation(s)
- Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada L2S 3A1.
| | | |
Collapse
|
11
|
Miura Y. Oxidative stress, radiation-adaptive responses, and aging. JOURNAL OF RADIATION RESEARCH 2004; 45:357-372. [PMID: 15613781 DOI: 10.1269/jrr.45.357] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organisms living in an aerobic environment were forced to evolve effective cellular strategies to detoxify reactive oxygen species. Besides diverse antioxidant enzymes and compounds, DNA repair enzymes, and disassembly systems, which remove damaged proteins, regulation systems that control transcription, translation, and activation have also been developed. The adaptive responses, especially those to radiation, are defensive regulation mechanisms by which oxidative stress (conditioning irradiation) elicits a response against damage because of subsequent stress (challenging irradiation). Although many researchers have investigated these molecular mechanisms, they remain obscure because of their complex signaling pathways and the involvement of various proteins. This article reviews the factors concerned with radiation-adaptive response, the signaling pathways activated by conditioning irradiation, and the effects of aging on radiation-adaptive response. The proteomics approach is also introduced, which is a useful method for studying stress response in cells.
Collapse
Affiliation(s)
- Yuri Miura
- Redox regulation research group, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku. Tokyo, Japan.
| |
Collapse
|