1
|
Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies. Future Med Chem 2016; 8:1259-90. [PMID: 27442231 DOI: 10.4155/fmc-2015-0017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human telomeric DNA (hTelo), present at the ends of chromosomes to protect their integrity during cell division, comprises tandem repeats of the sequence d(TTAGGG) which is known to form a G-quadruplex secondary structure. This unique structural formation of DNA is distinct from the well-known helical structure that most genomic DNA is thought to adopt, and has recently gained prominence as a molecular target for new types of anticancer agents. In particular, compounds that can stabilize the intramolecular G-quadruplex formed within the human telomeric DNA sequence can inhibit the activity of the enzyme telomerase which is known to be upregulated in tumor cells and is a major contributor to their immortality. This provides the basis for the discovery and development of small molecules with the potential for selective toxicity toward tumor cells. This review summarizes the various families of small molecules reported in the literature that have telomeric quadruplex stabilizing properties, and assesses the potential for compounds of this type to be developed as novel anticancer therapies. A future perspective is also presented, emphasizing the need for researchers to adopt approaches that will allow the discovery of molecules with more drug-like properties in order to improve the chances of lead molecules reaching the clinic in the next decade.
Collapse
|
2
|
Reddel RR. Telomere maintenance mechanisms in cancer: clinical implications. Curr Pharm Des 2015; 20:6361-74. [PMID: 24975603 PMCID: PMC4262939 DOI: 10.2174/1381612820666140630101047] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 01/20/2023]
Abstract
The presence of immortal cell populations with an up-regulated telomere maintenance mechanism (TMM) is an almost universal characteristic of cancers, whereas normal somatic cells are unable to prevent proliferation-associated telomere shortening and have a limited proliferative potential. TMMs and related aspects of telomere structure and function therefore appear to be ideal targets for the development of anticancer therapeutics. Such treatments would be targeted to a specific cancer-related molecular abnormality, and also be broad-spectrum in that they would be expected to be potentially applicable to most cancers. However, the telomere biology of normal and malignant human cells is a relatively young research field with large numbers of unanswered questions, so the optimal design of TMM-targeted therapeutic approaches remains unclear. This review outlines the opportunities and challenges presented by telomeres and TMMs for clinical management of cancer.
Collapse
Affiliation(s)
- Roger R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia.
| |
Collapse
|
3
|
Bower K, Napier CE, Cole SL, Dagg RA, Lau LMS, Duncan EL, Moy EL, Reddel RR. Loss of wild-type ATRX expression in somatic cell hybrids segregates with activation of Alternative Lengthening of Telomeres. PLoS One 2012. [PMID: 23185534 PMCID: PMC3502299 DOI: 10.1371/journal.pone.0050062] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT.
Collapse
Affiliation(s)
- Kylie Bower
- Cancer Research Unit, Children’s Medical Research Institute, Westmead, New South Wales, Australia
| | - Christine E. Napier
- Cancer Research Unit, Children’s Medical Research Institute, Westmead, New South Wales, Australia
| | - Sara L. Cole
- Cancer Research Unit, Children’s Medical Research Institute, Westmead, New South Wales, Australia
| | - Rebecca A. Dagg
- Children’s Cancer Research Unit, Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - Loretta M. S. Lau
- Children’s Cancer Research Unit, Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Emma L. Duncan
- Cancer Research Unit, Children’s Medical Research Institute, Westmead, New South Wales, Australia
| | - Elsa L. Moy
- Cancer Research Unit, Children’s Medical Research Institute, Westmead, New South Wales, Australia
| | - Roger R. Reddel
- Cancer Research Unit, Children’s Medical Research Institute, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
4
|
Chung I, Osterwald S, Deeg KI, Rippe K. PML body meets telomere: the beginning of an ALTernate ending? Nucleus 2012; 3:263-75. [PMID: 22572954 PMCID: PMC3414403 DOI: 10.4161/nucl.20326] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The unlimited proliferation potential of cancer cells requires the maintenance of their telomeres. This is frequently accomplished by reactivation of telomerase. However, in a significant fraction of tumors an alternative lengthening of telomeres (ALT) mechanism is active. The molecular mechanism of the ALT pathway remains elusive. In particular, the role of characteristic complexes of promyelocytic leukemia nuclear bodies (PML-NBs) with telomeres, the ALT-associated PML-NBs (APBs), is currently under investigation. Here, we review recent findings on the assembly, structure and functions of APBs. It is discussed how genomic aberrations in ALT-positive cancer cells could result in the formation of APBs and in ALT activity. We conclude that they are important functional intermediates in what is considered the canonical ALT pathway and discuss deregulations of cellular pathways that contribute to the emergence of the ALT phenotype.
Collapse
Affiliation(s)
- Inn Chung
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| | | | | | | |
Collapse
|
5
|
Mesenchymal stem cell and nucleus pulposus cell coculture modulates cell profile. Clin Orthop Relat Res 2009; 467:3263-72. [PMID: 19034596 PMCID: PMC2772905 DOI: 10.1007/s11999-008-0623-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 11/04/2008] [Indexed: 01/31/2023]
Abstract
Spontaneous cell fusion can occur in cocultured stem cells. We examined whether telomerase activity change and cell fusion occurred in mesenchymal stem cell (MSC) and nucleus pulposus cell (NPC) coculture. MSCs and NPCs were labeled with PKH26 and PKH67 dyes and cocultured at a 50:50 ratio. An equal number of MSCs or NPCs were used as the control. After 14 days, cells were evaluated by cell growth, telomerase activity, quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry, and histologic observation. Cell fusion was confirmed by microscopic observation and fluorescence-activated cell sorter (FACS) analysis. The results suggested cell growth rate and telomerase activity were higher in cocultured cells than in NPCs cultured alone. The mRNA expression levels of the Type II collagen and aggrecan were elevated in cocultured cells. Immunohistochemical analysis revealed positive staining for Type II collagen and keratan sulfate in NPCs cultured alone and in a proportion of cocultured cells. Histologic observation revealed binucleated cocultured cells expressed both PKH dyes in the same location and slide focus. The FACS analysis revealed 42% of cocultured cells were double-stained. Cocultured cells partially maintained the NPC phenotype. The partially maintained phenotype of the NPCs may be attributable to spontaneous cell fusion in association with increased telomerase activity.
Collapse
|
6
|
De Boeck G, Forsyth RG, Praet M, Hogendoorn PCW. Telomere-associated proteins: cross-talk between telomere maintenance and telomere-lengthening mechanisms. J Pathol 2009; 217:327-44. [PMID: 19142887 DOI: 10.1002/path.2500] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeres, the ends of eukaryotic chromosomes, have been the subject of intense investigation over the last decade. As telomere dysfunction has been associated with ageing and developing cancer, understanding the exact mechanisms regulating telomere structure and function is essential for the prevention and treatment of human cancers and age-related diseases. The mechanisms by which cells maintain telomere lengthening involve either telomerase or the alternative lengthening of the telomere pathway, although specific mechanisms of the latter and the relationship between the two are as yet unknown. Many cellular factors directly (TRF1/TRF2) and indirectly (shelterin-complex, PinX, Apollo and tankyrase) interact with telomeres, and their interplay influences telomere structure and function. One challenge comes from the observation that many DNA damage response proteins are stably associated with telomeres and contribute to several other aspects of telomere function. This review focuses on the different components involved in telomere maintenance and their role in telomere length homeostasis. Special attention is paid to understanding how these telomere-associated factors, and mainly those involved in double-strand break repair, perform their activities at the telomere ends.
Collapse
Affiliation(s)
- Gitte De Boeck
- N. Goormaghtigh Institute of Pathology, University Hospital Ghent, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
7
|
Ide T. [Mechanism of cell proliferation--cell cycle, oncogenes, and senescence]. YAKUGAKU ZASSHI 2007; 126:1087-115. [PMID: 17077613 DOI: 10.1248/yakushi.126.1087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell proliferation is regulated through a transition between the G0 phase and cell cycle. We isolated a mammalian temperature-sensitive mutant cell line defective in the function from the G0 phase to cell cycle. Senescent human somatic cells fail to enter into the cell cycle from the G0 phase with stimulation by any growth factor. Telomere shortening was found to be a cause of cellular senescence, and reexpression of telomerase immortalized human somatic cells. Immortalized human somatic cells showed normal phenotypes and were useful not only for basic research but also for clinical and applied fields. The importance of p53 and p21 activation/induction i now well accepted in the signal transduction process from telomere shortening to growth arrest, but the precise mechanism is largely unknown as yet. We found that the MAP kinase cascade and histone acetylase have an important role in the signaling process to express p21. Tumor tissues and cells were found to have strong telomerase activity, while most normal somatic human tissues showed very weak or no activity. Telomerase activity was shown to be a good marker for early tumor diagnosis because significant telomerase activity was detected in very early tumors or even in some precancerous tissues compared with adjacent normal tissues. Telomere/telomerase is a candidate target for cancer chemotherapeutics, and an agent that abrogated telomere functions was found to kill tumor cells effectively by inducing apoptosis whereas it showed no effect on the viability of normal cells.
Collapse
Affiliation(s)
- Toshinori Ide
- Department of Cellular and Molecular Biology, Division of Integrated Medical Science, Graduated School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan.
| |
Collapse
|
8
|
Dessain SK, Adekar SP, Stevens JB, Carpenter KA, Skorski ML, Barnoski BL, Goldsby RA, Weinberg RA. High efficiency creation of human monoclonal antibody-producing hybridomas. J Immunol Methods 2004; 291:109-22. [PMID: 15345310 DOI: 10.1016/j.jim.2004.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Revised: 03/02/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
The native human antibody repertoire holds unexplored potential for the development of novel monoclonal antibody therapeutics. Current techniques that fuse immortal cells and primary B-lymphocytes are sub-optimal for the routine production of hybridomas that secrete human monoclonal antibodies. We have found that a murine cell line that ectopically expresses murine interleukin-6 (mIL-6) and human telomerase (hTERT) efficiently forms stable human antibody-secreting heterohybridomas through cell fusion with primary human B-lymphocytes. The hybrid cells maintain secretion of human antibodies derived from the primary B-lymphocytes through multiple rounds of cloning. Using splenic B-lymphocytes from a patient immunized with a Streptococcus pneumoniae capsular polysaccharide vaccine, we have succeeded in creating hybridomas that secrete human monoclonal antibodies specific for S. pneumoniae antigens. Using peripheral blood lymphocytes, we have similarly cloned a human antibody that binds a viral antigen. These experiments establish that SP2/0-derived cell lines ectopically expressing mIL-6 and hTERT will enable the rapid cloning of native human monoclonal antibodies.
Collapse
Affiliation(s)
- Scott K Dessain
- The Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Axel A Neumann
- Cancer Research Unit, Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, New South Wales 2145, Australia
| | | |
Collapse
|
10
|
Won J, Yim J, Kim TK. Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. J Biol Chem 2002; 277:38230-8. [PMID: 12151407 DOI: 10.1074/jbc.m206064200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of telomerase is crucial for cells to gain immortality. In human cells, telomerase activity is tightly regulated by the expression of its catalytic subunit, human telomerase reverse transcriptase (hTERT). In most normal human somatic cells, hTERT is not expressed, and its suppression acts as an important gatekeeper against tumorigenesis. Here we describe the systematic analyses of hTERT promoter to understand the transcriptional repression mechanism of the hTERT gene in normal human somatic cells. Through the serial deletion analysis of hTERT promoter in normal human fibroblasts, we identified a critical repressive element on the hTERT promoter. The repressive element formed DNA-protein complexes with Sp1 and Sp3 in nuclear extracts. Using formaldehyde cross-linked chromatin immunoprecipitation analysis, we found that Sp1 and Sp3 were associated with the endogenously repressed hTERT promoter in human fibroblasts. Furthermore, Sp1 and Sp3 interacted with histone deacetylase (HDAC) in these cells. Overexpression of dominant-negative mutants of Sp1 and Sp3, which contained mainly the HDAC2-binding domain, relieved the HDAC-mediated repression of the hTERT promoter. Taken together, these results suggest that Sp1 and Sp3 associate with the hTERT promoter, recruiting HDAC for the localized deacetylation of nucleosomal histones and transcriptional silencing of the hTERT gene in normal human somatic cells.
Collapse
Affiliation(s)
- Jaejoon Won
- National Creative Research Initiative Center for Genetic Reprogramming, Institute for Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
11
|
Abstract
The telomere is a special functional complex at the end of linear eukaryotic chromosomes, consisting of tandem repeat DNA sequences and associated proteins. It is essential for maintaining the integrity and stability of linear eukaryotic genomes. Telomere length regulation and maintenance contribute to normal human cellular aging and human diseases. The synthesis of telomeres is mainly achieved by the cellular reverse transcriptase telomerase, an RNA-dependent DNA polymerase that adds telomeric DNA to telomeres. Expression of telomerase is usually required for cell immortalization and long-term tumor growth. In humans, telomerase activity is tightly regulated during development and oncogenesis. The modulation of telomerase activity may therefore have important implications in antiaging and anticancer therapy. This review describes the currently known components of the telomerase complex and attempts to provide an update on the molecular mechanisms of human telomerase regulation.
Collapse
Affiliation(s)
- Yu-Sheng Cong
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA.
| | | | | |
Collapse
|